УДК 535.317.1

ВРЕМЕННОЙ ОТКЛИК ТОНКОЙ ДИНАМИЧЕСКОЙ ГОЛОГРАММЫ В РАСТВОРЕ КРАСИТЕЛЯ

© 2004 Е.В. Воробьева, В.В. Ивахник, В.И. Никонов

Самарский государственный университет

Для тонкой динамической голограммы в растворе красителя, моделируемого двух- и трехуровневыми схемами энергетических уровней, получены выражения для временного отклика в виде одной и суммы двух экспоненциальных функций. Найдены зависимости весовых коэффициентов экспоненциальных функций и скоростей уменьшения их во времени от параметров красителя, интенсивности излучения, записывающего голограмму.

Введение

При исследовании записи динамических голограмм в целом ряде нелинейных сред было показано [1–3], что динамические голограммы могут рассматриваться как устройства, осуществляющие интегральную операцию с комплексной амплитудой предметной волны вида

$$A_{\hat{a}}(t) = \int_{0}^{t} \chi(t-t') A_{i\hat{o}}^{*}(t') dt'$$

Здесь $A_{i\delta}(t)$ и $A_{\hat{a}}(t)$ - амплитуды пред-

метной и восстановленной волн, $\chi(t-t')$ временной отклик динамической голограммы. В случае записи динамических голограмм на тепловой нелинейности, в обратимых фотохромных средах временной отклик динамической голограммы описывается экспоненциальной функцией

$$\chi(t-t') = \chi_0 \exp\left\{-\frac{t-t'}{\tau}\right\},\,$$

где τ - время записи-стирания голограммы.

Вид временного отклика оказывает существенное влияние на временную зависимость амплитуды восстановленной волны.

Несомненный интерес представляет определение временного отклика динамических голограмм, записанных в средах с другими механизмами нелинейности, в частности в средах с резонансной нелинейностью [4–6]. Типичными представителями таких сред являются растворы красителей, на которых исторически впервые были записаны динамические голограммы [7–9].

В настоящей работе исследуется временной отклик тонкой динамической голограммы в растворе красителя, моделируемого двух- и трехуровневыми схемами энергетических уровней.

Запись динамической голограммы

Пусть тонкий слой красителя располагается в плоскости Z=0. Будем записывать голограмму плоскими волнами, падающими на слой красителя под одинаковыми углами. Тогда распределение интенсивности в зависимости от поперечной координаты x будет иметь следующий вид:

$$I = I_0 \left(1 + f \cdot \cos \left[Kx + \varphi(t) \right] \right).$$
(1)

Здесь I_0 и $\varphi(t)$ - средняя интенсивность и разность фаз волн, записывающих голограмму, K и f - волновое число и глубина модуляции записываемой интерференционной решетки.

Периодическое изменение интенсивности излучения приводит к периодическому изменению заселенности энергетических уровней красителя. Используя разложение в ряд Фурье, представим заселенности энергетических уровней в виде суммы:

$$N_{l} = \sum_{j=-\infty}^{\infty} N_{lj} \exp(-ijKx), \qquad (2)$$

где $l = 1 \div m$, *m* - число энергетических уровней.

Будем использовать следующие приближения.

1. Пространственное изменение заселенностей происходит по гармоническому закону ($N_{I1} >> N_{I2} >> ...$).

2. Глубина модуляции заселенностей небольшая ($N_{l0} >> N_{l1}$). Такие приближения справедливы, например, при условии $f \ll 1$.

ДВУХУРОВНЕВАЯ МОДЕЛЬ КРАСИТЕЛЯ

Рассмотрим краситель, моделируемый двухуровневой схемой энергетических уровней. Пусть N_1 и N_2 заселенности основного и возбужденного уровней. Кинетическое уравнение для заселенности основного энергетического уровня имеет вид

$$\frac{dN_1}{dt} = -N_1 \left\{ I \left(\sigma_{12} + \sigma_{21} \right) + \delta_{21} \right\} + N \left\{ I \sigma_{21} + \delta_{21} \right\} . (3)$$

Здесь σ_{12} и σ_{21} - сечения поглощения и вынужденного испускания, δ_{21} - вероятность безызлучательного перехода между возбужденным и основным уровнями, $N = N_1 + N_2$ – общая концентрация молекул красителя.

После подстановки (1) и (2) в уравнение (3) оно распадается на два дифференциальных уравнения для N_{10} и N_{11} вида:

$$\frac{dN_{10}}{dt} + \frac{N_{10}}{\tau} = N(I_0\sigma_{21} + \delta_{21}), \qquad (4)$$

$$\frac{dN_{11}}{dt} + \frac{N_{11}}{\tau} = -\frac{I_0 f}{2} \exp(i\varphi(t)) \times \times [N_{10}(\sigma_{12} + \sigma_{21}) - N\sigma_{21}], \quad (5)$$

где $\frac{1}{\tau} = I_0(\sigma_{12} + \sigma_{21}) + \delta_{21}$.

Для установившегося процесса (*t* >> *τ*) при выполнении граничных условий

$$\begin{split} N_{10}(t=0) &= N, \\ N_{20}(t=0) &= 0, \\ N_{11}(t=0) &= N_{21}(t=0) = 0 \end{split}$$

из (4), (5) получим

$$N_{10} = N\tau \left(I_0 \sigma_{21} + \delta_{21} \right), \tag{6}$$

$$N_{11} = -\frac{1}{2} N f I_0 \tau \sigma_{12} \delta_{21} \int_0^t \exp\left(-\frac{t-t'}{\tau} - i\varphi(t')\right) dt' .$$
(7)

Будем считывать голограмму излучением на длине волны, совпадающей с длиной волны излучения, записывающего голограмму, и интенсивность которого намного меньше интенсивности излучения, записывающего голограмму.

Для двухуровневой модели красителя коэффициент поглощения связан с заселенностью основного энергетического уровня соотношением вида

$$\alpha = N_1 \sigma_{12} - N_2 \sigma_{21} = N_1 (\sigma_{12} + \sigma_{21}) - N \sigma_{21} .$$
(8)

С учетом (2) коэффициент поглощения красителя можно представить в виде суммы

$$\alpha = \sum_{j=-\infty}^{\infty} \alpha_j \exp(-ijKx).$$
 (9)

Подставив выражения для заселенностей энергетических уровней (6), (7) в формулу для коэффициента поглощения (8) при j = 1, получим для установившегося процесса выражение для амплитуды первой гармоники в разложении коэффициента поглощения в ряд:

$$\alpha_{1} = -\frac{1}{2} N f I_{0} \tau \sigma_{12} (\sigma_{12} + \sigma_{21}) \delta_{21} \times \\ \times \int_{0}^{t} \exp\left(-\frac{t - t'}{\tau} - i\varphi(t')\right) dt' \qquad (10)$$

Если голограмма тонкая, т.е. изменением интенсивностей волн, записывающих голограмму, на ее толщине можно пренебречь, то амплитуда волны, восстановленной с голограммы, с точностью до постоянного множителя определяется амплитудой первой гармоники в разложении коэффициента поглощения в ряд

$$A_{\hat{a}} = \alpha_1$$

Тогда с учетом (10) временной отклик тонкой динамической голограммы в растворе красителя, моделируемого двухуровневой схемой энергетических уровней, будет иметь вид:

$$\chi(t-t') = \chi_0 \exp\left(-\frac{t-t'}{\tau}\right)$$

где $\chi_0 = -\frac{1}{2} N f I_0 \tau \sigma_{12} (\sigma_{12} + \sigma_{21}) \delta_{21}$.

Трехуровненвая модель красителя

Рассмотрим запись динамической голограммы в красителе, моделируемом трехуровневой схемой энергетических уровней.

Трехуровневая модель с учетом возбужденных синглетного и триплетного уровней

Пусть один из уровней является метастабильным. У молекулы красителя метастабильное состояние, как правило, имеет триплетную природу. Кинетические уравнения, описывающие изменение заселенностей основного синглетного (N_1), возбужденных синглетного (N_2) и триплетного (N_3) уровней, имеют вид [10]

$$\begin{cases} \frac{dN_1}{dt} = -N_1 I \sigma_{12} + N_2 (I \sigma_{21} + \delta_{21}) + N_3 \delta_{31}, \\ \frac{dN_2}{dt} = N_1 I \sigma_{12} - N_2 (I \sigma_{21} + \delta_{21} + \delta_{23}), \\ N = N_1 + N_2 + N_3. \end{cases}$$
, (11)

где δ_{23} и δ_{31} – вероятности безызлучательных переходов между 2 и 3, 3 и 1 энергетическими уровнями.

После подстановки выражения для интенсивности (1) и заселенностей энергетических уровней (2) в систему уравнений (11) она распадается на две системы уравнений, первая из которых совпадает по виду с системой уравнений (11) при замене в ней N_l на N_{l0} и I на I_0 , а вторая имеет вид

$$\begin{cases} \frac{dN_{11}}{dt} = -N_{11}(I_0\sigma_{12} + \delta_{31}) + N_{21}(I_0\sigma_{21} + \delta_{21} - \delta_{31}) + F(t), \\ \frac{dN_{21}}{dt} = N_{11}I_0\sigma_{12} - N_{21}(I_0\sigma_{21} + \delta_{21} + \delta_{23}) - F(t), (12) \\ N_{11} + N_{21} + N_{31} = 0 \end{cases}$$

где

$$F(t) = -\frac{1}{2}I_0 f(N_{10}\sigma_{12} - N_{20}\sigma_{21}) \exp\{-i\varphi(t)\}.$$

С учетом начальных условий для средних значений заселенностей энергетических уровней

$$N_{10}(t=0)=N, \quad N_{20}(t=0)=N_{30}(t=0)=0$$
для установившегося процесса имеем

$$N_{10} = \frac{N\delta_{31}(I_0\sigma_{21} + \delta_{21} + \delta_{23})}{\lambda_1\lambda_2},$$

$$N_{20} = \frac{N\delta_{31}I_0\sigma_{12}}{\lambda_1\lambda_2},$$
(13)

где

$$\lambda_{1,2} = -\frac{(I_0(\sigma_{12} + \sigma_{21}) + \delta_{21} + \delta_{31} + \delta_{23})}{2} \pm \int (I_0(\sigma_{12} + \sigma_{21}) + \delta_{21} + \delta_{23} + \delta_{31})^2$$

$$\left\{\frac{4}{-I_0\{\sigma_{12}(\delta_{23}+\delta_{31})+\sigma_{21}\delta_{31}\}-\delta_{31}(\delta_{21}+\delta_{23})}\right\}^{\frac{1}{2}}.$$

Решая систему уравнений (12) с учетом начальных условий

$$N_{11}(t=0) = N_{21}(t=0) = N_{31}(t=0) = 0$$

для установившегося процесса, получим следующие выражения для N_{11} и N_{21} :

$$N_{21} = C_1 \exp(\lambda_1 t) + C_2 \exp(\lambda_2 t),$$

$$N_{11} = \frac{I_0 \sigma_{21} + \delta_{21} - \delta_{31}}{\lambda_1 + I_0 \sigma_{12} + \delta_{31}} C_1 \exp(\lambda_1 t) + \frac{I_0 \sigma_{21} + \delta_{21} - \delta_{31}}{\lambda_2 + I_0 \sigma_{12} + \delta_{31}} C_2 \exp(\lambda_2 t)$$

где
$$\tilde{N}_{1,2} = \pm \frac{\lambda_{2,1} + I_0(\sigma_{12} + \sigma_{21}) + \delta_{21} + \delta_{23}}{\lambda_1 - \lambda_2} \times$$

 $\times \int_{0}^{t} F(t') \exp\left(-\lambda_{1,2}t'\right) dt'$

Зная заселенности энергетических уровней, можно, используя выражение (8), найти амплитуду первой гармоники в разложении коэффициента поглощения в ряд:

$$\alpha_{1} = \chi_{0} \int_{0}^{t} \{B_{1} \exp[\lambda_{1}(t-t')] + B_{2} \exp[\lambda_{2}(t-t')]\} \times \exp[-i\varphi(t')] dt'$$
(14)

где

$$\chi_{0} = -fNI_{0}\sigma_{12}\delta_{31}\frac{\delta_{21}+\delta_{23}}{2(\lambda_{2}-\lambda_{1})\lambda_{1}\lambda_{2}},$$
$$B_{1,2} = \pm (\lambda_{2,1}+I_{0}(\sigma_{12}+\sigma_{21})+\delta_{21}+\delta_{23}) \times \times \left(\sigma_{21}-\frac{(I_{0}\sigma_{21}+\delta_{21}-\delta_{31})\sigma_{12}}{\lambda_{1,2}+I_{0}\sigma_{12}+\delta_{31}}\right)$$

Тогда с учетом (14) временной отклик тонкой динамической голограммы на красителе, с учетом возбужденных синглетного и триплетного уровней, будет иметь вид:

$$\chi(t-t') = \chi_0 (B_1 \exp[\lambda_1(t-t')] + B_2 \exp[\lambda_2(t-t')]).$$
(15)

Временной отклик тонкой динамической голограммы представляет сумму двух экспоненциальных функций, весовые коэффициенты (B_j) и скорости уменьшения во времени (λ_j) которых зависят от интенсивности излучения, записывающего голограмму.

Трехуровневая модель с учетом возбужденных синглетных уровней

Рассмотрим второй предельный случай, учитывающий поглощение между первым (N_2) и вторым (N_3) возбужденными синглетными состояниями. Система уравнений для заселенностей состояний в этом случае имеет вид [10]

$$\begin{cases} \frac{dN_1}{dt} = -N_1 I \sigma_{12} + N_2 (I \sigma_{21} + \delta_{21}), \\ \frac{dN_2}{dt} = N_1 I \sigma_{12} - N_2 (I (\sigma_{21} + \sigma_{23}) + \delta_{21}) + N_3 \delta_{32}, \\ N = N_1 + N_2 + N_3. \end{cases}$$

где σ_{23} – сечение поглощения между 2 и 3 энергетическими уровнями. Предполагается, что деградация второго возбужденного синглетного состояния идет через первое возбужденное синглетное состояние.

Коэффициент поглощения связан с заселенностями энергетических уровней выражением

$$\alpha = N_1 \sigma_{12} + N_2 (\sigma_{23} - \sigma_{21}) \,.$$

Проводя рассуждения, аналогичные рассуждениям выше, можно показать, что вид временного отклика и в этом случае описывается выражением (15). Меняются выраже-

ния для коэффициентов χ_0, B_i, λ_i :

$$\begin{split} \chi_{0} &= \frac{f}{2} \frac{NI_{0}(I_{0}\sigma_{21} + \delta_{21})\sigma_{12}\delta_{32}}{\lambda_{1}\lambda_{2}(\lambda_{1} - \lambda_{2})}, \\ \lambda_{1,2} &= -\frac{\left(I_{0}(\sigma_{12} + \sigma_{21} + \sigma_{23}) + \delta_{21} + \delta_{32}\right)}{2} \pm \\ &\pm \left\{ \frac{\left(I_{0}(\sigma_{12} + \sigma_{21} + \sigma_{23}) + \delta_{21} + \delta_{32}\right)^{2}}{4} - \\ -I_{0}[\sigma_{12}(I_{0}\sigma_{23} + \delta_{32}) + \sigma_{21}\delta_{32}] - \delta_{21}\delta_{32}\right\}^{1/2}, \\ B_{1,2} &= \pm \left(\sigma_{12} - \frac{\left(\sigma_{21} - \sigma_{23}\right)\left(\lambda_{1,2} + I_{0}\sigma_{12}\right)}{I_{0}\sigma_{21} + \delta_{21}}\right) \times \\ &\times \left(\delta_{21} - I_{0}\sigma_{23} + \frac{\lambda_{2,1} + I_{0}\sigma_{12}}{I_{0}\sigma_{21} + \delta_{21}}\delta_{21}\right) - \\ \end{split}$$

Анализ временного отклика

Более подробно остановимся на анализе временного отклика тонкой динамической голограммы, записанной в растворе красителя, моделируемого трехуровневой схемой с учетом поглощения между первым и вторым возбужденными синглетными состояниями.

В предельном случае малой интенсивности волн, записывающих голограмму, $(I_0 \rightarrow 0)$ временной отклик тонкой динамической голограммы с точностью до постоянного множителя описывается одной экспоненциальной функцией, скорость уменьшения во времени которой определяется вероятностью безызлучательного перехода δ_{21} :

$$\chi(t-t_1) \Box (1-r_1) \left(1-\frac{1}{2r_2}\right) \exp\{-\delta_{21}(t-t_1)\},$$

где $r_1 = \frac{\sigma_{23}}{2\sigma_{21}}$ и $r_2 = \frac{\delta_{21}}{2\delta_{23}}$.

Увеличение интенсивности волн, записывающих динамическую голограмму, приводит к увеличению скорости уменьшения экспоненциальных функций с последующим выходом их на линейную зависимость. Если параметры красителя расположены в пределах $0.1 \le r_{1,2} \le 10$, то параметр λ_2 почти на порядок больше параметра λ_1 .

Анализ отношения весовых коэффициентов показывает, что в зависимости от интенсивности излучения, записывающего голограмму, можно выделить две области. В

первой области (
$$\left|\frac{B_1}{B_2}\right| >> 1$$
 или $\left|\frac{B_1}{B_2}\right| << 1$) вид

временного отклика определяется одной из экспоненциальных функцией в выражении

(15), во второй области (
$$0.2 < \left| \frac{B_1}{B_2} \right| < 5$$
) – сум-

мой двух экспоненциальных функций.

В окрестности значений интенсивности, когда отношение весовых коэффициентов меняет знак на противоположный, меняется вид временного отклика тонкой голограммы.

Так в случае, когда $\frac{B_1}{B_2} > 0$, с увеличением времени временной отклик динамической голограммы монотонно уменьшается (ри-

с.1(а)). Когда же $\frac{B_1}{B_2} < 0$, временной отклик

динамической голограммы имеет вид, представленный на рис. 1(б).

Значение интенсивности излучения, записывающего голограмму, при котором весовой коэффициент B_2 равен нулю, при $\delta_{21} > \delta_{23}$ слабо зависит от вероятностей безызлучательных переходов и уменьшается по закону близкому к линейному с ростом отно-

шения сечений переходов $\frac{\sigma_{23}}{\sigma_{21}}$.

Для динамической голограммы, временной отклик которой монотонно уменьшается во времени, введем понятие ширины временного отклика как временного отрезка, в тече-

Рис.1. Характерный вид временного отклика динамической голограммы в растворе красителя, моделируемого трехуровневой схемой с учетом возбужденных синглетных уровней:

а -
$$\frac{B_1}{B_2}$$
 > 0 , б - $\frac{B_1}{B_2}$ < 0

ние которого значение временного отклика уменьшается по сравнению с максимальным значением в *е* раз:

$$\chi(t-t'=\Delta\tau) = \frac{1}{e}\chi(t-t'=0)$$

На рис.2(*a*, б, в) приведены графики зависимости ширины временного отклика динамической голограммы от средней интенсивности излучения, записывающего голограмму. Из графиков следует, что в зависимости от параметров красителя с ростом интенсивности волн, записывающих голограмму, ширина временного отклика может монотонно спадать, монотонно возрастать, сначала спадать, а затем возрастать.

Если основной вклад во временной от-

динамической голограммы в растворе красителя, моделируемого трехуровневой схемой с учетом возбужденных синглетных уровней от интенсивности излучения ($a - r_1 = 1.1, r_2 = 1; 6 - r_1 = 10, r_2 = 1;$ $e - r_1 = 0.1 r_2 = 1$)

клик динамической голограммы вносит первая или вторая экспоненциальные функции, то с увеличением интенсивности излучения, записывающего голограмму, ширина временного отклика уменьшается, поскольку скорости убывания экспоненциальных функций линейно возрастают (рис.2(а)).

При монотонном возрастании отноше-

ния весовых коэффициентов $\frac{B_1}{B_2}$ с ростом интенсивности излучения временной отклик динамической голограммы, описываемый функцией $\exp(\lambda_2(t-t'))$, меняется на временной отклик, описываемый функцией $\exp(\lambda_1(t-t'))$. Следствием этого является:

1. При быстром увеличении отношения весовых коэффициентов с ростом интенсивности излучения увеличение ширины временного отклика динамической голограммы (рис.2(б)).

2. При вначале медленном, а затем быстром изменении с ростом интенсивности излучения отношения весовых коэффициентов вначале уменьшение, а затем рост ширины временного отклика динамической голограммы (рис.2(в)).

Проводя аналогичные рассуждения для тонкой динамической голограммы в растворе красителя, моделируемого трехуровневой схемой с учетом возбужденных синглетного и триплетного уровней, можно показать, что ширина временного отклика с ростом интенсивности монотонно уменьшается.

Приведем некоторые оценки ширины временного отклика динамической голограммы в растворе красителя. В качестве раствора красителя воспользуемся этанольным раствором криптоцианина, который описывается трехуровневой схемой энергетических уровней с возбужденными синглетным и триплетным уровнями. При расчете временного отклика будем использовать следующие значения вероятностей безызлучательных переходов: $\delta_{21} = 7.2 \cdot 10^9 c^{-1}$, $\delta_{23} = 6 \cdot 10^6 c^{-1}$ [11], $\delta_{31} = 10^5 c^{-1}$ [10]. Используя выражение (15), рассчитаем ширину временного отклика. Для нормированной интенсивности $2L \sigma$

 $\frac{2I_0\sigma_{12}}{\delta_{21}} = 1$ ширина временного отклика

 $\Delta \tau = 0.7 \cdot 10^{-10} c$. Увеличение интенсивности

в десять раз ($\frac{2I_0\sigma_{12}}{\delta_{21}}$ = 10) приводит к умень-

шению ширины временного отклика до значения $\Delta \tau = 1.3 \cdot 10^{-11} c$. Для динамической голограммы в этанольном растворе криптоцианина порядок ширины временного отклика определяется величиной вероятности безызлучательного перехода δ_{21} .

ЗАКЛЮЧЕНИЕ

Для красителя, моделируемого двух- и трехуровневой схемой энергетических уровней, временной отклик динамической голограммы представляет соответственно одну или сумму двух экспоненциальных функций. Можно показать, что в общем случае красителя, моделируемого *m* энергетическими уровнями, временной отклик динамической голограмм есть

$$\chi(t-t')' = \chi_0 \sum_{j=1}^{m-1} B_j \exp\left\{\lambda_j \left(t-t'\right)\right\},\,$$

где коэффициенты χ_0, B_j, λ_j определяются параметрами красителя и интенсивностью излучения, записывающего голограмму.

Для красителя, моделируемого двух- и трехуровневой схемой энергетических уровней, найдены зависимости весовых коэффициентов и скоростей уменьшения их во времени от параметров красителя, интенсивности излучения, записывающего голограмму.

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильев Л.А., Галушкин М.Г., Серегин А.М., Чебуркин Н.В. // Квантовая электроника. 1982. Т.9. №8.
- Петров М.П., Степанов С.И., Хоменко А.В. Фоточувствительные электрооптические среды в голографии и оптической обработке информации. Л.: Наука. 1983.
- 3. Гаращук В.П., Ивахник В.В., Никонов В.И. // Опт. и спектр. 1998. Т.85. №4.
- 4. Королев А.Е., Назаров В.Н., Стаселько Д.И. и др. // Опт. и спектр. 1986. Т.61. №5.
- Lind R.C., Steel D.G., Dunning G.J. // Opt. Eng. 1982. V.21.
- 6. *Королев А.Е., Назаров В.Н.* // Опт. и спектр. 1996. Т.81. №5.
- 7. Степанов Б.И., Ивакин Е.В., Рубанов А.С., // ДАН СССР. 1971. Т.196. №3.
- Ивакин Е.В., Коптев В.Г., Лазарук А.М., Петрович И.П., Рубанов А.С. // Письма в ЖЭТФ. 1979. Т.30. №10.
- Ивакин Е.В., Карцук С.М., Рубанов А.С., Толстик А.Л., Чалей А.В. // Письма в ЖТФ. 1991. Т.17. №14.
- 10. *Тихонов Е.А., Шпак М.Т.* Нелинейные оптические явления в органических соединениях. Киев: Н Думка. 1979.
- 11. Батище С.А., Мостовников В.А. // ИАН СССР. Серия физическая. 1975. Т.39. №11.

THE TIME RESPONSE OF THE THIN DYNAMIC HOLOGRAM IN A SOLUTION OF DYE

© 2004 E.V. Vorobeva, V.V. Ivakhnik, V.I. Nikonov

Samara State University

The equations for time response function as one or sum of two exponential functions have been obtained for thin dynamic hologram in a solution of dye, modeled by two- and three-level energetic schemes. The dependence of weight coefficients and velocities of reduction in time of exponential functions from dye parameters and intensity of radiation, recording the hologram, has been defined.