СВЯЗЬ УРАВНЕНИЯ ЛИНЕЙНОЙ МНОЖЕСТВЕННОЙ РЕГРЕССИИ С ВИДОМ СПЕКТРА ПОГЛОЩЕНИЯ БЕНЗИНОВ В ОБЛАСТИ 1090-1220 нм

© 2003 В. Л. Веснин, В. Г. Мурадов, Д. Г. Санников

Ульяновское отделение института радиотехники и электроники РАН

С помощью спектроскопии ближней ИК-области 1090-1220 нм экспериментально изучены спектры поглощения паспортизированных бензинов. Исследована связь количества членов уравнения множественной линейной регрессии с числом полос поглощения. Сделана попытка идентификации выявленных полос поглощения с учетом полученных экспериментально абсорбционных спектров поглощения чистых углеводородов: изооктана, бензола и n-гептана. Показана возможность одновременного определения октанового числа и температур перегонки бензина по единым экспериментальным данным.

Введение

Данная работа является продолжением исследований спектров поглощения бензинов в области вторых обертонов колебательных частот углеводородных (УВ) групп, расположенных в области длин волн $\lambda = 1090-1220$ нм [1]. Ставились задачи: тщательно изучить структуру и количество полос поглощения, их форму и ширину; исследовать оптимальное количество членов уравнения множественной линейной регрессии и её связь с числом полос поглощения (Nλ) при определении физико-химических характеристик бензина; оценить возможность одновременного определения октанового числа (WW) и фракционного состава бензина по единым экспериментальным данным.

Эксперимент

Для решения поставленных задач экспериментальный комплекс [1] существенно модернизирован. Было решено отказаться от ФЭУ и усилителя постоянного тока (УПТ), а применить модулированный световой поток и регистрировать переменный сигнал на выходе монохроматора германиевым фотодиодом. Установленная на монохроматоре фотометрическая головка представляла собой электрически экранированный блок, содержащий германиевый фотодиод, предварительный усилитель на малошумящем операционном усилителе (ОУ) типа OPA132U и фильтры питания ОУ. Далее сигнал направлялся в блок обработки и сопряжения с компьютером, содержавший усилитель с переключаемым коэффициентом усиления, синхронный детектор, аналого-цифровой преобразователь, устройство запуска развертки монохроматора и интерфейсные схемы, обеспечивающие сопряжения с компьютером. Модуляция светового потока осуществлялась с помощью обтюратора, а датчик положения обтюратора использовался для формирования опорного сигнала для синхронного детектора. Отказ от использования ФЭУ и УПТ позволил радикально устранить проблему "дрейфа нуля", увеличить чувствительность регистрирующей системы и получить её более равномерной в исследованном диапазоне длин волн. Записанные в память компьютера файлы данных обрабатывались специальной программой, выполнявшей процедуры сглаживания, нормировки и определения спектров поглощения, т.е. зависимости коэффициента поглощения (K, см⁻¹) от длины волны (λ) [2].

Файлы с записанными спектрами поглощения обрабатывались по специальной программе [3], позволяющей подобрать минимальное число и расположение модельных полос поглощения, варьируя их форму (гауссовская, лоренцевская, фойгтовская), ширину и интенсивность в максимуме. Предварительно расположение и ширина индивидуальных полос разных УВ групп задавалась на основе анализа экспериментальных кривых поглощения и литературных данных [4,5]. Программа [3] позволяла обрабатывать экспериментальные данные методом линейного регрессионного анализа с оценкой погрешности как определяемой величины, так и коэффициентов самого уравнения.

Результаты и обсуждение

а) моделирование спектров поглощения

Созданный экспериментальный комплекс позволил более тщательно, чем в [1] изучить вид спектров поглощения бензинов разных марок, отличающихся фракционным составом и октановым числом, а также сопоставить их со спектрами трех чистых углеводородов: изооктана, n-гептана и бензола в области вторых обертонов" Оказалось, что использованная в [1] лоренцевская форма кривой поглощения не позволяет правильно описать коротковолновую область спектра 1120-1140 нм, которая хорошо описывается набором модельных полос с гауссовской формой. Кроме того, для удовлетворительного представления сложного экспериментального контура бензина в исследованной области длин волн количество предполагаемых индивидуальных полос поглощения должно быть больше четырех, как это полагалось в [1], и составлять 5-8. Вначале положение максимумов модельных полос определялось приближенно по особым точкам экспериментальной кривой поглощения, полученной с узкими щелями монохроматора ($S_1 = S_2 = 0,1$ мм) и окончательно фиксировалось по достижении наилучшего соответствия расчетной и экспериментальной кривых. Критерием точности описания экспериментальных кривых модельным набором полос служил критерий согласия $\chi^{2}[6]$.

В качестве примера на рис.1 приведены результаты анализа спектров 3-х различных по октановому числу (ОЧ) бензинов в предположении 8 индивидуальных полос поглощения. В пределах графической точности экспериментальные и модельные интегральные кривые на рис.1 совпадают.

Рис. 1. Экспериментальные коэффициенты поглощения и теоретические интегральные абсорбционные коэффициенты, полученные из 8-ми модельных полос для 3-х различных бензинов с ОЧ = 81,3 (а), 84,0 (б) и 78,0 единиц

модельных пиков для 3-х бензинов с разными октановыми числами

Из рис.2 видно, что увеличение числа модельных полос поглощения не приводит к дальнейшее существенному уменьшению величины χ^2 .

Модельный анализ экспериментальных спектров поглощения бензинов показал, что обратная задача нахождения количества абсорбционных полос и их параметров не может быть решена однозначно. Поэтому идентификацию полос поглощения, образующих сложный экспериментальный контур, можно выполнить приближенно, опираясь на известные данные (табл.1) о положении максимумов полос поглощения УВ групп: метила, метилена, ароматики (соответственно CH₃, CH₂, CH), а также олефиновой группы, содержащей двойную связь C=C. Как видно из табл.1, такие сведения скудны и в определенной степени противоречивы.

Анализ экспериментальных кривых поглощения бензинов разных марок (см. рис.1) показал, что уверенно можно идентифицировать четыре полосы: метила с максимумом $\lambda_1 = 1191\pm 1$ нм, метилена с $\lambda_2 = 1208\pm 2$ нм, ароматики с $\lambda_3 = 1146\pm 3$ нм, а также полосу с максимумом $\lambda_4 = 1174\pm 3$ нм, которую скорее всего следует отнести к олефиновой группе, а не к комбинационной полосе, как предполагалось ранее [1]. Полоса с максимумом при $\lambda_5 = 1151\pm 3$ нм вероятнее всего принадлежит к одному из слабых колебаний группы CH₃ [4]. Полоса с максимумом $\lambda_6 = 1167\pm 3$ нм может быть отнесена к двойной олефиновой связи, так как она четко проявляется в спектре бензола (рис.3). В то же время полоса с λ_6 присутствует у n-гептана, который не содержит двойных углеродных связей.

Полоса с максимумом $\lambda_7 = 1218 \pm 3$ нм трудно поддается идентификации из-за её близости к конечной точке исследованного диапазона длин волн и отсутствия у экспериментальной кривой поглощения длинноволнового крыла абсорбционной полосы. С другой стороны, коротковолновая полоса имеет четко выраженный гауссовский контур, но положение её максимума достаточно неопределенно и лежит в области $\lambda_8 = 1125 - 1140$ нм.

Таким образом, в целом задача точного определения расположения отдельных полос

Рис. 3. Зависимость величины χ^2 от количества модельных пиков для 3-х бензинов с разными октановыми числами

Таблица 1. Максимумы главных полос поглощения углеводородных групп в области вторых обертонов

УВ группа	CH ₃	CH ₂	СН	Олефины	Источник
λ, нм	1150, 1190	1210	1145	1080-1140 1180	[4] [5]

УВ группа	CH ₃	CH ₂	СН	Олефины С=С	?	?
$\lambda_i \pm \Delta \lambda$, нм	1191±1 1151±3	1208±2	1146±3	1174±3 1167±3	1218±3	1125-1140
ширина полосы, δλ, нм	15÷18 9-÷18	12-16	18-22	8-14 9-17	10-14	

Таблица 2. Полосы поглощения УВ групп в спектрах бензинов, найденные на основе экспериментальных данных и моделирования

поглощения и их параметров не может быть решена однозначно в силу их сильного перекрытия. Отметим, что модельный анализ изза неоднозначности решения обратной задачи приводит иногда к "сдвоенной" полосе поглощения. Поэтому процесс моделирования неоднократно повторялся 5–10 раз, чтобы получить воспроизводимые результаты, итоги которых представлены в табл.2.

Как видно из табл.2, ширина индивидуальных полос варьируется в пределах 8– 22 нм, что согласуется с данными [1, 7].

Проведенное исследование структуры спектра поглощения бензинов позволило связать количество индивидуальных полос с числом членов уравнения множественной линейной регрессии, которое широко используется исследователями при определении октанового числа и других характеристик бензинов методом ИК-спектроскопии [8-10].

б) Определение октанового числа и фракционного состава бензина по единым экспериментальным данным

В основе расчетов лежит уравнение линейной множественной регрессии вида [8–10]:

 $y_i = b_0 + \sum_{j=1}^{N_i} b_j K_{ij} , \qquad (1)$

где индекс і обозначает номер образца бензина, у_i - вычисленное (предсказанное) значение искомого параметра (например, Ωy_i го образца бензина, b_j - коэффициенты линейной регрессии, К_{іі} - коэффициенты поглощения і -го образца бензина на длинах волн λ_i . Предполагается [8, 9], что величины b_i отражают степень влияния химических компонент бензина на увеличение или уменьшение определяемого параметра. Согласно [8], главная цель смешиваемых компонентов бензина - уменьшить число групп СН₃ при росте СН₂ и СН, что отражается в знаке и численных значениях коэффициентов *b_i*. Предполагается, что для всех образцов бензинов набор величин *b i* одинаков [9], а их значения определяются методом наи-

Номер	Марка	Октановое	Фракционный состав							
			$T_{\rm H}$	T_l	T_2	T3	T_{κ}			
16 23 18 19 22 24 21	Аи-95 Аи-92 Аи-92 Аи-92 А-76 А-76 А-76	84,8 84,0 83,5 81,3 78,2 78,0 76,7	37 34 32 37 34 36 36	69 66 55 48 52 53	108 112 109 72 89 87 77	158 168 160 169 172 172 151	201 204 194 184 219 216 191			
				51						

Таблица 3. Паспортные данные бензинов

Номер бензина	${\it \Delta K}_{ij}$, см $^{ extsf{-1}}$ для разных ${\it \lambda}_j$										
	λ=1191	1192	1195	1208	1145	1165	1175	1185	1135	1155	
16	-0,4950	-0,6091	-0,8352	0,0475	0,4585	-0,066	-0,1286	-0,0855	0,2519	0,1056	
23	-0,3994	-0,5078	-0,7329	0,1492	0,3558	0,0266	-0,0856	-0,0334	0,1896	0,0877	
18	-0,4373	-0,548	-0,7640	0,1338	0,3506	-0,0054	-0,1150	-0,0585	0,1904	0,0673	
19	-0,3714	-0,4947	-0,7260	0,3059	0,2594	0,0361	-0,0372	0,1080	0,1628	-0,0199	
22	-0,2504	-0,3540	-0,5810	0,3250	0,1992	0,0309	-0,0457	0,0580	0,1006	0,0245	
24	-0,1772	-0,2848	-0,5289	0,3692	0,1732	0,0480	-0,0153	0,1116	0,0906	0,0166	
21	-0,1414	-0,2487	-0,4942	0,4041	0,1492	0,0199	-0,0317	0,1317	0,0822	-0,0129	

Таблица 4. Усредненные результаты экспериментов по определению разности коэффициентов поглощения бензинов по отношению к изооктану для разных λ,

меньших квадратов, при котором достигается минимальное значение среднеквадратичного отклонения (*S*) результатов предсказания определяемого параметра *y_i* от паспор-

тных значений y_i^p :

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i^p - y_i)^2 , \qquad (2)$$

где *n* - количество экспериментов для всех бензинов.

В работе использован набор 7 разных марок бензинов, паспортные данные которых приведены в табл.3.

В табл.3 данные по октановым числам относятся к моторному методу, а фракционный состав содержит температуры начала кипения T_{μ} , 10% отгонки – T_{I} , 50% - T_{2} , 90% - T_{3} , конца отгонки - T_{κ} . Все использованные бензины неэтилированные.

Для одновременного определения октанового числа и фракционного состава бензина, т.е. величин Щ, T_{μ} , T_{I} , T_{2} , T_{3} и T_{κ} по единым экспериментальным данным, использованы разностные спектры исследованных бензинов по отношению к изооктану [11]. В качестве измеряемой величины применялась разность поглощении ΔK_{ij} , которая заме-

няла в уравнении (1) K_{ij} . Толщина поглощающего слоя жидкости l = 0,5 см. Каждый из

бензинов исследовался 2–5 раз. В табл.4 представлены полученные экспериментальные результаты, усредненные по образцам. Погрешность определения величин ΔK_{ij} для большинства λ_i не превышала 4 ·10⁻².

В соответствий с характеристикой спектров поглощения бензинов (см. раздел а)), для анализа использовалось разное количество длин волн: от 1 до 8. Значения выбранных

 λ_{i} указаны в табл.4. Они соответствуют об-

ластям расположения максимумов основных полос поглощения УВ групп. Интервал меж-

ду λ_j выбирался равным или близким к 10 нм, что соответствовало спектральной ширине выходной щели монохроматора при S₂ = 4 мм. В то же время выбранный интервал не превышал ширину полос поглощения (см. табл.2).

Значения коэффициентов уравнений множественной линейной регрессии b_j , рассчитанные на основе экспериментальных данных табл.4, при разном количестве выбранных длин волн, представлены в табл.5.

Здесь же для иллюстрации показана оценка стандартной погрешности их значений для случая $N_{\lambda} = 5$, показывающая, что набор рассчитанных b_j не остается постоянным и подчиняется закону нормального распределения.

На рис. 4 представлены результаты рассчитанных по уравнению (2) среднеквадратичных отклонений (*S*) предсказания октанового числа Щ_г от паспортных значений при различном количестве выбранных для анали-

λ_j ,				Расчет	Расчет T_i								
НМ													
	$N_{\lambda} = 1$ 3		3	5		8			T_{μ}	T_{I}	T_2	T_3	T_{κ}
1135						185	11	14					
1145	26, 8		9	4,2±0,6	2,0±0,6	7	3	2	40	45	-13	-186	-131
1155						-49	-28	-31					
1165				6,8±3,8		117	80	85					
1175				28±27	35±4	-65	-38	-41	-45	54	346	624	647
1185					-1,2±4,2	-4	-0,5	-2	76	29	-283	-260	-416
1191				-11,0±0,1			2						
1192								3					
1195		-23,6	-13		-11,1±0,4	11			11	72	61	-110	34
1208			-5	-18±2	-21±5	-24	-22	-23	-31	-113	-87	-78	-71
-	73, 4	65,2	71	82±1	81±1	85	81	82	40	123	191	212	334

Таблица 4. Значения коэффициентов уравнения b, для разных λ, при выбранной величине N,

за длин волн N_{λ} для двух случаев: 1 - когда в качестве эталонной жидкости использовался изооктан, 2 - по отношению кюветы с воздухом. Здесь же представлены зависимости коэффициента множественной корреляции (*R*) от N_{λ} для этих же двух случаев. Анализ рис.4 неоспоримо доказывает, что точ-

Рис. 4. Зависимости среднеквадратичных отклонений и коэффициента множественной корреляции от количества длин волн: 1, 2 – S; 3, 4 – R

ность определения S практически достигает предела, равного в наших. условиях 0,55 при $N_{\lambda} > 5$,что согласуется с выводами работы [9], а при $N_{\lambda} = 1$ увеличивается до 1 в соответствии с [11].

При этом предпочтительнее анализ проводить по отношению к изооктану, а λ_i выбирать вблизи максимумов полос поглощения метила, метилена, ароматики и олефинов.

На рис.5 представлены зависимости предсказанных величин Ω_r , полученных с использованием уравнения множественной линейной регрессии для случая λ =1195 нм и при пяти длинах волн: 1145, 1175, 1185, 1195, 1208 нм по сравнению с паспортными данными. Те же экспериментальные данные при N_{λ} = 5 использованы для определения фракционного состава бензинов. Полученные результаты изображены на рис.6. Его анализ и выполненные расчеты показали, что точность определения T_i монотонно

увеличивается от 1,1 для T_{μ} до 6,9 для T_{κ} по абсолютной величине, но при этом относительная погрешность остается одинаковой

Рис. 5. Диаграмма сравнения паспортных и предсказанных с помощью регрессионного анализа ОЧ бензинов:

с – по 5 λ_{i} = 1145, 1175, 1185, 1195, 1208 нм; о – по 5 λ_{i} = 1195 нм;

в пределах 2-4 %.

В то же время коэффициент множественной регрессии наименьший 0,82–0,88 при определении величин T_{μ} и T_{κ} , но значительно возрастает для T_1 , T_2 и T_3 , составляя 0,96–0,99.

Работа выполнена при частичном финансировании Федеральной целевой программы "Государственная поддержка интеграции высшего образования и фундаментальной науки", проект Б0107.

СПИСОК ЛИТЕРАТУРЫ

- Мурадов В.Г., Санников Д.Г., Воронов Ю.Ю., Широков А.А. Исследование спектров поглощения бензинов по сравнению с изооктаном в области 1090–1220 нм // Известия Самарского научного центра. 2002. № 28.
- 2. Веснин В Л, Зиновьев В.В., Мурадов В. Г., Рыжов Ю.А. Спектрофотометрический комплекс для исследования спектров поглощения бензинов // Тезисы докладов

Рис. 5. Диаграмма сравнения паспортных и предсказанных с помощью регрессионного анализа по 5 λ₁ = 1145, 1175, 1185, 1195, 1208 нм температур перегонки бензинов;

школы-семинара. Ульяновск. 2002.

- Воронов Ю.Ю. Разработка программного обеспечения для регрессионного и спектрального анализа бензинов // Тезисы докладов школы-семинара, Ульяновск. 2002.
- Kelly J.J., Callis J.B. Nondestructive Analytical Procedure for Simultaneous Estimation of the Major Classes of Hydrocarbon constituents of Finished Gasolines // Analytical Chemistry/ 1990. V.62. No.14.
- Wayer L.G. Near Infrared Spectroscopy of Organic Substances // Applied Spectroscopy Reviews. 1985. V.21.
- Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1973. Гл. 19.
- 7. Грибов Л.А., Дементьев В.А. Моделирование колебательных спектров сложных соединений на ЭВМ.- М.: Наука, 1989.
- Kelly J.J., Barlow C.H., Jinguji T.M., Callis J.B. Prediction of gasoline Octane Numbers from Near-Infrared Spectral Feature in the Range 660-1215 nm // Analytical Chemistry. 1989. V.61. No.4.
- 9. Королев В.Н., Маругин А.В., Цареградский

В.Б. Метод определения детонационных характеристик нефтепродуктов на основе регрессионного анализа спектров поглощения в ближнем инфракрасном диапазоне // Журнал технической физики, 2000.- Т.70, Вып.9.

ней ИК-спектроскопии для оперативного анализа бензинов // Нефть, газ и нефтехимия за рубежом. 1992. №6.

11. Воронов Ю.Ю., Мурадов В.Г., Санников Д.Г. Спектры поглощения бензинов в области 1090-1220 нм // Журнал прикладной спектроскопии. 2003.- Т.70, №4.

10. Заохуи С, Ксинлу Ф. Использование ближ-

CONNECTION OF STAGEWISE MULTI-LINEAR REGRESSION EQUATION WITH THE GASOLINE ABSORPTION SPECTRUM FORM IN THE RANGE 1090-1220 NM

© 2003 V.L. Vesnin, V.G. Muradov, D.G. Sannikov

Ul'yanovsk Branch of the Radio Engineering and Electronics Institute of Russian Academy of Sciences

Near infrared spectroscopy of the wavelength (1090-1220 nm) region is used for the experimental research of tested gasoline absorption spectra. The connection of stagewise multi-linear regression member numbering with the quantity of gasoline absorption bands is investigated. The identification of detected absorption bands was carried out using the obtained spectra of pure hydrocarbons: isooctane, benzene and n-heptane. It is shown that the octane number and boiling away temperature of an unknown mark of gasoline can be determined simultaneously on the basis of the same experimental data.