ИСПОЛЬЗОВАНИЕ СТРУКТУРНОЙ ЭКСЭРГИИ В КАЧЕСТЕ
ИНТЕГРАЛЬНОГО ПОКАЗАТЕЛЯ СОСТОЯНИЯ ЭКОСИСТЕМЫ

© 2006 А.В. Мокрый, Е.А. Зилов
Иркутский государственный университет, г. Иркутск

Проведен расчет структурной эксергии для фонового района пелагиали Южного Байкала (постоянная станция № 1). Показано, что среднегодовые значения структурной эксергии в фоновом районе в период 1990-2002 гг. колебались в пределах от 11,8±1,7 (1994 г.) до 22,0±1,6 (2002 г.) в цикле своего среднемесячного значений (17,1±0,4), не испытывая каких-либо направленных изменений, что, в свою очередь, говорит об отсутствии неблагоприятных изменений в планктонном сообществе фонового района пелагиали Южного Байкала.

Необходимость иметь измеряемый параметр, отражающий состояние экосистемы как целого и дающий возможность оценивать степень урона экосистеме от того или иного внешнего воздействия, давно признана современной экологией. За последние десятилетия было предложено множество таких показателей, но возникло и множество проблем, связанных с их применением. Во-первых, к каждой экосистеме следует подходить индивидуально, поскольку естественная изменчивость экосистем зависит от труднобиоримого числа факторов и границы изменчивости каждого параметра экосистемы также индивидуальны. Вторую проблему представляем процессы сукцессии: при изменении условий прежняя экосистема меняется практически новой, адаптированной к новым условиям, следовательно, показатели состояния экосистемы должны быть достаточно динамичны. Наконец, практически каждый исследователь выбирает собственный показатель в зависимости от своих вкусов и опыта.

В конце 80-х годов были сформулированы требования к показателям состояния экосистемы. Они должны:
• не зависеть от состояния отдельных видов;
• иметь числовое, желательно лишненное размерности, выражение;
• быть приложимы к экосистемам разного иерархического уровня организации;
• определяться по минимальному числу наблюдений.

В настоящее время используются следующие показатели: организованность биоценоза [10]; асценденция [23]; индекс биологической целостности [19]; индекс "общего здоровья системы" [12]; удельная фотосинтетическая поверхность [8, 9]. Но и они не лишены недостатков. Так, показатели Г.Е. Михайловского, Р. Улановича и Р. Костанцы громоздки и чрезвычайно сложны для вычисления, индексы Дж. Карра и Г.Г. Миничевой просты и работоспособны, но основаны на состоянии отдельных компонентов экосистемы — сообщества рыб, зоо- или фитобентоса.

В то же время необходимо помнить о том, что экосистемы являются открытыми, неравновесными термодинамическими системами. Давно уже высказывалась идея, что экологические системы развиваются в направлении увеличения потока энергии через них [1, 6, 7, 20, 21]. Естественно, поток энергии характеризует настоящее состояние экосистемы и определяет ее дальнейшее развитие. Но поток энергии в экосистеме невозможен без вещества и информации, и чем выше уровень информации, тем выше степень использования вещества и энергии для дальнейшего удаления экосистемы от термодинамического равновесия. Согласно данным принципам, был разработан целый ряд термодинамичес-
них показателей — максимизация энергии, минимизация энтропии, эмпория, эксэргия.

Среди других целевых функций одна, а именно эксэргия, имеет такие преимущества как хорошее теоретическое обоснование в термодинамике, связь с теорией информации и высокую степень корреляции с другими целевыми функциями при относительной простоте ее расчета [16]. Впервые использованная в экологическом моделировании в конце 70-х годов [22], ныне эксэргия используется для расчета параметров моделей экосистем и создания моделей, способных предсказывать изменения видового состава экосистем [13, 18].

Эксэргия определяется как расстояние между текущим состоянием системы и ее состоянием в термодинамическом равновесии с окружающей средой. Таким образом, эксэргия — мера отклонения экосистемы от равновесного состояния. Она указывает на количество работы, затраченной на создание данной системы из первичных компонентов (в случае экосистемы — из первичного неорганического «бульона»), и информации, использованной при этом. Эксэргия, отнесеная к общей биомассе (структурированная эксэргия), отражает способность экосистемы усваивать поток энергии извне, служа, одновременно, индикатором степени развития экосистемы, её сложности и уровня эволюционного развития организмов, из которых она состоит [Iwrgensen, 1997].

Эксэргия рассчитывается по формуле [Mejer, Iwrgensen, 1978]:

$$Ex = RT \sum_{i=0}^{n} [c_i \ln(c_i / c_{eq}) - (c_i - c_{eq})],$$ \hspace{1cm} (1)

где Ex — эксэргия, R — газовая постоянная, T — абсолютная температура, c_i — концентрация в экосистеме компонента i, c_{eq} — концентрация компонента i в условиях термодинамического равновесия с окружающей средой, $i = 0$ — неорганические соединения, $i = 1$ — дейтер, $i \geq 2$ — организмы.

Величина c_{eq} представляет собой очень малую (но не нулевую) концентрацию органических компонентов, соответствующую очень низкой вероятности спонтанного формирования комплексных органических соединений в «первичном бульоне» в условиях термодинамического равновесия. Проблема практического применения уравнения (1) состоит в нахождении величины c_{eq} для каждого из значимых компонентов. С.Э. Йоргенсен был разработан метод расчета эксэргии для любых ($i \geq 2$) компонентов экосистемы для которых известна биомassa, приблизительное число клеток и значащих последовательностей ДНК [13].

Например, для зеленых одноклеточных водорослей это будет

$$Ex / RT = 25.2 \cdot 10^{5} c_i.$$ \hspace{1cm} (2)

Тогда, отнеся общую величину эксэргии к таковой для детрита ($7.34 \cdot 10^5$), мы избавимся от многочисленных нулей и получим песяченый коэффициент f_i, который для зеленных одноклеточных водорослей будет составлять 3,4, для дрожжей — 6,4, олигохет — 35, коловрат — 30, копепод — 44 и т.п. Соответствующие коэффициенты уже рассчитаны для многих систематических групп организмов и опубликованы [14-17]. Тогда общая эксэргия экосистемы может быть рассчитана по уравнению

$$Ex / RT = \sum_{i=1}^{n} c_i / f_i,$$ \hspace{1cm} (3)

структурированная эксэргия, соответственно — по уравнению

$$Ex_{str} = \sum_{i=1}^{n} c_i / f_i,$$ \hspace{1cm} (3)

Для оценки пригодности приложения структурной эксэргии к реальным природным экосистемам был проведен расчет структурной эксэргии для планктонного сообщества пелагиали Южного Байкала в верхнем трофогенным слое 0-50 м за период 1990-2002 гг. Расчет выполнялся на основании данных ГИС «Планктон» НИИ биологии при ИГУ, полученных в результате еженедельных наблюдений на пелагической постоянной станции № 1.

Район постоянной станции № 1 является фоновым для Южного Байкала [3, 5]. Таким образом, рассчитав значения структурной эксэргии для не подверженного антропогенно-
му влиянию района, мы получим диапазон естественной ее изменчивости.

Структурная экскрессия рассчитывалась по формуле (3); в качестве пересчетного коэффициента для zooplanktona бралось 44, для fitoplanktona – 3,4 [17]. Биомасса fitoplanktona рассчитывалась исходя из того, что хлорофилл a составляет 0,25% сырой биомассы fitoplanktona, по формуле [11]:

$$B_f = 400 \cdot C_{хл,а},$$ \hspace{1cm} (4)

где B_f – сырая биомасса fitoplanktona, mg•m$^{-3}$; 400 – пересчетный коэффициент; $C_{хл,а}$ – концентрация хлорофилла a, mg•m$^{-3}$.

Среднегодовые значения структурной экскрессии за период 1990-2002 гг. изменялись в пределах от 11,8±1,7 (1994 г.) до 22,0±1,6 (2002 г.) со среднегодовыми значениями 17,1±0,4 (табл. 1).

Таблица 1. Среднегодовые значения структурной экскрессии в слое 0-50 м на пелагической станции № 1 (Южный Байкал), 1990-2002 гг.

<table>
<thead>
<tr>
<th>Год</th>
<th>Структурная экскрессия</th>
<th>Год</th>
<th>Структурная экскрессия</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>18,3±1,7</td>
<td>1997</td>
<td>15,6±1,0</td>
</tr>
<tr>
<td>1991</td>
<td>19,0±1,5</td>
<td>1998</td>
<td>16,9±0,9</td>
</tr>
<tr>
<td>1992</td>
<td>21,0±1,1</td>
<td>1999</td>
<td>15,9±1,0</td>
</tr>
<tr>
<td>1993</td>
<td>19,1±2,4</td>
<td>2000</td>
<td>13,2±1,1</td>
</tr>
<tr>
<td>1994</td>
<td>11,8±1,7</td>
<td>2001</td>
<td>18,9±1,4</td>
</tr>
<tr>
<td>1995</td>
<td>17,7±2,1</td>
<td>2002</td>
<td>22,0±1,6</td>
</tr>
<tr>
<td>1996</td>
<td>16,4±1,0</td>
<td>1990-2002</td>
<td>17,1±0,4</td>
</tr>
</tbody>
</table>

* - данные за июнь-декабрь

![Рис. 1. Многолетняя динамика структурной экскрессии в слое 0-50 м на пелагической станции № 1 (Южный Байкал), 1990-2002 гг.](image)

На рис. 1 видно, что все среднегодовые значения структурной экскрессии не выходят за пределы «среднемноголетнее ± среднее квадратичное отклонение (д)». Таким образом, среднегодовые значения структурной экскрессии в период 1990-2002 гг. колебались вокруг своего среднемноголетнего значения, не испытывая каких-либо направленных изменений, что, в свою очередь, говорит об отсутствии неблагоприятных изменений в планктонном сообществе фонового района пелагали Южного Байкала.

При анализе внутригодовых изменений структурной экскрессии за 1990-2002 гг. были выявлены максимальные и минимальные ее значения (табл. 2). Наименьшее значение структурной экскрессии, равное 4,3, зарегистрировано в 1994 г., наибольшее, равное 40,8,
– в 2002 г.

За весь рассматриваемый период годовой минимум значений структурной эксергии в слое 0-50 м на пелагической станции № 1 в 23% случаев приходился на апрель и в 38% – на май (т.е. на конец подледного — начало переходного периодов). Всего же на биологическую весну (февраль-июнь) приходилось 85% случаев минимума структурной эксергии. Годовой максимум значений структурной эксергии в слое 0-50 м на пелагической станции № 1 в 70% случаев приходился на летне-осенний период.

Таблица 2. Внутригодовые максимальные и минимальные значения структурной эксергии в слое 0-50 м на пелагической станции № 1 (Южный Байкал), 1990-2002 гг.

<table>
<thead>
<tr>
<th>год</th>
<th>Структурная эксергия</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>минимум</td>
<td>месяц</td>
<td>максимум</td>
</tr>
<tr>
<td>1990*</td>
<td>8,6</td>
<td>7</td>
<td>32,0</td>
</tr>
<tr>
<td>1991</td>
<td>9,0</td>
<td>4</td>
<td>34,0</td>
</tr>
<tr>
<td>1992</td>
<td>11,7</td>
<td>6</td>
<td>32,4</td>
</tr>
<tr>
<td>1993</td>
<td>4,9</td>
<td>12</td>
<td>30,4</td>
</tr>
<tr>
<td>1994</td>
<td>4,3</td>
<td>4</td>
<td>29,3</td>
</tr>
<tr>
<td>1995</td>
<td>5,2</td>
<td>5</td>
<td>33,3</td>
</tr>
<tr>
<td>1996</td>
<td>8,4</td>
<td>3</td>
<td>24,7</td>
</tr>
<tr>
<td>1997</td>
<td>4,7</td>
<td>5</td>
<td>27,1</td>
</tr>
<tr>
<td>1998</td>
<td>4,7</td>
<td>5</td>
<td>29,0</td>
</tr>
<tr>
<td>1999</td>
<td>5,7</td>
<td>5</td>
<td>31,7</td>
</tr>
<tr>
<td>2000</td>
<td>4,4</td>
<td>4</td>
<td>27,0</td>
</tr>
<tr>
<td>2001</td>
<td>7,8</td>
<td>3</td>
<td>29,8</td>
</tr>
<tr>
<td>2002</td>
<td>7,8</td>
<td>5</td>
<td>40,8</td>
</tr>
<tr>
<td>1990-2002</td>
<td>4,3</td>
<td>40,8</td>
<td></td>
</tr>
</tbody>
</table>

* - данные за июнь-декабрь

В экспериментах с моделью возмущений, а также в натурных экспериментах с мезоокосмами на оз. Байкал показана существенно большая чувствительность весеннего сообщества планктона, по сравнению с летне-осенним, планктоном, к действию химических загрязнителей, причем как питательных веществ (биогенные элементы), так и токсинов [2]. Приведенные выше данные также свидетельствуют о меньшей устойчивости весеннего комплекса видов байкальского планктона. Следовательно, поступление загрязнителей в Байкал биологической весной с гораздо большей вероятностью может вызвать неблагоприятные изменения в экосистеме озера.

При наличии многолетней динамики структурной эксергии, рассчитанной по значениям биомассы зоопланктона и концентрации хлорофилла а, нами была рассчитана и сезонная динамика структурной эксергии в слое 0-50 м на пелагической станции № 1 для 1999 г. по имеющимся данным биомасс зоопланктона и фитопланктона. Причем сырая биомасса каждого вида фитопланктона вычислялась путем умножения его численности (числа клеток) на объем клетки данного вида, принимая удельный вес равным единице. При анализе сезонной динамики структурной эксергии в 1999 г. обращает на себя внимание тот факт, что в период вскрытия озера ото льда, в переходный к лету период (май-июнь), значения структурной эксергии почти вдвое меньше по сравнению с другими периодами (рис. 2). Этот факт наглядно свидетельствует о меньшей устойчивости весеннего сообщества планктона.

Интересен также тот факт, что минимальные показатели структурной эксергии наблю-
Работа выполнена при частичной финансовой поддержке Федерального агентства по науке и инновациям РФ (шифр 2006-РИ-19.0/001/096, государственный контракт № 02.442.11.7261 в рамках Федеральной целевой научно-технической программы «Исследования и разработки по приоритетным направлениям развития науки и техники») и гранта по разделу «Университеты России» Научной целевой программы «Развитие научного потенциала высшей школы» Федерального агентства по образованию РФ.

СПИСОК ЛИТЕРАТУРЫ
9. Миничева Г.Г. Использование показателей поверхности бентосных водорослей для экспресс-диагностики трофо-сапробионтного состояния прибрежных экосистем //
THE USE OF STRUCTURAL EXERGY AS AN INTEGRAL INDEX OF THE ECOSYSTEM STATE

© 2006 A.V. Mokry, E.A. Silow
Irkutsk State University, Irkutsk

Structural exergy is calculated for the background region of the Southern Baikal pelagial (permanent station #1). The average annual values of structural exergy in this region in 1990–2002 fluctuated within the limits between 11.8±1.7 (1994) and 22.0±1.6 (2002) around their average (17.1±0.4). They do not demonstrate any tendency which points to the lack of negative changes in the planktonic community of Southern Baikal.