АНАЛИЗ КОЛЕБАНИЙ КОНСТРУКЦИИ СПУТНИКА ПРИ НАВЕДЕНИИ НА СОЛНЦЕ И ЗЕМЛЮ С ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИЕЙ УПРАВЛЕНИЯ ДВИГАТЕЛЯМИ

© 2007 С.Е. Сомов

Самарский научный центр РАН

Рассматриваются проблемы колебаний конструкции космического аппарата при дискретных алгоритмах широтно-импульсного управления реактивными двигателями в режимах наведения на Солнце и Землю. Представлены результаты динамического исследования в этих режимах спутника связи SESAT с крупногабаритными панелями солнечных батарей.

Введение

Колебания конструкции крупногабаритных космических аппаратов (КА) могут оказывать существенное влияние на их пространственное движение в режимах начальной ориентации на Солнце и Землю (РНОС и РНОЗ), которые выполняются последовательно после завершения режима начального успокоения [1]. Широтно-импульсная модуляция (ШИМ) управления реактивными двигателями (РД) в этих режимах имеет известные преимущества (например, в отношении затрат топлива) и применяется на многих КА. Спутник связи SESAT (Siberia Europe SATellite) с крупногабаритными панелями солнечных батарей (СБ) (рис. 1, [2]) разработан НПО ПМ им. акад. М.Ф. Решетнева, выведен на геостационарную орбиту в апреле 2000 г. и успешно решает целевые задачи. При полете этого спутника была экспериментально установлена квазимонотонная амплитудная зависимость декремента колебаний панелей СБ. Поэтому проблема нелинейного анализа динамики конструкции КА данного класса с малым декрементом колебаний панелей СБ в режимах начальной ориентации на Солнце и Землю является актуальной.

Системы координат

Инерциальные системы координат (СК), используемые для описания движения центра масс (ЦМ) и углового движения КА:

 $I_{\oplus} (O_{\oplus} X_{e}^{1} Y_{e}^{1} Z_{e}^{1})$ – инерциальная геоцентрическая экваториальная СК (ИСК) с началом в центре Земли O_{\oplus} , осью X_{e}^{1} , направленной в точку весеннего равноденствия γ ,

и осью Z_e^I , направленной на Северный полюс мира P_N по оси суточного вращения Земли, рис. 1;

Положение плоскости орбиты КА определяется долготой восходящего узла Ω_{0} и наклонением i_{o} , положение ЦМ КА на эллиптической орбите с большой полуосью а, и эксцентриситетом e_0 – радиусом-вектором $\mathbf{r}_{o}(t)$ и истинной аномалией $v_{o}(t)$, отсчитываемой от перигелия орбиты π , который находится на угловом расстоянии ω_π от ее восходящего узла в направлении движении ЦМ, рис. 2. Орбита КА считается известной, $\Omega_{o}, i_{o}, a_{o}, e_{o}, \omega_{\pi}$ – известные константы либо функции времени, как и момент времени прохождения ЦМ О перигея орбиты t_{π} . Истинная аномалия $v_0(t)$ связана с аргументом широты $u_0(t) = \omega_{\pi} + v_0(t)$ и точно определяется в функции времени t как решение нелинейного дифференциального уравнения

$$\dot{v}_{o}(t) = \mu_{o}^{1/2} (1 + e_{o} \cos v_{o}(t))^{2} / p_{o}^{3/2} , \quad (1)$$

где μ_o – гравитационный параметр Земли, $p_o = a_o(1 + e_o^2)$ – фокальный параметр орбиты. Текущий радиус орбиты $r_o(t)$ определяется соотношением

$$r_{o}(t) = p_{o}/(1 + e_{o}\cos v_{o}(t))$$

Рис. 1. Инерциальные СК

Орбитальная система координат (ОСК) $O_x^o y^o z^o$ (базис **O**) вводится на рис. 2. Стандартно вводятся также связная система координат (ССК) O_xyz и связанный базис **B** = {**b**_i}, составленный из ортов **b**_i, *i* = 1,2,3 = 1 ÷ 3 = *x*, *y*, *z*, направленных по соответствующим осям ССК O_xyz . Здесь и далее символ {·} обозначает вектор-столбец.

Кинематика и модели ортов внешних ориентиров

При традиционном обозначении $[\alpha]_i$ для матрицы элементарного поворота правого ортогонального базиса относительно *i* -ой оси на угол α , а именно

$$\begin{bmatrix} \alpha \end{bmatrix}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\alpha} & s_{\alpha} \\ 0 & -s_{\alpha} & c_{\alpha} \end{bmatrix}; \quad \begin{bmatrix} \alpha \end{bmatrix}_{2} = \begin{bmatrix} c_{\alpha} & 0 & -s_{\alpha} \\ 0 & 1 & 0 \\ s_{\alpha} & 0 & c_{\alpha} \end{bmatrix};$$
$$\begin{bmatrix} \alpha \end{bmatrix}_{3} = \begin{bmatrix} c_{\alpha} & s_{\alpha} & 0 \\ -s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \begin{aligned} c_{\alpha} \equiv \cos\alpha; \\ s_{\alpha} \equiv \sin\alpha. \end{aligned}$$

Орт \mathbf{e}_{s} (см. рис. 1), в проекциях на оси ОСК обозначаемый как $\mathbf{e}_{s}^{o}(t) = \{\mathbf{e}_{sx}^{o}(t), \mathbf{e}_{sy}^{o}(t), \mathbf{e}_{sz}^{o}(t)\}$, имеет вид

$$\mathbf{e}_{s}^{o}(t) = \mathbf{T}_{1}^{o} \cdot [-\varepsilon_{e}]_{1} [-\rho_{s}(t)]_{3} \{1,0,0\}, \qquad (2)$$

где $\mathbf{T}_{1}^{o} = [u_{o}(t)]_{3}[i_{o}]_{1}[\Omega_{o}]_{3}$ – матрица направляющих косинусов координатного перехода из базиса \mathbf{I}_{\oplus} (нижний индекс) в базис **O** (верхний индекс матрицы); астрономическая долгота Солнца $\rho_{s}(t) = \rho_{s}^{0} + \omega_{s}(t - t_{0}), \rho_{s}^{0} = \rho_{s}(t_{0}),$ см. рис. 2, t_{0} – некоторый начальный момент

Рис. 2. Орбитальная СК

времени, ω_s – средняя угловая скорость годового обращения Земли вокруг Солнца, $\omega_s = 7,2921158 \cdot 10^{-5}$ с⁻¹.

При последовательности $\{\psi\}_1 \rightarrow \{\theta\}_3 \rightarrow \{\phi\}_2$ углов поворота рыскания Ψ , крена φ и тангажа θ ССК относительно ОСК матрица направляющих косинусов \mathbf{T}_o^b координатного перехода от базиса **О** к базису **В** вычисляется по формуле

$$\boldsymbol{\Gamma}_{o}^{b}[\{\boldsymbol{t}_{ij}\}] = [\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \boldsymbol{t}_{3}] = [\boldsymbol{\varphi}]_{2}[\boldsymbol{\theta}]_{3}[\boldsymbol{\psi}]_{1}, \quad (3)$$

где [·] – обозначение строки, здесь с компонентами в виде векторов-столбцов $\mathbf{t}_i = \{t_{ii}\}$. Наряду с кинематическими параметрами ориентации ССК относительно ОСК в виде углов Эйлера-Крылова ψ, ϕ, θ и матрицы направляющих косинусов Т^b_o, имеющих очевидный геометрический смысл, в дальнейших расчетах используется нормированный кватернион $\Lambda^{\circ} = (\lambda_0^{\circ}, \lambda^{\circ})$, с векторной частью $\lambda^{\circ} = (\lambda_{i}^{\circ}, i = 1, 2, 3)$, также однозначно определяющий ориентацию базиса в относительно базиса О. Вектор абсолютной угловой скорости ОСК $\dot{\mathbf{v}}_{o}$ относительно инерциальной СК \mathbf{I}_{\oplus} в проекциях на оси базиса \mathbf{O} имеет представление $\dot{\mathbf{v}}_{0}^{o} = \{0, 0, v_{0}\}$, причем на круговой орбите $\dot{\mathbf{v}}_{o}^{o} = \mathbf{\omega}_{o}^{o} = \{0,0,\omega_{o}\}$. При векторе абсолютной угловой скорости ССК ω , определенном в базисе в в виде вектора-столбца $ω = {ω_x, ω_v, ω_z},$ pemenue кинематического уравнения с символом (。) кватернионного умножения

$$\dot{\mathbf{\Lambda}}^{\circ} = \frac{1}{2} (\mathbf{\Lambda}^{\circ} \circ \boldsymbol{\omega} - \dot{\mathbf{v}}_{o}^{\circ} \circ \mathbf{\Lambda}^{\circ})$$
(4)

для кватерниона Λ° определяет ориентацию базиса **в** относительно ОСК **О** без какоголибо вырождения, в отличии от кинематических соотношений для углов Эйлера-Крылова в используемой последовательности поворотов

$$\dot{\Psi} = (\omega_z \sin\varphi + \omega_x \cos\varphi - \dot{v}_o^\circ \sin\psi \sin\theta)/\cos\theta;
\dot{\varphi} = \omega_y + ((\omega_z \sin\varphi + \omega_x \cos\varphi)\sin\varphi - \dot{v}_o^\circ \sin\psi)/\cos\theta; (5)
\dot{\theta} = \omega_z \cos\varphi - \omega_x \sin\varphi - \dot{v}_o^\circ \cos\psi,$$

и при 4 (минимально-избыточном числе) скалярных кинематических параметрах, связанных единственным условием нормировки, в отличии от 9 элементов матрицы направляющих косинусов T_o^b с шестью условиями ортогональности. Элементы матрица T_o^b выражаются по известным явным соотношениям через компоненты кватерниона Λ^o , которые вычисляются в явном виде по значениям углов Эйлера-Крылова ψ, ϕ, θ в указанной выше последовательности как

$$\lambda_{0}^{o} = \mathbf{c}_{1}\mathbf{c}_{2}\mathbf{c}_{3} + \mathbf{s}_{1}\mathbf{s}_{2}\mathbf{s}_{3}; \lambda_{1}^{o} = \mathbf{s}_{1}\mathbf{c}_{3}\mathbf{c}_{2} - \mathbf{c}_{1}\mathbf{s}_{3}\mathbf{s}_{2};$$

 $\lambda_2^{\circ} = \mathbf{c}_1 \mathbf{c}_3 \mathbf{s}_2 - \mathbf{s}_1 \mathbf{s}_3 \mathbf{s}_2; \ \lambda_3^{\circ} = \mathbf{c}_1 \mathbf{s}_3 \mathbf{c}_2 + \mathbf{s}_1 \mathbf{c}_3 \mathbf{s}_2,$ где $c_i = \cos(\alpha_i/2); \quad s_i = \sin(\alpha_i/2); \quad \alpha_1 = \psi;$ $\alpha_2 = \theta$; $\alpha_3 = \varphi$. Это позволяет легко определить начальные условия для интегрирования кватернионного кинематического уравнения (4) с соблюдением условий нормировки и однозначно определить текущую ориентацию ССК относительно ОСК. Решение кинематического уравнения $\dot{\Lambda} = \frac{1}{2} \Lambda \circ \omega$ для кватерниона Л определяет ориентацию базиса в относительно инерциального базиса I_⊕ также без каких-либо сингулярностей. Направления ортов e_s^o и e_r^o в проекциях на оси ССК вычисляются по соотношению $\mathbf{e}_{r}^{o} = \mathbf{T}_{o}^{b}\{1, 0, 0\} = \mathbf{t}_{1} = \{t_{11}, t_{12}, t_{13}\}$. При этом орт направления S из ЦМ КА на Солнце определяется как $S = -e_s$, а орт направления **Е** на центр Земли – как $\mathbf{E} = -\mathbf{e}_r$, рис. 2.

Моделирование движения деформируемой конструкции КА

Для получения приближенных моделей движения упругих КА используется метод конечных элементов, представляющий собой локализованный метод предполагаемых форм колебаний. Применяемый здесь подход заключается в представлении упругих колебаний элементов конструкции КА в виде конечного числа тонов. При этом вычисляются матрицы коэффициентов взаимовлияния движений всех подконструкций КА как абсолютно твердых тел, включая корпус КА, так и деформируемых тел. Собственные формы и парциальные частоты колебаний каждой панели СБ КА *Sesat* рассчитаны с учетом $n^q = 10$ низших тонов в стандартной нормировке, значения парциальных частот колебаний панелей представлены в [1,2]

Модель динамики углового движения КА с упругими неподвижными панелями СБ, составленная при упрощающих предположениях [2], имеет вид

$$\mathbf{A}^{\circ} \begin{bmatrix} \dot{\boldsymbol{\omega}} \\ \ddot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}^{\boldsymbol{\omega}} \\ \mathbf{F}^{\mathbf{q}} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{F}^{\boldsymbol{\omega}} \\ \mathbf{F}^{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} -\dot{\mathbf{H}} - \boldsymbol{\omega} \times \mathbf{G} + \mathbf{M}_{\circ}^{d\circ} + \mathbf{M}_{\circ} \\ -\mathbf{D} \, \dot{\mathbf{q}} - \mathbf{W} \, \mathbf{q} \end{bmatrix}; \quad (6)$$
$$\mathbf{A}^{\circ} = \begin{bmatrix} \mathbf{J}(\boldsymbol{\gamma}) & \mathbf{D}^{\mathbf{q}} \\ (\mathbf{D}^{\mathbf{q}})^{\mathrm{T}} & \mathbf{I}_{2n^{q}} \end{bmatrix}$$

Здесь $\mathbf{q} = {\mathbf{q}_1, \mathbf{q}_2}$ – вектор обобщенных координат упругих колебаний панелей СБ, где $\mathbf{q}_{k} \in \mathbf{R}^{n^{q}}$, k=1, 2 – вектор обобщенных координат упругих колебаний *k*-й панели СБ; $\mathbf{F}^{q} = \{\mathbf{F}_{1}^{q}, \mathbf{F}_{2}^{q}\}$ – вектор-столбец обобщенных сил, соответствующих колебаниям панелей СБ, где $\mathbf{F}_{k}^{q} = -(\delta/\pi) \mathbf{\Omega}_{k} \dot{\mathbf{q}}_{k} - \mathbf{\Omega}_{k}^{2} \mathbf{q}_{k}$; диагональная матрица $\Omega_k = \text{diag}\{\Omega_k\}$ составлена из парциальных частот Ω_{ks} , $s = 1 \div n^q$ и δ – логарифмический декремент колебаний панелей СБ, матрица собственного демпфирования **D**= (δ/π) **Q**, причем матрицы $\Omega = \text{diag} \{ \Omega_1, \Omega_2 \}$, $W = \Omega^2$; $G = J(\gamma)\omega + H + D^q(\gamma)\dot{q}$ – вектор кинетического момента (КМ) упругого КА с гироскопическим стабилизатором (ГС), где н – вектор собственного кинетического момента ГС, причем вектор $\mathbf{H} = \mathbf{0}$ в режимах наведении КА на Солнце и Землю; $\mathbf{M}_{o} = \mathbf{M}_{o}^{g} + \mathbf{M}_{o}^{s}$ – суммарный вектор возмущающих моментов относительно полюса О, где M^g_o-вектор гравитационного момента и **М**^s_o – вектор момента возмущающих сил солнечного давления, остальные внешние возмущающие моменты на геостационарной орбите пренебрежимо малы; М_о^{do}-вектор моментов двигательной установки ориентации (ДУО). Прямоугольная матрица $\mathbf{D}^{q}(\gamma)$ инерционного взаимовлияния движений панелей СБ и корпуса КА представляется матрицейстрокой $\mathbf{D}^{q} = \mathbf{D}^{q}(\gamma) = [\mathbf{D}_{1}^{q}(\gamma), \mathbf{D}_{2}^{q}(\gamma)], \ при-$ чем структура матриц \mathbf{D}_1^q и \mathbf{D}_2^q инерционного влияния упругих панелей СБ такова: - матрица $\mathbf{D}_k^q = {\mathbf{D}_{k1}^q, \mathbf{D}_{k2}^q, \mathbf{D}_{k3}^q}$ представ-

магрица $\mathbf{D}_k = \{\mathbf{D}_{k1}, \mathbf{D}_{k2}, \mathbf{D}_{k3}\}$ предетав ляется столбцом, составленным из строк, - \mathbf{D}^q – строки матрии влияния i = 1.2.3

- \mathbf{D}_{kj}^{q} – строки матриц влияния, j = 1,2,3 – номер строки; k = 1,2 – номер панели.

Тензор инерции КА **J** в полюсе О при произвольном положении панелей СБ, определяемом углом γ , вычисляется по формуле $\mathbf{J} = \mathbf{J}(\gamma) = \mathbf{J}^{\circ} + 2\mathbf{J}^{p}(\gamma)$, причем тензор инерции $\mathbf{J}^{p}(\gamma)$ каждой панели СБ рассчитывается по соотношениям

$$\mathbf{J}^{p}(\gamma) = \begin{bmatrix} J_{x}^{p}C_{\gamma}^{2} + J_{y}^{p}S_{\gamma}^{2} & J_{xy}^{pd}C_{\gamma}S_{\gamma} & 0\\ J_{xy}^{pd}C_{\gamma}S_{\gamma} & J_{x}^{p}S_{\gamma}^{2} + J_{y}^{p}C_{\gamma}^{2} & 0\\ 0 & 0 & J_{z}^{p} \end{bmatrix};$$

$$J_{xy}^{pd} = J_x^p - J_y^p$$
; $C_{\gamma} = \cos \gamma$; $S_{\gamma} = \sin \gamma$,

где $\gamma \equiv 3\pi/2$ для положения панелей СБ при завершении режима успокоения, когда спутник вращается в ИСК с вектором угловой скорости $\omega \approx \omega^{c}$, где $\omega^{c} = \{\omega_{x}^{c}, \omega_{y}^{c}, \omega_{z}^{c}\}$ – векторстолбец, составленный из командных угловых скоростей по осям ССК *Охуг*. Для спутника *Sesat* принято $\omega_{x}^{c} = \omega_{z}^{c} = 0$ °/c; $\omega_{y}^{c} = 0.2$ °/c, поиск направления на Солнце осуществляется вращением КА относительно оси *Оу* ССК.

Модели компонентов системы ориентации

Приборный состав системы управления ориентацией КА в РНОС и РНОС состоит из ДУО на основе шести термокаталитических реактивных двигателей (РД) с широтно-импульсной модуляцией (ШИМ) тяги, приборов ориентации на Солнце (ПОС) и Землю (ПОЗ), блока трех одноосных датчиков угловой скорости (ДУС), а также БЦВМ, реализующей алгоритмы фильтрации дискретных измерений и цифрового управления.

Математические модели ДУО и блока ДУС подробно представлены в [1,2], поэтому здесь приводятся только необходимые соотношения. Модель ШИМ нормированного сигнала $P^n(t, T_k^d)$ включения РД принята в виде

$$\mathbf{P}^{n}(t,\tau_{k}^{d}) = \begin{cases} 1 & t_{k} \leq t < t_{k} + \tau_{k}^{d} \\ 0 & t_{k} + \tau_{k}^{d} \leq t < t_{k+1} \end{cases};$$

$$\boldsymbol{\tau}^{\mathrm{d}}_{\mathit{k}} = \begin{cases} 0 & \boldsymbol{\tau}_{\mathit{k}} < \boldsymbol{\tau}_{\mathrm{m}} \\ \boldsymbol{\tau}_{\mathit{k}} & \boldsymbol{\tau}_{\mathrm{m}} \leq \boldsymbol{\tau}_{\mathit{k}} < \boldsymbol{\tau}^{\mathrm{m}} \\ \boldsymbol{\tau}^{\mathrm{m}} & \boldsymbol{\tau}^{\mathrm{m}} \leq \boldsymbol{\tau}_{\mathit{k}} < \boldsymbol{T}_{\mathrm{u}} \\ \boldsymbol{T}_{\mathrm{u}} & \boldsymbol{\tau}_{\mathit{k}} > \boldsymbol{T}_{\mathrm{u}} \end{cases} \text{.}$$

Здесь $P^{n}(t, \tau_{k}^{d}) \in \{0,1\}, k \in \mathbb{N}_{0} \equiv [0,1,2...)$ сигнал включения реактивного двигателя, $\mathbf{t} \in [t_k, t_k + \tau_k^d), \quad \tau_k^d = \tau^d(t_k)$ – длительность включения; τ_k – командный входной сигнал, поступающий в моменты времени $t_k = k T_u$, где Т_и – период управления. Изменение нормированной тяги $P_d^n(t)$ каждого РД с учетом временнуго запаздывания T^{d}_{zu} описывается дифференциальным уравнением $T^d \dot{P}^n_d + P^n_d = P^n(t - T^d_{zu}, \tau^d_k) c$ начальным условием $P_d^n(t_0) = 0$, где T^d – постоянная времени, причем $T^d = T^d_+$, если $P^n = 1$; иначе T^d = T^d. Для последовательности командных импульсов $P^n(t, \tau_k^d)$ с длительностями τ_k^d на полуинтервалах времени $t \in [t_k, t_{k+1})$ начальные условия для этого уравнения в моменты времени $t = t_k + T_{zu}^d$ и $t = t_k + T_{zu}^d + \tau_k^d$ получаются "припасовыванием" по непрерывности решения $P_d^n(t)$.

Каждому *j*-му РД D_i , $j = 1 \div 6$, сопоставляется вектор текущей реактивной тяги $\mathbf{P}_{i}(t) = \mathbf{P}^{\mathrm{m}} \mathbf{P}_{\mathrm{d}i}^{\mathrm{n}}(t) \cdot \mathbf{p}_{i}$ с фиксированным ортом \mathbf{p}_{j} и началом в точке O_{j}^{d} , где \mathbf{p}^{m} – одинаковое для всех РД значение текущей максимальной тяги. Расположение точки O^d_i относительно полюса О определяется радиусомвектором ρ_i . Управляющие моменты ДУО относительно осей O_X, O_Y и O_Z ССК создаются парами РД (D_1, D_2) , (D_3, D_4) и (D_{5}, D_{6}) соответственно, причем РД с нечетным номером в *i*-ой паре создает управляющий момент положительного знака относительно соответствующей *i*-ой оси, i = x, y, z. Логика формирования команд т_{ік} включения каждого *j*-го РД в составе ДУО учитывает знак командного входного сигнала V_{ik} по соответствующему каналу управления i = x, y, z и для значений индекса $k \in N_0$ описывается следующим алгоритмом:

$$\begin{aligned} \tau_{ik} &= |\mathbf{v}_{ik}|; \ \mathbf{s}_{ik} = \mathrm{sign} \ \mathbf{v}_{ik} \ ; \ i = x, y, z; \\ \begin{cases} \tau_{1k} &= \tau_{xk} \ , \tau_{2k} = 0, \qquad \mathbf{s}_{xk} > 0; \\ \tau_{1k} &= 0, \ \tau_{2k} = \tau_{xk}, \qquad \mathbf{s}_{xk} < 0; \end{cases} \end{aligned}$$

$$\begin{cases} \tau_{3k} = \tau_{yk}, \tau_{4k} = 0, & s_{yk} > 0; \\ \tau_{3k} = 0, \tau_{4k} = \tau_{yk}, & s_{yk} < 0; \end{cases}$$
$$\begin{cases} \tau_{5k} = \tau_{zk}, \tau_{6k} = 0, & s_{zk} > 0; \\ \tau_{5k} = 0, \tau_{6k} = \tau_{zk}, & s_{zk} < 0. \end{cases}$$

Вектор управляющего момента \mathbf{M}_{o}^{do} , формируемого ДУО относительно полюса О, в проекциях на оси ССК вычисляется по формуле <u>6</u>

$$\mathbf{M}_{o}^{do} = \{\mathbf{M}_{ox}^{do}, \mathbf{M}_{oy}^{do}, \mathbf{M}_{oz}^{do}\} = \sum_{j=1}^{j} \boldsymbol{\rho}_{j} \times \mathbf{P}_{j} .$$
(7)

Используются обозначения М^m_i для максимальных значений модулей моментов ДУО по каналам управления и стандартные функции:

• ограничения

$$\operatorname{Sat}(a, x) = \begin{cases} x & |x| \le a \\ a \operatorname{sign} x & |x| > a \end{cases};$$
$$\operatorname{Sats}(a, k, x) = \begin{cases} k x & |x| \le a/k \\ a \operatorname{sign} x & |x| > a/k \end{cases};$$

• релейная гистерезисная функция общего вида

$$\operatorname{Relh}(a,b,\lambda,\mathbf{x}(t)) = \begin{cases} \operatorname{sign} \mathbf{x}(t) & |\mathbf{x}| > \lambda b \\ 0 & |\mathbf{x}| < b \end{cases}$$

 $\operatorname{Relh}(a, b, \lambda, \mathbf{x}(t_0)) = a \in \{-1, 0, 1\}$

• функция "генерации" импульсов длительностью $\tau \leq T_u$, начиная с момента t_k :

Puls
$$(t_k, \tau, x_k) = \begin{cases} x_k & t_k \le t < t_k + \tau \\ 0 & t_k + \tau \le t < t_{k+1} \end{cases}$$

• функция фиксации сигнала на периоде T_u : $Zh(T_u, x_k) = Puls(t_k, T_u, x_k);$

• функция квантования по уровню $y = \text{Qntr}(a,x) = a \mathbb{E}[(x/a) + 0.5 \text{ sign } x]$, где a – шаг дискретизации и $\mathbb{E}[\cdot]$ – символ целой части числа $[\cdot]$.

Применяются также стандартные обозначения для значений скалярного дискретного сигнала $y(t_k) = y_k$ и $y(t_s) = y_s$ соответственно в моменты времени $t_k = kT_u$ и в кратные им моменты времени $t_s = sT_q$ с периодом измерения T_q , причем кратность $n_q = T_u / T_q$ – целое положительное число, где целые числа $k, s \in N_0$. Модель блока измерителей скорости (БИС) корпуса КА $\omega(t) = \{\omega_x(t), \omega_y(t), \omega_z(t)\}$ представляет совокупность трех однотипных каналов измерения угловой скорости $\omega_i(t), i = x, y, z$ одноосными ДУС, каждый из них описывается соотношениями

 $T^{\omega}\dot{\omega}^{s}(t) + \omega^{s}(t) = \omega(t);$

 $\omega^{se}(t) = \text{Sats}(b^{\omega}, k^{\omega}, \omega^{s}(t) + \omega^{b});$

 $\omega_{\rm s}^{\sigma} = \omega^{\rm se}(t_{\rm s}) + \omega_{\rm s}^{\rm n}; \ \omega_{\rm s}^{\rm d} = {\rm Qntr}({\rm d}^{\omega}, \omega_{\rm s}^{\sigma}),$

где T_q – период квантования измеряемого сигнала по времени, ω_s^d – дискретный выходной сигнал и все параметры описаны в [2].

Выходными сигналами оптико-электронного ПОС являются признак наличия Солнца N^s в его поле зрения и сферические угловые координаты θ_s, ψ_s орта S направления на Солнце относительно орта \mathbf{b}_1 (оси Ox) ССК. Рабочее поле зрения ПОС составляет $2A_s = 184^\circ$ в плоскости B^sOC^s и $2B_s = 64^\circ$ в плоскости A^sOB^s – см. рис. 3, где представлена привязка приборных осей ПОС к осям ССК и связь углов α_s и β_s , определяющих положение орта S в приборной СК, с углами θ_s, ψ_s .

В моменты времени $t'_{s} = t_{s} - T^{s}_{z}$ по значениям проекций орта $S(t) = \{s_{x}(t), s_{y}(t), s_{z}(t)\}$ в базисе **В** вычисляются угловые координаты α_{s}, β_{s} этого вектора в приборной СК, признак наличия Солнца N^s в поле зрения ПОС, и далее в дискретные моменты времени $t_{s} = s T_{q}$ формируются дискретные значения измеренных углов $\theta^{d}_{ss}, \psi^{d}_{ss}$ с учетом методических погрешностей, дискретного шума измерения и дискретизации сигналов по уровню:

Рис. 3. Схема ПОС

$$\beta_{s}(t'_{s}) = \arcsin(s_{z}(t'_{s}));$$

$$\alpha_{s}(t'_{s}) = \pi - \operatorname{arctg}(s_{y}(t'_{s})/s_{x}(t'_{s}));$$

$$N_{s}^{s} = N^{s}(t'_{s}) = n_{\alpha_{s}}(t'_{s}) n_{\beta_{s}}(t'_{s});$$

$$\psi_{ss}^{s} = \psi_{ss}^{s}(t_{s}) = \beta_{s}(t'_{s}) N_{s}^{s};$$

$$\theta_{ss}^{s} = \theta_{ss}^{s}(t_{s}) = (\pi - \alpha_{s}(t'_{s})) N_{s}^{s};$$

$$x_{s}^{d} = \operatorname{Qntr}(d^{x}, x_{s}^{s} + x^{b} + x_{s}^{n}), x = \psi_{s}, \theta_{s}.$$

Здесь $n_x(t) = Nh(n_{x0}, b_x, \lambda_x, x(t)), x = \alpha_s, \beta_s$, релейная гистерезисная характеристика наличия ориентира

Nh(*a*,*b*,λ,*x*) = 1 – Relh(*a*,*b*,λ,|*x*|) графически представлена на рис. 4; ψ_s^b , θ_s^b – квазипостоянные погрешности ПОС, обусловленные неточностью привязки приборной СК к ССК; ψ_{ss}^n , θ_{ss}^n – дискретные шумы измерения, которые считаются гауссовскими независимыми стохастическими процессами с нулевым математическим ожиданием и среднеквадратическим отклонением σ^s ; $d^{\theta_s} = d^{\psi_s} = d^s$ – шаг квантования выходных сигналов по уровню.

Прибор ориентации на Землю (ПОЗ) предназначен для определения отклонения оси минус O_X ССК по углам тангажа и крена от направления на центр Земли. Принятая математическая модель описывает формирование выходных дискретных сигналов ПОЗ θ_s^d, ϕ_s^d об углах отклонения КА по тангажу и крену и признак наличия Земли N^e в поле зрения прибора.

Схема привязки приборной СК ПОЗ к ССК представлена на рис. 5. В моменты времени $t'_s = t_s - T^e_z$ по значениям проекций орта $\mathbf{E}(t) = \{e_x(t), e_y(t), e_z(t)\}$ в базисе **В** вычисляются угловые координаты α_e, β_e этого вектора в приборной СК, признак наличия Земли N^e в поле зрения ПОЗ, и в моменты времени $t_s = sT_q$ формируются значения измеренных углов θ^d_s, ϕ^d_s с учетом методических погрешностей, дискретного шума измерения, ограничения и дискретизации сигна-

Рис. 5. Схема ПОЗ

лов по уровню:

$$\beta_e(t'_e) = \arcsin(-e_z(t'_s));$$

$$\alpha_e(t'_e) = \operatorname{arctg}(e_y(t'_s) / e_x(t'_s));$$

$$N_s^e = N^e(t'_s) = n_{\alpha_s}(t'_s) n_{\beta_s}(t'_s);$$

$$n_x(t) = \operatorname{Nh}(n_{x0}, b_x, \lambda_x, x(t)), x = \alpha_e, \beta_e$$

$$\varphi_s^s = \varphi_s^s(t_s) = -\beta_e(t'_s) \cdot N_s^e;$$

$$\theta_s^s = \theta_s^s(t_s) = \alpha_e(t'_s) \cdot N_s^e;$$

$$x_s^d = \operatorname{Qntr}(\operatorname{d}^x, \operatorname{Sat}(a^x, x_s^s + x^b + x_s^n)), x = \varphi, \theta.$$

Здесь φ^{b} , θ^{b} – квазипостоянные погрешности ПОС, обусловленные как неточностью привязки приборной СК к ССК, так и дрейфом точки отсчета статической характеристики из-за несферичности Земли; φ^{n}_{s} , θ^{n}_{s} – дискретные шумы измерения, которые считаются гауссовскими независимыми стохастическими процессами с нулевым математическим ожиданием и среднеквадратическим отклонением σ^{e} ; a^{ϕ} , a^{θ} – уровни ограничения выходных сигналов; $d^{\theta} = d^{\phi} = d^{e}$ – шаг квантования выходных сигналов по уровню.

Дискретные алгоритмы фильтрации и управления

Оператор осреднения с одинаковыми весами только n_q последних измерений y_s сигнала с получением оценки \overline{y}_k , оптимальной по методу наименьших квадратов, называемый обычно алгоритмом осреднения координаты (АОК), имеет описание

$$\overline{y}_k = \mathrm{MS}(y_s) \equiv (\sum_{s=k-n_q+1} y_s) / n_q$$
;

 $n_q = T_u / T_q; \ k = E[s/n_q], \ k,s \in N_0.$

Для КА Sesat принято $T_q = 1 c$ и $T_u = 4 c$, поэтому здесь кратность периодов $n_q = 4$. АОК используется для многократной дискретной фильтрации выходных дискретных сигналов ω_{is}^d БИС, $\theta_{ss}^d, \psi_{ss}^d$ ПОС и θ_s^d, ϕ_s^d ПОЗ:

$$\overline{\omega}_{ik} = MS(\omega_{is}^{d}), \quad i = x, y, z;$$

$$\overline{\theta}_{sk} = MS(\theta_{ss}^{d}); \quad \overline{\psi}_{sk} = MS(\psi_{ss}^{d});$$

$$\overline{\varphi}_{k} = MS(\varphi_{s}^{d}); \quad \overline{\theta}_{k} = MS(\theta_{s}^{d}).$$
(8)

В РНОС на спутнике Sesat используется канальный алгоритм формирования дискретных команд v_{*ik*} включения пар РД в составе ДУО:

по каналу тангажа

$$\mathbf{v}_{zk} = \mathbf{k}_{p} \left(k_{z}^{p} \operatorname{Sat}(c_{3}, \varepsilon_{sk}^{z}) - k_{z}^{\omega} \overline{\omega}_{zk} \right), \quad (9)$$

где

$$\varepsilon_{sk}^{z} = \begin{cases} \theta_{s}^{c} - \overline{\theta}_{sk} & N^{s} K_{n}^{s} = 1; \\ \sum_{j=0}^{k} (\overline{\omega}_{zj} T_{u}) & N^{s} K_{n}^{s} = 0; \end{cases}$$
$$K_{n}^{s} = \begin{cases} 1 & N_{n}^{s\omega} N^{s} = 1; \\ 0 & N_{n}^{s\omega} N^{s} = 0; \end{cases}$$
$$N_{n}^{s\omega} = \begin{cases} 1 & (|\overline{\Psi}_{sk}| \le \Psi_{sn}) \& (|\overline{\omega}_{yk}| \le \omega_{yn}); \\ 0 & (|\overline{\Psi}_{sk}| > \Psi_{sn}) \lor (|\overline{\omega}_{yk}| > \omega_{yn}); \end{cases}$$

 $k_p - коэффициент компенсации вариации тяги РД, см. [1,2], <math>k_z^p$ и k_z^{ω} – коэффициенты усиления, $\theta_s^c = \theta_s = 7/12\pi$ – командное значение угла ориентации КА относительно орта **S**, рис. 3, $\psi_{sn} = 3^\circ$, $\omega_{yn} = 1$ угл. мин/с и c_3 – некоторая константа;

по каналу *крена*

 $\mathbf{v}_{yk} = k_p (k_y^p \mathbf{\phi}_s (c_{21}, c_{22}, \mathbf{N}^s, \varepsilon_{sk}^y) - k_y^{\omega} \overline{\omega}_{yk}), \quad (10)$ где

$$\phi_s(a,b,\mathbf{N}^s,x) = \begin{cases} \operatorname{Sat}(a,x) & \operatorname{N}^s = 1; \\ -b & \operatorname{N}^s = 0; \end{cases}$$

 $\varepsilon_{sk}^{y} = \varphi_{s}^{c} - \overline{\psi}_{sk} \cos \overline{\Theta}_{sk}; k_{y}^{p}$ и k_{y}^{ω} – коэффициенты усиления, $\varphi_{s}^{c} = 0$ – командное значение угла крена и c_{21}, c_{22} – некоторые константы;

по каналу рыскания

$$\mathbf{v}_{xk} = \mathbf{k}_{p} \left(k_{x}^{p} \operatorname{Sat}(c_{1}, \varepsilon_{sk}^{x}) - k_{x}^{\omega} \overline{\omega}_{xk} \right), \quad (11)$$
где

$$\varepsilon_{sk}^{x} = \begin{cases} \Psi_{s}^{c} - \overline{\Psi}_{sk} \sin \overline{\theta}_{sk} & \mathrm{N}^{s} = 1; \\ \mathrm{Sat}(c_{1}, \sum_{j=0}^{k} (\overline{\omega}_{xk} \mathrm{T}_{u})) & \mathrm{N}^{s} = 0, \end{cases}$$

 k_x^p и k_x^{ω} – коэффициенты усиления, ψ_s^c – постоянное командное значение угла рыскания и c_1 – ограничение сигнала по модулю.

С целью наведения КА на Солнце по кратчайшему пути после попадания Солнца в поле зрения ПОС (т.е. при $N^s = 1$) предлагается дискретный векторный алгоритм управления. Согласно этому алгоритму сначала формируется предварительный дискретный сигнал

$$\widetilde{v}_{ik} = -k_p (k_i^p p_{ik} + k_i^{\omega} \overline{\omega}_{ik}), i = x, y, z \equiv 1, 2, 3, (12)$$

где при постоянном векторе **b**^s требуемого положения орта направления на Солнце в ССК и обозначениях $s_i(t_s) = s_{is}, i = x, y, z$; $\bar{s}_{ik} = MS(s_{is})$; $\bar{S}_k = \{\bar{s}_{ik}\}$ компоненты p_{ik} вектора $\mathbf{p}_k = \{p_{1k}, p_{2k}, p_{3k}\}$ вычисляются по соотношению $\mathbf{p}_k = \mathbf{b}^s \times \bar{\mathbf{S}}_k$. Далее вычисляется значение $\tilde{\mathbf{v}}_{ik}^m = \max(|\tilde{\mathbf{v}}_{ik}|, i = x, y, z)$ и при условии $\tilde{\mathbf{v}}_{ik}^m > T_u$ результирующие дискретные команды включения ДУО по каналам приводятся к масштабу максимальной длительности работы РД на такте управления по простой формуле

$$\mathbf{v}_{ik} = \mathbf{T}_{u} \,\widetilde{\mathbf{v}}_{ik} / \widetilde{\mathbf{v}}_{ik}^{m}, i = x, y, z \,. \tag{13}$$

В РНОЗ дискретное управление v_{zk} по каналу тангажа формируется в соответствии с алгоритмом управления (9) по этому каналу в РНОС. Одновременно ПОЗ при наличии Земли в его поле зрения (т.е. при $N^e = 1$) выдает дискретные сигналы ϕ_s^d и θ_s^d , которые после осреднения с помощью АОК принимают в моменты времени t_k значения $\overline{\phi}_k$, $\overline{\theta}_k$ (8). При выполнении условия ($|\overline{\phi}_k| \leq 1^o$) & ($|\overline{\theta}_k| \leq 1^o$) координата $\overline{\theta}_{sk}$ в (9) заменяется на координату $\overline{\theta}_k$. Алгоритм управления по каналу *крена* в этом режиме имеет вид

 $v_{yk} = k_p(k_y^p \phi_e(c_2, N^e, \varepsilon_{ek}^y) - k_y^\omega \overline{\omega}_{yk}), (14)$ где $\varepsilon_{ek}^y = \phi_k^c - \overline{\phi}_k$;

$$\phi_e(b, \mathbf{N}^e, x) = \begin{cases} x & \mathbf{N}^e = \mathbf{I}; \\ -b & \mathbf{N}^e = \mathbf{0}; \end{cases}$$

 k_y^p и k_y^{ω} – коэффициенты усиления; $\varphi_k^c = 0$ – командный сигнал по углу крена и c_2 –поис-ковая уставка. Наконец, алгоритм управления по каналу рыскания в РНОЗ представляется соотношением

$$v_{xk} = k_p (k_x^p \text{Sat}(c_{11}, \varepsilon_{sk}^x) - k_x^\omega \overline{\omega}_{xk}), \quad (15)$$

где

$$\boldsymbol{\varepsilon}_{sk}^{x} = \begin{cases} \boldsymbol{c}_{12} - \overline{\boldsymbol{\psi}}_{sk} & \mathbf{N}^{e} = 0; \\ \boldsymbol{\psi}_{s}^{c} + \boldsymbol{K}_{o}^{s} \overline{\boldsymbol{\psi}}_{sk}^{o} - \overline{\boldsymbol{\psi}}_{sk} & \mathbf{N}^{e} = 1; \end{cases}$$

$$K_{o}^{s} = \begin{cases} (|\overline{\varphi}_{k}| \leq 1^{o}) \& (|\overline{\omega}_{xk}| \leq \omega_{o}^{s}) \\ 1 & \& (|\overline{\omega}_{yk}| \leq \omega_{o}^{s}) \& (|\overline{\omega}_{zk}| \leq \omega_{o}^{s}); \\ 0 & |(|\overline{\varphi}_{k}| > 1^{o}) \land (|\overline{\omega}_{xk}| > \omega_{o}^{s}) \\ 0 & \land (|\overline{\omega}_{yk}| > \omega_{o}^{s}) \land (|\overline{\omega}_{zk}| > \omega_{o}^{s}); \end{cases}$$

 k_x^p и k_x^{ω} – коэффициенты усиления; $\overline{\psi}_{sk}^o$ = arcsin(sin($\rho_s(t_k)$ sin ε_e) – командный сигнал на отработку солнечного склонения; $\rho_s(t)$ – астрономическая долгота Солнца, см. рис. 1; ψ_s^c – командное значение угла рыскания; параметр ω_o^s = 1 угл. мин/с; c_{11} , c_{12} – соответственно ограничение сигнала по модулю и поисковая уставка.

Динамические свойства упругого объекта

Выполняя линеаризацию пространственной упругой модели КА (6) при постоянном значении вектора **H** КМ ГС, совпадающего по направлению с ортом **b**₃ ССК относительно некоторого состояния КА в инерциальном базисе при произвольном векторе вращения КА ω^c , $\mathbf{M} = \mathbf{M}_o^{do}$, $\mathbf{q} = \dot{\mathbf{q}} = \mathbf{0}$ и векторе невязки $\delta \omega = \omega - \omega^c$ по угловой скорости КА получаем линейную непрерывную модель.

В РНОС вектор кинетического момента ГС **H** = **0** и поисковое движение для захвата Солнца ПОС выполняется относительно оси Оу ССК, т.е. вектор $\omega^c = \{0, \omega_y^c, 0\}$, где $\omega_y^c = 0,2$ °/с. При практически диагональном тензоре инерции КА с панелями СБ в парковом положении движение КА по каналу крена отделяется от взаимосвязанных движений по каналам рыскания и тангажа. Отсюда следует, что влияние упругости конструкции КА по каналу крена в РНОС будет точно таким же, как и в режиме успокоения, причем частотные характеристики по каналам рыскания и тангажа будут изменяться только в их низкочастотной части за счет гироскопической взаимосвязи каналов поисковой угловой скоростью $\omega_v^c = 0,2 \circ/c = 0,0035 \text{ р/с}$ вращения спутника относительно оси крена. В режиме поиска Земли уже все три канала взаимосвязаны поисковой угловой скоростью, что четко проявляется на частотных характеристиках каналов. Также как и в РНОС, при заданном значении командной угловой скорости поиска Земли завязка каналов в РНОЗ является слабой, поэтому вполне обоснованно можно автономно проводить параметрический синтез дискретных алгоритмов управления по отдельным каналам при наведении КА как на Солнце, так и на Землю.

В режиме предварительной ориентации на Землю, который реализуется после завершения РНОЗ, выполняется разгон ротора ГС [3] до величины его КМ Н = 85 Нмс. Для анализа собственных динамических свойств упругого КА, как непрерывного объекта управления, при разгоне ротора ГС в этом режиме были построены частотные характеристики по каналам для трех фиксированных значений модуля КМ в парковом состоянии ГС. В качестве примера на рис. 6 представлена логарифмическая частотная характеристика по каналу рыскания. Здесь явно видно, что при наличии КМ ротора ГС появляется дополнительный резонансный пик, соответствующий

Рис. 6. Канал рыскания: a) H=0; b) H =40 Hмс; c) H =85 Hмс

нутационным колебаниям КА из-за наличия собственного кинетического ГС. Этот резонансный пик последовательно сдвигается вправо с возрастанием значения КМ Н, как параметра. Тем не менее, при номинальном значении H= 85 Нмс среднечастотный участок имеет наклон 40 dB/dek, что вполне соответствует условиям автономного параметрического синтеза дискретных алгоритмов управления по отдельным каналам также и в этом режиме.

Анализ устойчивости дискретных моделей каналов

Если не учитывать запаздывание при измерении и дискретную фильтрацию, выполняемую АОК, то при векторе состояния $\mathbf{x}_{k} = \{\delta \alpha_{k}, \delta \omega_{k}\}$ упрощенная нелинейная дискретная модель любого канала имеет вид

 $\mathbf{x}_{k+1} = \mathbf{A}_d \mathbf{x}_k + (\mathbf{b}_d + \delta \mathbf{b}_d(\tau_k)) \operatorname{Sat}(\mathbf{T}_u, \mathbf{v}_k), (16)$ где

$$\mathbf{v}_{k} = \mathbf{K}_{d} \mathbf{x}_{k}; \mathbf{K}_{d} = [\bar{k}^{\alpha} \ \bar{k}^{\omega}];$$

 $\tau_k = \text{Sat}(T_u, |\mathbf{v}_k|)$ и при $d_J = M^m / J$ использованы обозначения

$$\mathbf{A}_{d} = \begin{bmatrix} 1 & T_{u} \\ 0 & 1 \end{bmatrix}; \mathbf{b}_{d} = -d_{J} \begin{bmatrix} T_{u} \\ 1 \end{bmatrix};$$
$$\delta \mathbf{b}_{d}(\tau_{k}) = d_{J} \begin{bmatrix} \tau_{k} \\ 0 \end{bmatrix}.$$

Введем обозначения $\mu = 1 - d_I \overline{k}^{\omega}$;

$$\chi = \overline{k}^{\omega} + \overline{k}^{\alpha} \operatorname{T}_{u}; \ \mu C_{\theta} = 1 - d_{J} \chi / 2;$$
$$\mu S_{\theta} = (d_{J} / 2) \sqrt{4 \overline{k}^{\alpha} \operatorname{T}_{u} / d_{J} - \chi^{2}}$$

при условиях $0 < \mu < 1$ и $\chi < 2\sqrt{k^{\alpha}} T_u / d_J$. Асимптотическая устойчивость положения равновесия $\mathbf{x}_k = 0$ нелинейной дискретной модели (16) доказывается с помощью дискретной функции Ляпунова $v_k \equiv v(\mathbf{x}_k) = (\mathbf{x}_k^{T} \mathbf{V} \mathbf{x}_k)^{1/2}$; $\mathbf{V} = (\mathbf{T}^{T} \mathbf{T})^{-1}$, (17) где матрица

$$\mathbf{T} = \begin{bmatrix} T_u \mu C_\theta & T_u \mu S_\theta \\ \mu C_\theta - 1 & \mu S_\theta \end{bmatrix}$$

составлена из собственных векторов матрицы $\mathbf{A}_{d}^{o} \equiv \mathbf{A}_{d} + \mathbf{b}_{d}\mathbf{K}_{d}$ замкнутой линейной дискретной системы для ее собственных значений $z_{1,2} = \mu(C_{\theta} \pm jS_{\theta})$, $j \equiv \sqrt{-1}$. Первая разность такой функции Ляпунова в силу системы (16) удовлетворяет неравенству $v_{k+1} \le \sqrt{\mu^2 + av_k + bv_k^2} v_k$, где постоянные положительные параметры а и b появляются в процессе мажорирования. Используя данный результат, несложно рассчитать положительные значения коэффициентов \overline{k}^{α} , \overline{k}^{ω} , а, следовательно, значения коэффициентов k_i^p и k_i^{ω} в законах управления (9) – (15), при которых будет обеспечена не только асимптотическая устойчивость каждого канала в соответствующем режиме, но и приемлемые показатели качества как переходного процесса, так и точностные характеристики.

Параметрический синтез дискретных алгоритмов управления

Окончательный параметрический синтез алгоритмов управления слабо демпфированным спутником (декремент упругих колебаний панелей СБ $\delta = 0.005$) выполнен на основе тщательного имитационного моделирования в среде Matlab.

На рис. 7 - 9 представлены процессы наведения КА на Солнце с применением канального дискретного алгоритма управления при захвате Солнца ПОС в начальный момент времени с условиями $\theta_s = 98^\circ$, $\psi_s = 31^\circ$.

Рис. 7. Угловые скорости в РНОС при канальном алгоритме управления

Рис. 10. Угловые скорости в РНОС при векторном алгоритме управления

Выполненные численные исследования показали вполне приемлемое влияние упругих колебаний панелей СБ, рис. 9. При тех же параметрах и начальных условиях эффективность применения векторного дискретного алгоритма управления демонстрируется на рис. 10: условие окончания РНОС для векторного алгоритма выполняется на 303 сек раньше. Обоснован также выбор параметров дискретных алгоритмов широтно-импульсного управления РД слабо демпфированным КА Sesat в РНОЗ (рис. 11) и в режиме предварительной ориентации на Землю с выполнением разгона ротора силового гироскопического стабилизатора.

Заключение

Рассмотрены основные проблемы колебаний слабо демпфированной конструкции космического аппарата при дискретных алгоритмах широтно-импульсного управления РД в режимах наведения на Солнце и Землю, а также в режиме предварительной ориентации на Землю с разгоном ротора силового

гироскопического стабилизатора. Выполнен анализ устойчивости процессов управления с применением метода функций Ляпунова. В среде Matlab создано программное обеспечение, с помощью которого выполнен окончательный параметрический синтез дискретных алгоритмов управления ДУО во всех указанных режимах, представлены некоторые численные результаты.

Работа поддержана РФФИ (гранты 04-01-96501 и 07-08-97611), Президиумом РАН (программа фундаментальных исследований 22), Отделением энергетики, механики, машиностроения и процессов управления РАН (программа 15) и Министерством образования и науки Самарской области (Конкурс 2007 г., грант № 340ТЗ.11К)

СПИСОК ЛИТЕРАТУРЫ

- Сомов С.Е. Нелинейная динамика упругого спутника при начальном успокоении // Известия Самарского научного центра РАН. 2005. Т. 7. № 1.
- Сомов С.Е. Динамика успокоения упругого спутника при широтно-импульсной модуляции управления двигателями // Известия ВУЗов. Сер. "Авиационная техника". 2005. № 4.
- Сомов С. Е. Динамика начальных режимов упругого геостационарного спутника с широтно-импульсным управлением двигателями и разгоном ротора силового гироскопического стабилизатора // Навигация и гироскопия. 2006. № 4 (55).

ANALYSIS OF THE SATELLITE STRUCTURE OSCILLATIONS AT GUIDANCE ON THE SUN AND THE EARTH WITH WIDTH-PULSE MODULATION OF JET ENGINES

© 2007 S. Ye. Somov

Samara Science Centre of Russian Academy of Sciences

Original methods for analysis of the spacecraft weak damping structure oscillations and for designing the spacecraft attitude control system wit width-pulse modulation of jet engines at initial modes, are presented.