УДК 62-762.001.5

МЕТОДИКА РАСЧЕТА ТОРЦОВОГО УПЛОТНЕНИЯ С МИКРОКАНАВКАМИ

© 2008 А.С. Демура, С.В. Фалалеев

Самарский государственный аэрокосмический университет

В данной статье рассмотрены и обсуждены следующие вопросы: методика расчета торцового гидродинамического уплотнения с микроканавками, произведен анализ влияния сил инерции на характеристики уплотнения.

В современных условиях серьезной конкуренции на рынке авиационных двигателей и энергетических установок к уплотнительным системам предъявляются повышенные требования, так как их работоспособность оказывает существенное влияние на характеристики двигателя в целом. Основные проблемы, возникающие при создании новых изделий и доработке существующих, связаны, в первую очередь, с требованиями повышения экономичности и увеличения срока эксплуатации. Этим требованиям в наибольшей мере удовлетворяют торцовые бесконтактные уплотнения, так как кольца, составляющие пару трения, не находятся в непосредственном контакте, что обеспечивает высокую герметичность при практически неограниченном ресурсе.

При проектировании уплотнительного узла двигателя основной задачей является определение гидродинамических характеристик. Наибольшее затруднение вызывает получение поля распределения давления в зазоре при наличии микроканавок.

При анализе процессов, из-за сложности исходных дифференциальных уравнений, принимается ряд общепринятых допущений, обусловленных особенностями работы уплотнений ДЛА:

- жидкость несжимаема;

- течение рабочего тела в щели изотермическое;

- в щели уплотнения реализуется ламинарный режим течения;

- перекос уплотнительных поверхностей отсутствует;

- изменение величины зазора во времени много меньше его номинального значения.

Для расчета характеристик торцового

гидродинамического уплотнения с микроканавками была разработана математическая модель, основанная на применении метода конечных объемов [1]. Суть метода заключается в следующем. Вся площадь уплотнительной поверхности разбивается на секторы, каждый сектор в свою очередь разбивается на девять отдельных частей, обозначаемых по следующей схеме (рис. 1).

Чтобы определить давление в каждой части сектора, записывается уравнение расхода. Методика расчета характеристик уплотнения основывается на уравнении, полученном из условия равенства расходов, протекающих через выделенный контрольный объем в радиальном и окружном направлениях:

$$\left(-\frac{h^3}{12\mu r} \frac{\partial p}{\partial \theta} + \frac{r\omega h}{2} \right)_{i=1/2,j} \Delta r + \left(\frac{h^3}{12\mu r} \frac{\partial p}{\partial \theta} - \frac{r\omega h}{2} \right)_{i=1/2,j} \Delta r - \left(\frac{h^3}{12\mu} \frac{\partial p}{\partial r} r\Delta \theta \right)_{i,j=1/2} + \left(\frac{h^3}{12\mu} \frac{\partial p}{\partial r} r\Delta \theta \right)_{i,j=1/2} = 0.$$

Из полученного уравнения путем преобразования давление в каждой точке сектора может быть найдено следующим образом:

$$p_{i,j} = \frac{B_{i,j}p_{i-1,j} + C_{i,j}p_{i+1,j} + D_{i,j}p_{i,j-1} + E_{i,j}p_{i,j+1} + F_{i,j}}{A_{i,j}},$$

где коэффициенты:

Рис. 1. Пример дифференцирования участков сектора

$$\begin{split} &A_{i,j} = \left(-\frac{h^3}{12\mu r}\right)_{\scriptscriptstyle i \rightarrow \scriptscriptstyle (2,j)} \frac{\Delta r}{\Delta \theta} - \left(\frac{h^3}{12\mu r}\right)_{\scriptscriptstyle i \rightarrow \scriptscriptstyle (2,j)} \frac{\Delta r}{\Delta \theta} - \left(\frac{h^3 r}{12\mu}\right)_{\scriptscriptstyle i,j \rightarrow \scriptscriptstyle (2,j)} \frac{\Delta \theta}{\Delta r} - \left(\frac{h^3 r}{12\mu}\right)_{\scriptscriptstyle i,j \rightarrow \scriptscriptstyle (2,j)} \frac{\Delta \theta}{\Delta r}, \\ &B_{i,j} = \left(\frac{h^3}{12\mu r}\right)_{\scriptscriptstyle i \rightarrow \scriptscriptstyle (2,j)} \frac{\Delta r}{\Delta \theta}, \\ &C_{i,j} = \left(\frac{h^3 r}{12\mu r}\right)_{\scriptscriptstyle (i \rightarrow \scriptscriptstyle (2,j)} \frac{\Delta r}{\Delta \theta}, \\ &D_{i,j} = \left(\frac{h^3 r}{12\mu}\right)_{\scriptscriptstyle i,j \rightarrow \scriptscriptstyle (2,j)} \frac{\Delta \theta}{\Delta r}, \\ &E_{i,j} = \left(\frac{h^3 r}{12\mu}\right)_{\scriptscriptstyle i,j \rightarrow \scriptscriptstyle (2,j)} \frac{\Delta \theta}{\Delta r}, \\ &F_{i,j} = \frac{r_{i,j}\omega(h_{i-1/2,j} - h_{i+1/2,j})}{2}\Delta r. \end{split}$$

В случае учета конвективных сил инерции в выражениях для расходов в радиальном направлении появятся новые члены, характеризующие центробежную силу, и уравнение для нахождения давления в точке будет иметь вид:

$$p_{i,j} = \frac{B_{i,j}p_{i-1,j} + C_{i,j}p_{i+1,j} + D_{i,j}p_{i,j-1} + E_{i,j}p_{i,j+1} + F_{i,j} + G_{i,j}}{A_{i,j}},$$

где

$$G_{i,j} = -\left(\frac{h^3 r}{12\mu}\right)_{i,j-1/2} \frac{3\rho\omega^2}{10} r_{i,j-1/2}^2 + \left(\frac{h^3 r}{12\mu}\right)_{i,j+1/2} \frac{3\rho\omega^2}{10} r_{i,j+1/2}^2$$

Остальные характеристики находятся по зависимостям, изложенным в [2].

Расход через зазор в радиальном направлении:

Без учета сил инерции
$$-Q = \frac{\pi}{6\mu} \frac{\Delta p}{\ln \frac{r_2}{r_1}} h^3$$
.

С учетом сил инерции –

$$Q = \frac{\pi}{6 \mu} \frac{\Delta p}{\ln \frac{r_2}{r_1}} h^3 \left[1 \pm \frac{3 \rho \omega^2}{2 0 \Delta p} (r_2^2 - r_1^2) \right].$$

Усилие, раскрывающее уплотнительное соединение (несущая способность слоя):

$$W = \int_{0}^{2\pi} \int_{r_1}^{r_2} pr dr d\varphi.$$

Потери мощности на трение в торцевом зазоре:

$$N = \mu \omega^2 \int_{0}^{2\pi} \int_{r_1}^{r_2} \frac{r^3}{h(r,\varphi)} d\varphi dr$$

Для проводимого исследования было использовано уплотнение HN 406 (рис. 2) с

Рис. 2. Уплотнение HN406:

1– вращающееся кольцо (DIN 472); 2 – неподвижное кольцо (DIN 475); 3 – уплотнительное кольцо (DIN 412.2); 4 – уплотнительное кольцо (DIN 412.1); 5 – пружина (DIN 477); 6 – упорное кольцо (DIN 474); 7 – (DIN 485); 8 – шпилька (DIN 904)

номинальным диаметром 33 мм фирмы "Hecker" (Германия).

На невращающемся кольце 2 выполнено восемь прямоугольных микроканавок. Общий вид расчетной модели зазора изображен на рис. 3.

Основные параметры модели: наружный радиус – $R_2=2175$ мм; внутренний радиус – $R_1=16,7$ мм; наружное давление – $p_2=0,5$ МПа; внутреннее давление – $p_1=1$ МПа; частота вращения – $\omega=1000$ рад/с; S=3 мм; L=2 мм; h_к=6 мкм; количество канавок – 8;

Рис. 3. Расчетная модель щели с прямоугольными микроканавками

dp, Мпа	Wси, H	W, H	dW, %	Qси, кг/с*10 ⁶	Q, кг/с*10 ⁶	dQ,%	Ν, Вт
0,1	96,6	95,4	1,18	1,450	0,199	86,26	250,93
0,3	163,8	162,6	0,70	0,543	0,598	9,98	250,93
0,4	197,4	196,2	0,58	0,743	0,797	7,30	250,93
0,9	365,4	364,3	0,31	1,739	1,793	3,12	250,93
5	1743,3	1742,1	0,07	9,907	9,961	0,55	250,93
ω, рад/с							
10	196,2	196,2	0,00	0,797	0,797	0,00	0,023
100	196,2	196,2	0,01	0,796	0,797	0,07	2,294
1000	197,4	196,2	0,58	0,815	0,797	2,18	229,35
10000	300,2	196,23	34,64	4,626	0,797	82,77	22935

Таблица 1. Зависимость характеристик уплотнения без канавок от перепада давления и частоты вращения вала с учетом и без учета сил инерции

В качестве рабочего тела используется вода:

динамическая вязкость – $\mu = 0,001 \text{ Па*с};$ плотность – $\rho = 1000 \text{ кг/м}^3;$

Упрощенный начальный анализ влияния сил инерции на гидродинамические характеристики проводится с уплотнением без канавок (табл. 1), при изменении перепада давления от 0,1 до 5 МПа (при частоте вращения 1000 рад/с) и изменении скорости вращения вала от 10 до 10 000 рад/с (при перепаде давления 0,4 МПа). В ней Wси, Qси – значения несущей способности и массового расхода с учетом сил инерции и W, Q – значения соответствующих величин без учета сил инерции, N – мощность трения.

При учете сил инерции эпюра распределения давления в плоскопараллельной щели более выпуклая (рис. 4), с чем связано увеличение подъемной силы. Расход при этом па-

Рис. 4. Эпюра распределения давления в плоскопараллельной щели при перепаде давлений 0,2 МПа

дает в силу противодействия сил инерции потоку.

Как видно из табл. 1, силы инерции оказывают заметное влияние на характеристики при малом перепаде давления около 0,1 МПа и при высоких скоростях вращения вала более 1000 рад/с.

Таблица 2. Зависимость характеристик уплотнения с прямоугольными канавками от перепада давления и частоты вращения вала с учетом и без учета сил инерции

		• •		, ,		• •	
dp, Мпа	Wси, H	W, H	dW, %	Qси, кг/с*10 ⁶	Q, кг/с*10 ⁶	dQ,%	N, Bt
0,1	262,53	205,66	21,66	1,744	0,881	49,49	232,78
0,4	350,55	285,49	18,56	2,327	1,330	42,86	233,05
1	546,73	471,23	13,81	3,738	2,462	34,14	232,78
2	908,58	825,69	9,12	6,179	4,882	20,99	232,78
3	1286,80	1202,60	6,54	8,620	7,323	15,05	232,78
4	1667,00	1582,90	5,04	11,062	9,764	11,73	232,78
5	2047,30	1963,10	4,11	13,503	12,205	9,61	232,78
ω, рад/с							
100	214,76	213,92	0,39	0,989	0,976	1,31	2,3305
1000	350,55	285,49	18,56	2,327	1,330	42,86	233,05
2000	654,72	399,73	38,95	6,166	2,042	66,88	932,28
5000	2471,40	757,74	69,34	33,410	4,273	87,21	5826,9
7500	5090,10	1059,60	79,18	73,950	5,816	92,14	13110
10000	8740,90	1362,30	84,41	130,693	8,027	93,86	23305

Рис. 5. Поля распределения давления без учета и с учетом сил инерции

После анализа полученных данных был произведен расчет уплотнения с прямоугольными канавками (табл. 2).

Как видно из табл. 2, учет сил инерции оказывает более заметное влияние на изменение характеристик, причем увеличиваются не только подъемная сила и момент, но также и расход. Это связано с тем, что при учете сил инерции изменяется поле распределения давления (рис. 5): зона разрыва пленки вследствие кавитации уменьшается, а доля гидродинамической составляющей в создании несущей способности увеличивается.

Таким образом, если рабочий диапазон проектируемого торцового бесконтактного

гидродинамического уплотнения лежит в зоне малых перепадов давления порядка 0,2 МПа или высоких скоростей вращения вала более 1000 рад/с, то учет сил инерции необходим для приближения полученных величин теоретических расчетов к практическим результатам.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Lebeck A.O.* Principles and Design of Mechanical Face Seals. New York, 1991.
- Уплотнения и уплотнительная техника: Справочник / Под общей ред. А.И. Голубева и Л.А. Кондакова. М.: Машиностроение, 1986.

DESIGN PROCEDURE OF FACE SEAL WITH GROOVES

© 2008 A.S. Demura, S.V. Falaleev

Samara State Aerospace University

In given article the following directions are considered. There are design procedure of face seal with grooves and impact analysis of inertial forces at seals characteristics.