УДК 621.65

## МАТЕМАТИЧЕСКОЕ ВЕКТОРНОЕ МОДЕЛИРОВАНИЕ ПУЛЬСАЦИЙ ПОДАЧИ ЖИДКОСТИ ШЕСТЕРЕННЫМ КАЧАЮЩИМ УЗЛОМ

© 2009 Б.Б. Косенок<sup>1</sup>, А.Н. Крючков<sup>2</sup>, Л.В. Родионов<sup>1</sup>, Е.В. Шахматов<sup>1</sup>

<sup>1</sup> Самарский государственный аэрокосмический университет <sup>2</sup> Институт акустики машин, г. Самара

Поступила в редакцию 20.11.2008

В статье проводится анализ пульсаций подачи жидкости шестеренным насосом с использованием математического векторного моделирования. Предложена уточненная зависимость мгновенной теоретической производительности шестеренного качающего узла от угла поворота шестерни. Получены временные зависимости мгновенного расхода и их спектральные характеристики для авиационного топливного насоса.

Ключевые слова: пульсации подачи, шестеренный насос, векторное моделирование, качаюший узел, мгновенная теоретическая производительность.

Шестеренные насосы нашли широкое применение в машиностроении, что обусловлено простотой их конструкции, малой трудоемкостью изготовления, сравнительно небольшими габаритами и массой. Их важным преимуществом по сравнению с другими объемными гидромашинами является возможность непосредственного соединения с быстроходными двигателями, имеющими частоты вращения до 10000 об/мин и выше. К недостаткам шестеренных качающих узлов следует отнести чувствительность к механическим примесям в перекачивающей жидкости; рост зазоров в процессе эксплуатации, вызывающий увеличение утечек; неравномерность подачи жидкости и высокий уровень акустического шума. Последние два фактора тесно связаны между собой, так как основным источником шума шестеренного насоса являются колебания давления в полостях насоса, а также кавитационные процессы. Для обоснования мероприятий по снижению интенсивности колебательных и кавитационных процессов необходима разработка методов расчета мгновенной подачи насоса, учитывающих кинематическую подачу жидкости и механизм запирания жидкости в межзубовом пространстве [1].

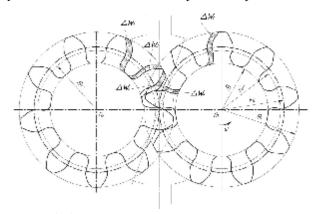
В работах [2-5] приведен анализ мгновен-

Косенок Борис Борисович, кандидат технических наук, доцент кафедры "Основы конструирования машин". E-mail: borkos@yandex.ru.

Родионов Леонид Валерьевич, аспирант.

E-mail: rl63@bk.ru

Крючков Александр Николаевич, доктор технических наук, доцент, заместитель директора.


E-mail: iam@ssau.ru.

Шахматов Евгений Владимирович, доктор технических наук, профессор, проректор по науке и инновациям. E-mail: iam@ssau.ru.

ной подачи шестеренного насоса на основе малого изменения объема камеры нагнетания  $\Delta W$ . Из выражения для  $\Delta W$  определяется величина вытесняемого расхода, причем:  $\Delta W = \Delta W_1 + \Delta W_2 - \Delta W_3 - \Delta W_4 + \Delta W_5$ , где  $\Delta W_1, \ldots, \Delta W_5$  — объемы, замещаемые гранями зубьев, показанные на рис. 1. Такой подход неточен, т.к. объем  $\Delta W_5$  вытесняется не полностью по причине его частичного замещения зубом сопряженной шестерни. При этом с приближением точки зацепления к полюсу степень такого замещения возрастает.

Вывод уточненной зависимости теоретической производительности необходим для построения виброакустической модели шестеренного насоса, учитывающей более точное описание неравномерности подачи.

В статье рассматривается полученная, в результате математического векторного моделирования, более точная (по сравнению с приведенной в [6]) зависимость мгновенной подачи жидкости шестеренным качающим узлом, позволяющая более корректно описывать мгновенную подачу насоса и



**Рис. 1.** Зацепление шестерен в гидромашине с внешним зацеплением зубьев

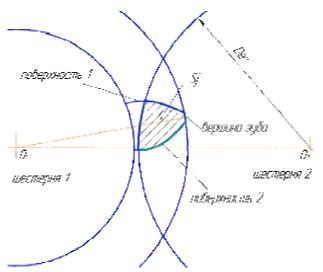



Рис. 2. Схема вычисляемой площади зуба

уточнить степень неравномерности этой подачи.

Основная задача разработанной модели — определение изменения площади межзубовой впадины вследствие входа в неё зуба сопряженной шестерни. Задача сводится к вычислению площади сечения  $\boldsymbol{S}_j$  зуба шестерни 1, отсекаемого окружностью  $\boldsymbol{De}_2$  шестерни 2 (рис. 2).

Вычисление площади  $S_j$  производим методом разбиения данной области на мелкие участки  $S_i$  с высотой  $\Delta$  (рис. 3), где, i - номер сечения, высотой  $\Delta$ ; j - номер площади;  $i = 0 \dots n$ ;  $j = 0 \dots k$ ;  $S_i$  - площадь i - го сечения:

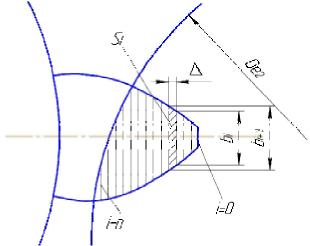
$$S_{j} = \sum_{i=1}^{n} S_{i} = \sum_{i=1}^{n} \left( \frac{b_{i} + b_{i+1}}{2} \right) \Delta$$
 (1)

Разбиваем задачу на следующие 3 подзадачи:

- 1. Описание поверхностей зуба 1 и 2.
- 2. Описание высоты зуба ⊿ в конкретном сечении.

3. Описание точек пересечения сечений  $oldsymbol{S_i}$  с  $oldsymbol{De}_2$  .

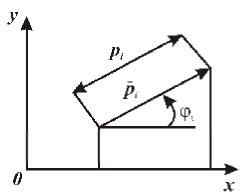
Поставленные подзадачи будем моделировать с помощью математических векторных моделей состоящих из векторных замкнутых контуров [7], в которых вектор – это направленный отрезок с параметрами  $p_i$  и  $\varphi_i$  (рис. 4). Основные положения теории векторных замкнутых контуров изложены в [8-10].


В результате решения поставленных трех подзадач получаем векторный контур, описывающий конкретное сечение зуба (рис. 5).

Векторный контур 1-2-3/-4/-5/ с внутриконтурными связями:

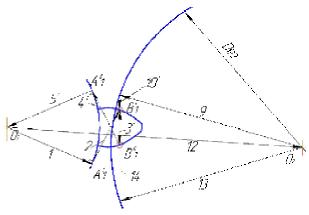
$$\boldsymbol{\varphi}_{s'} = 180^{\circ} + \left| \boldsymbol{\varphi}_{1} \right|, \, \boldsymbol{\varphi}_{2} = \boldsymbol{\varphi}_{1} + 90^{\circ},$$

$$\boldsymbol{\varphi}_{4'} = \boldsymbol{\varphi}_{s'} + 90^{\circ}, \, \boldsymbol{p}_{5'} = \boldsymbol{p}_{1} \times \boldsymbol{p}_{4'} = \boldsymbol{p}_{2}$$

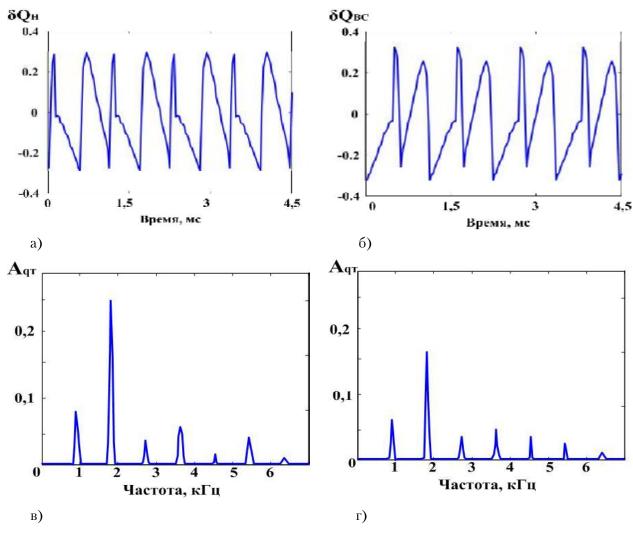

позволяет нам описать обе поверхности зуба на концах векторов 2 и 3/, кроме того, длина векто-



**Рис. 3.** Схема разбиения отсекаемой области на участки


ра  $3^{/}$  является шириной зуба в конкретном сечении  $-b_{i}$ , а координата "х" вектора  $3^{/}$  дает возможность вычислить высоту  $\Delta$  (см. рис. 3).

Векторный контур 12-9-10/-3/-4/-5/ описывают вариант пересечения сечения зуба шестерни 1 окружностью  $\boldsymbol{De_2}$  шестерни 2 (рис. 2) выше оси симметрии зуба шестерни 1, а векторный контур 12-13-14-3/-4/-5/ описывают вариант пе-




**Рис. 4.** Основные параметры векторов плоского векторного контура:

 $p_i$  - длина вектора;  $oldsymbol{arphi}_i$  - угол вектора



**Рис. 5.** Векторный контур, описывающий конкретное сечение зуба



**Рис. 6.** Временные зависимости мгновенных расходов  $\delta Q_H$  ,  $\delta Q_{BC}$  (a,б) и их спектральные характеристики (в,г), полученные методом векторного моделирования

ресечения сечения зуба шестерни 1 окружностью  $\boldsymbol{De}_2$  шестерни 2 ниже оси симметрии зуба шестерни 1. Тем самым мы описываем с помощью данных двух векторных контуров все случаи пересечения сечения зуба шестерни 1 окружностью  $\boldsymbol{De}_2$  шестерни 2.

Анализ координат "у" концов векторов 9 и 13 и координат "у" начала и конца вектора 3/ позволяет найти область, когда окружность  $\boldsymbol{De}_2$  шестерни 2 лежит внутри сечения зуба,

$${\bf y}_{{}_{k3'}} \prec {\bf y}_{{}_{k9}} \prec {\bf y}_{{}_{n3'}}$$
 и  ${\bf y}_{{}_{k3'}} \prec {\bf y}_{{}_{k13}} \prec {\bf y}_{{}_{n3'}}$ , что дает возможность получить профиль отсекаемой области сечения зуба в областях пересечения окружности  ${\bf De}$ , шестерни 2.

В результате расчета при использовании предлагаемого метода математического векторного моделирования получены временные зависимости мгновенного расхода и их спектральные характеристики (рис. 6) для авиационного топливного насоса, основные геометрические и режимные параметры которого приведены в табл. 1.

Спектральные характеристики процессов происходящих в области всасывания и нагнетания позволяют определить основные частоты процесса вытеснения и заполнения шестерен, равные второй и удвоенной частоте их зацепления, причем и на всасывании и на нагнетании наиболее интенсивной является вторая зубцовая гармоника. Анализ геометрии и кинематики зацепления показал, что у двух основных источников колебаний шестеренного насоса разные основные частоты процесса: у процесса запирания жидкости основная частота совпадает с частотой зацепления шестерен, а основная частота второго источника, связанного с неравномерной подачей жидкости — удвоенная частота зацепления.

Такая особенность позволяет диагностировать данные источники при исследовании виброакустических свойств насоса. В частности, исследование пульсационного состояния на входе и выходе шестеренного качающего узла насоса, показало, что основной составляющей спектра является первая зубцовая гармоника, а значит,

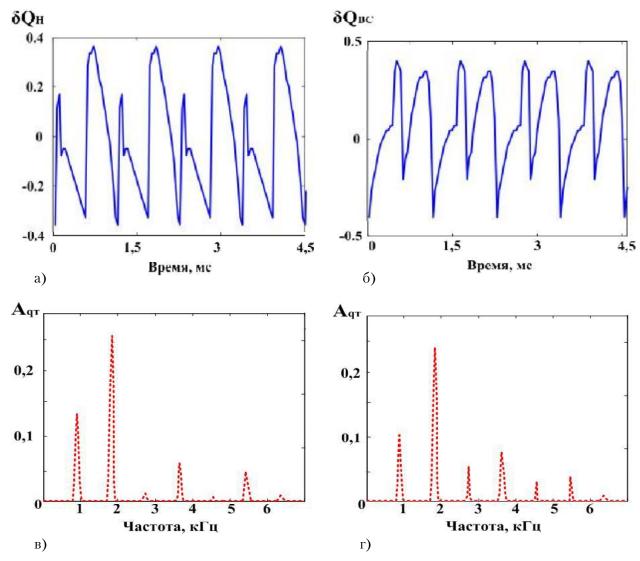
Таблица 1. Основные геометрические и режимные параметры качающего шестеренного узла

| № п/п | Геометрические параметры                                             | Значение |
|-------|----------------------------------------------------------------------|----------|
| 1     | Число зубьев <i>z</i>                                                | 1 1      |
| 2     | М одуль зацепления т, м м                                            | 6        |
| 3     | Зазор по спинкам зубьев, мм                                          | 0,5      |
| 4     | Ш ирина шестерни b , мм                                              | 2 1      |
| 5     | Радиус окружности головок <i>Re</i> , мм                             | 4 2      |
| 6     | Радиус начальной окружности $r$ , мм                                 | 3 6      |
| 7     | Радиус делительной окружности $R_{_{\mathcal{A}E\mathcal{I}}}$ , м м | 3 3      |
| 8     | Радиус основной окружности $r_{\scriptscriptstyle 0}$ , мм           | 3 6      |
| 9     | Радиус окружности впадин <i>R i</i> , мм                             | 29       |
| 10    | Межцентровое расстояние А, мм                                        | 7 2      |
| 1 1   | Угол зацепления $lpha$ , град                                        | 30,527   |
| 1 2   | Угол радиус-вектора эвольвенты в вершине зуба $\gamma_{_e}$ , град   | 3 1      |
| 13    | Угол зацепления по верш инам зубьев $lpha_{_e}$ , град               | 42,4     |
| 1 4   | Угол дуги по начальной окружности $\varphi_{\tiny zeoM}$ , град      | 15,966   |
| 1 5   | Высота зуба h, мм                                                    | 1 3      |
| 16    | Ш аг зацепления по основной окружности $t_{\theta}$ , мм             | 17,7     |
| 1 7   | Толщина зуба у вершины, мм                                           | 1,9      |
| 18    | Коэф фициент перекрытия <i>Е</i>                                     | 1,1338   |
| 19    | Радиальный зазор в запертом объеме, мм                               | 1,04     |
| 2 0   | Минимальный радиус контакта $r_2$ , мм                               | 20       |
| 21    | Давление нагнетания $P_{\scriptscriptstyle H}$ , М П а               | 1 0      |
| 22    | Давление всасывания $P_{_B}$ , М Па                                  | 1        |
| 23    | Частота вращения п, об/мин                                           | 4800     |
| 24    | Круговая частота ω , 1/сек                                           | 502,6    |

основным источником пульсационной производительности выступает процесс защемления жидкости в запертом объеме.

На рис. 7 приведены временные зависимости величин  $Q_H = Q_{H.CP} + \delta Q_H$  и  $Q_B = Q_{B.CP} + \delta Q_B$  для авиационного топливного насоса, а также их спектральные характеристики полученные с помощью графоаналитического метода, предложенного авторами в статье [6].

В спектре процесса нагнетания помимо второй зубцовой гармоники присутствует первая.


На рис. 8 представлено сравнение спектральных характеристик расходов со стороны нагнетания и всасывания шестеренного насоса, полученных при использовании графоаналитического метода и метода математического векторного моделирования.

Сравнительный анализ спектров полученных двумя способами показал качественную сходимость предлагаемых методов.

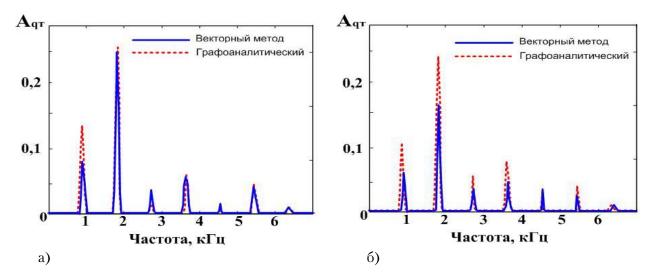
Разница в спектральных характеристиках объясняется более точным описанием процессов в областях нагнетания и всасывания и неравномерности подачи при использовании метода математического векторного моделирования.

Сравнительные данные параметров подачи, полученные с использованием метода математического векторного моделирования и графоаналитического метода приведены в табл. 2.

Таким образом, предложенная математическая векторная модель, позволяющая автоматизировать определение мгновенной подачи шестеренного насоса и, тем самым, выбирать его параметры, обеспечивающие минимальную пульсационную производительность. Это позволяет в автоматизированном режиме разрабатывать малошумные шестеренные качающие узлы с наименьшей виброактивностью. На основе данной модели возможно создание баз данных пульсаций подачи насосов с характерными дефектами шестерен, что позволит создать эксперимен-



**Рис. 7.** Временные зависимости переменных составляющих расходов  $\delta Q_H$ ,  $\delta Q_{BC}$  (a,б) и их спектральные характеристики (в,г), полученные графоаналитическим методом


тально — аналитические системы компьютерной диагностики оценки состояния качающих шестеренных узлов. Такие системы способны оценивать, например, степень износа их рабочих поверхностей, наличие вмятин, эрозии и т.д.

Предполагается также развитие модели в направлении учета конфигурации разгрузочных канавок в торцевых подпятниках шестерен. Это позволит выбирать геометрию канавок, обеспечивающую минимальную виброактивность шестеренного качающего узла.

## СПИСОК ЛИТЕРАТУРЫ

- Юдин Е.М. Шестеренные насосы. М.: Машиностроение, 1964. 232с.
- 2. *Башта Т.М.* Гидравлические приводы летательных аппаратов. М.: Машиностроение, 1967. 495с.
- 3. *Грянко Л.П., Исаев Ю.М.* Гидродинамические и гидрообъемные передачи в трансмиссиях транспортных средств: Учебное пособие. СПб, 2000. 265с.

- Галеева Р.А., Сунарчин Р.А. Объемные гидромашины: Учебное пособие. – Уфа: изд. Уфимского ордена Ленина авиационного института им. Серго Орджоникидзе, 1984. – 174с.
- Casoli P., Vacca A., Berta G.L. A numerical model for the simulation of flow in hydraulic external gear machines. Power transmission and motion control. University of Bath. 2006. p. 147-165.
- 6. *Крючков А.Н., Родионов Л.В., Гаспаров М.С., Шахма-тов Е.В.* Исследование неравномерности подачи жидкости шестеренным качающим узлом // Вестник СГАУ. 2007. №1(12). С. 187-195.
- Семенов Б.П. Аналитика элементарных векторных модулей. Методическое пособие. – М.: Изд-во МАИ, 1989. – 40 с.
- Семенов Б.П., Тихонов А.Н., Косенок Б.Б. Модульное моделирование механизмов. / Самара: СГАУ, 1996, 98 с.
- 9. *Семенов Б.П.* Элементарные модули векторных моделей. / Самара: СНЦ РАН, 2000, 99 с.
- 10. Мануйлов П.А., Семенов Б.П., Косенок Б.Б. Инвариантность модульных векторных моделей // Математическое моделирование в машиностроении: Тез. докл. 1-ой всесоюзной школы-конференции. Тольятти, 1990. С. 70-71.



**Рис. 8.** Сравнение спектральных характеристик расходов со стороны области нагнетания (a) и всасывания (б) полученных при графоаналитическом и векторном методах

**Таблица 2.** Сравнительные данные для параметров подачи шестеренного насоса, рассчитанные по известной и предлагаемой методикам

| Параметры подачи                                                                                                                     | Графоаналитический метод | Метод математического<br>векторного моделирования |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|
| Средний расход (нагнетание)                                                                                                          | 0,76*                    | 0,7*                                              |
| Максимальный расход $oldsymbol{Q}_{\scriptscriptstyle MAX}^{\scriptscriptstyle H}$                                                   | 1,14                     | 0,99                                              |
| Минимальный расход $oldsymbol{Q}_{MN}^{H}$                                                                                           | 0,42                     | 0,41                                              |
| Степень нерхівномерности подачи $\sigma_{_H} = \frac{Q_{_{MAX}} - Q_{_{MIN}}}{Q_{_{MAX}}}$                                           | 0,63                     | 0,58                                              |
| Средний расход (всасывание)                                                                                                          | 0,76                     | 0,65                                              |
| Максимальный расход $oldsymbol{Q}_{MAX}^{BC}$                                                                                        | 1,08                     | 1,03                                              |
| Минимальный расход $Q_{MN}^{RC}$                                                                                                     | 0,28                     | 0,39                                              |
| Степень неравномерности подачи $\boldsymbol{\sigma}_{BC} = \frac{\boldsymbol{Q}_{MAX} - \boldsymbol{Q}_{MIN}}{\boldsymbol{Q}_{MAX}}$ | 0,74                     | 0,63                                              |

<sup>\* -</sup> среднеинтегральное значение расхода за период зацепления.

## MATHEMATICAL VECTOR MODELLING OF PULSATION OF SUPPLY OF FLUID BY THE GEAR PUMP

© 2009 B.B. Kosenok<sup>1</sup>, A.N. Kryuchkov<sup>2</sup>, L.V. Rodionov<sup>1</sup>, E.V.Shakhmatov<sup>1</sup>

<sup>1</sup>Samara State Aerospace University <sup>2</sup>Institute of Acoustic of Machines, Samara

In article the analysis of pulsation of giving of a liquid by the gear pump with use of mathematical vector modeling is carried out. The specified dependence of instant theoretical productivity of the gear pump from a gear wheel angle of rotation is offered. Time dependences of the instant expense and their spectral characteristics for the aviation fuel pump are received.

Key words: pulsation of giving, gear pump, vector modeling, instant theoretical productivity.

Boris Kosenok, Candidate of Technics, Associate Professor at the Basis of Designing of Machines Department. E-mail: borkos@yandex.ru.

Leonid Rodionov, Graduate Student. E-mail: rl63@bk.ru

Alexander Kryuchkov, Doctor of Technics, Associate Professor, Deputy Director. E-mail: iam@ssau.ru. Eugene Shakhmatov, Doctor of Technics, Professor, Vice Rector for Science and Innovation. E-mail: iam@ssau.ru.