УДК 629.7.025.33

ИЗМЕНЕНИЕ КОНСТРУКЦИИ СИСТЕМЫ УПРАВЛЕНИЯ ПРЕДКРЫЛКАМИ ДЛЯ САМОЛЕТОВ СЕМЕЙСТВА ТУ-204-100СМ, -300СМ

© 2009 В.В. Сухарев, А.А. Ермакова

Ульяновский филиал конструкторского бюро ОАО "Туполев"

Поступила в редакцию 20.07.2009

В данной работе на основе анализа результатов эксплуатации трансмиссии и подъемников предкрылков самолетов семейства Ту-204 предложены технические решения, позволяющие устранить конструктивные недостатки, выявленные в эксплуатации, и снизить вес системы управления предкрылками.

Ключевые слова: трансмиссия, подъемники предкрылков, результаты эксплуатации, самолет

ОБЩИЕ СВЕДЕНИЯ О КОНСТРУКЦИИ СИСТЕМЫ

Система управления предкрылками предназначена для выпуска и уборки предкрылков на заданные углы на режимах взлета и посадки.

Перемещение предкрылков с закрепленными на них рельсами осуществляется по роликам кареток, установленным на первом лонжероне крыла, посредством шариковинтовых подъемников, объединенных трансмиссией (рис. 1).

На каждой консоли крыла установлено по шесть подъемников.

Подъемники 1 и 2 соединены с внутренней секцией предкрылка, а подъемники 3,4,5 и 6-c тремя секциями внешнего предкрылка.

Подъемники предкрылков представляют собой шариковинтовые механизмы, преобразующие вращательное движение входных валов подъемников в поступательное движение их винтов.

Винтовые пары подъемников представляют собой винтовые передачи с высшей кинематической парой трения качения и состоят каждая из винта, гайки со специальной резьбой и шариков. При вращении гайки винт движется поступательно.

Основными элементами существующей конструкции подъемника являются:

- корпус подъемника;
- муфта ограничения момента;
- шариковинтовой механизм;
- узел крепления к предкрылку;
- зубчатые колеса и шестерни;
- узел навески на крыло.

Общий вид подъемника представлен на рис. 2.

В существующей конструкции системы управления предкрылками, в случае заклинивания

Сухарев Вячеслав Владимирович, инженер-конструктор. Ермакова Анна Александровна, инженер-конструктор. E-mail: ufkbtu@mv.ru. трансмиссии, привод продолжает работать, пока его не отключит летчик. Конструктивной особенностью подъемника №6 является передача крутящего момента напрямую с вала трансмиссии на винт, т.к. в нем отсутствует муфта ограничения момента.

Недостатки, выявленные в эксплуатации К недостаткам конструкции, выявленным за годы эксплуатации можно отнести:

- расположение каналов для смазки в подъемниках не обеспечивает замены смазки в некоторых подшипниковых узлах;
- наличие пустот в подъемниках, в которых происходит скопление старой закоксовавшейся смазки, приводящей к увеличению момента на входном валу трансмиссии;
- при переборке подъемников с целью замены смазки затруднена выпрессовка подшипников;
- негерметичность корпусов подъемников приводит к вытеканию смазки по стыкам крышек и корпусов.

Опыт эксплуатации показывает, что при переходе на обслуживание по состоянию, когда переборку подъемников приходится производить в условиях эксплуатации, возникает много сложностей при их разборке.

Анализ эксплуатации самолетов Ту-204 и Ан-124 позволяет сделать вывод, что обилие смазки в подъемниках приводит к увеличению момента на входных валах, а по мере увеличения концентрации влаги и к ее смерзанию.

За годы эксплуатации самолетов Ту-204 не происходило заклинивание трансмиссии по причине перекоса в узлах навески (рельсы-каретки). Но отмечено несколько случаев заклинивания подъемника №6 по причине смерзания смазки. Заправка подъемников производится один раз при сборке, объем смазки ограничен.

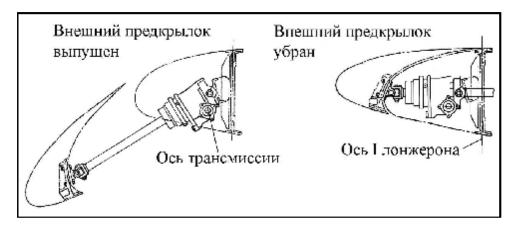


Рис. 1. Монтаж подъемников на крыле

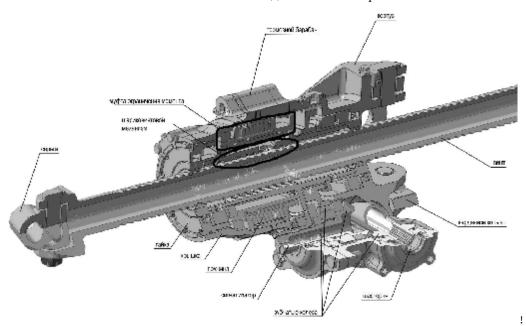


Рис. 2. Основные элементы существующей конструкции подъемника

НОВЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ПОДЪЕМНИКОВ №1-5

Опыт эксплуатации самолетов Ту-154 показывает надежность работы подъемников предкрылков без муфт ограничения момента.

Принимая во внимание длительный срок эксплуатации системы самолета Ту-154 без отказов, предложено применить данный подход к самолетам семейства Ту-204.

Рассмотрена конструкция подъемников без муфт ограничения момента, предназначенных для защиты шариковинтовых механизмов.

Для защиты конструкции от динамических моментов при запуске системы, в случае заклинивания, предлагается установить одну муфту ограничения момента с микровыключателем в районе редуктора №1 или по одной муфте на каждую ветку трансмиссии, вместо установленных двенадцати муфт. В случае заклинивания трансмиссии, микровыключатель автоматически от-

ключит привод. Это позволяет исключить человеческий фактор и уменьшить износ привода.

Измененная конструкция подъемника представляет собой агрегат, изображенный на рис. 3. В предложенной конструкции подъемника отсутствуют: муфта ограничения момента, сигнализатор и шестерни, связывающие их, что позволяет снизить массу конструкции и уменьшить количество деталей, входящих в сборку. Повышается надежность механизма и уменьшаются габариты подъемника. Альтернативный вариант не содержит в себе муфты и рассчитан на максимальный момент, который может возникнуть в случае максимальных аэродинамических нагрузок с учетом коэффициента безопасности.

Вместо крышки и гайки была сделана общая крышка с фланцевым соединением.

В ходе изменения конструкции подъемника было уменьшено количество стыков до одного, установлено резиновое уплотнение, что повышает герметичность подъемника.

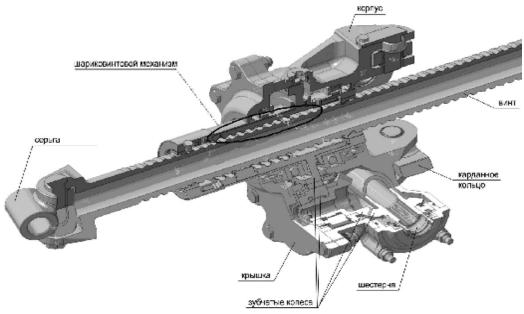


Рис. 3. Основные элементы новой конструкции подъемника

НОВОЕ ТЕХНИЧЕСКОЕ РЕШЕНИЕ ДЛЯ ПОДЪЕМНИКА №6

Во время эксплуатации смазка ЭРА начинает коксоваться, что неоднократно приводило к увеличению момента на валу до предельной величины, при которой срабатывали муфты между подъемниками №5 и №6.

Во время полета или при наземной работе при низких температурах внутри подъемника образуется конденсат, который кристаллизуется, образуя лед на винте и шестернях подъемника. При работе трансмиссии кристаллы воды перемешиваются со смазкой, таким образом происходит образование смеси из различных смазочных материалов, влаги и частиц металла, износившегося в ходе эксплуатации. В пустотах внутри корпуса происходит накопление смеси из конденсата и закоксовавшейся смазки. По мере роста концентрации влаги в смеси происходит увеличение момента на входном валу, что приводит к срабатыванию муфты ограничения момента и блокировке трансмиссии.

Поэтому поиск технического решения был направлен на недопущение образования скоплений старой смазки в застойных зонах, уменьшив объем пустот в подъемнике путем установки специальных неметаллических вкладышей. Это позволит уменьшить момент на входном валу для приведения винта подъемника в движение в случае замерзания.

На рис.4 приведен вариант доработки подъемника с целью уменьшения пустот. Этот вариант позволит доработать задел подъемников в условиях эксплуатации без изменения конструкции корпуса

Вкладыш изготавливается из фторопласта и устанавливается на валу шестерни. Вес вкладыша составляет от 30 г до 70 г в зависимости от конструкции и материала. Благодаря вкладышу объем пустоты в районе контакта шестерен уменьшается в 2 раза.

Для улучшения смазки введены канавки в стаканах под подшипники для прохождения смазки к шарикам в подшипнике, что позволит обновляться смазке в ходе очередного обслуживания.

В ходе проведенной работы получены следующие результаты:

- 1. Уменьшены полости, заполненные "неработающей" смазкой для исключения скопления конденсата в них.
- 2. Улучшена система каналов смазки и предусмотрены пазы в стаканах под подшипники, для облегчения демонтажа подшипников при переборке.
- 3. Предусмотрены резиновые уплотнения на стыках крышки и корпуса для исключения вытекания смазки из подъемника.
- 4. Увеличены зазоры со смежными конструкциями и агрегатами за счет уменьшения размеров корпусов подъемников.

Предложенный альтернативный вариант подъемников трансмиссии подтвержден соответствующими расчетами на прочность. В данной работе была принята типовая для Ту-204 методика расчетов. Выполнены расчеты всех основных деталей подъемников новой конструкции.

Общее снижение веса системы управления предкрылками в целом с учетом введения новой муфты составляет 42,3 кг.

Проектирование подъемников новой конструкции выполнено с использованием программ-

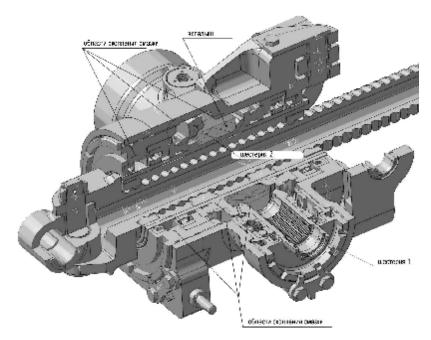


Рис. 4. Основные элементы новой конструкции подъемника №6

ного комплекса CATIA. Выполнен анализ ответственных узлов конструкции в программном комплексе NASTRAN.

Представленный вариант глубокого изменения конструкции системы управления предкрылками может быть применен для перспективных модификаций самолета Ту-204, а методы проектирования и в других новых разработках ОАО "Туполев".

Предложение по доработке существующей конструкции подъемников №6 может быть реализовано на заделе подъемников и на самолетах в эксплуатации.

СПИСОК ЛИТЕРАТУРЫ

 Бейзельман Р.Д., Цыпкин Б.В. Подшипники качения. Справочник. М.: Машгиз, 1959.

- 2. *Коростошевский Р.В., Зайцев А.М.* Авиационные подшипники качения. М.: Оборонгиз, 1963.
- 3. Слюдиков М.Н. Механизмы приводов систем управления летательными аппаратами. Расчет и проектирование. Справочник. М.: Машиностроение, 1975. 384 с.
- 4. *Слюдиков М.Н.* Проектирование деталей, узлов, приводов и механизмов летательных аппаратов. М.: Машиностроение, 1967.
- ГОСТ 16530-83 Передачи зубчатые. Общие термины, определения и обозначения.
- 6. ГОСТ 16532-70 Передачи зубчатые цилиндрические эвольвентные внешнего зацепления. Расчет геометрии.
- ГОСТ 13754-81 Основные нормы взаимозаменяемости. Передачи зубчатые конические с прямыми зубьями. Исходный контур.
- 8. ГОСТ 13755-81 Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические эвольвентные. Исходный контур.
- 9. ГОСТ 21354-75 Передачи зубчатые цилиндрические эвольвентные. Расчет на прочность.

CHANGE OF THE DESIGN OF CONTROL SYSTEM SLATS FOR PLANES OF FAMILY TU-204-100SM, -300CM

© 2009 V.V. Suharev, A.A. Ermakova

Ulyanovsk Branch of Design Office of JSC "Tupolev"

This work basing on the results of operational analysis of transmission and slat screw jacks of Tu-204 family aircraft offers some engineering solutions facilitating the elimination of the design shortcomings found in operation and allowing to reduce weight of the slats control system.

Key words: transmission, slat screw jacks, results of operational, aircraft.