УДК 539.26-405

СПИНОДАЛЬНЫЙ РАСПАД В ЭПИТАКСИАЛЬНЫХ ТВЕРДЫХ РАСТВОРАХ ГЕТЕРОСТРУКТУР Al_vG_{1.v}As/GaAs(100) И Ga_vIn_{1.v}P/GaAs(100)

© 2009 П.В. Середин

Воронежский государственный университет

Поступила в редакцию 26.11.2008

Методами рентгеновской дифракции, электронной и атомно-силовой микроскопии и ИК-спектроскопии изучено явление неустойчивости твердых растворов полупроводниковых эпитаксиальных гетероструктур $Al_xGa_{1-x}As/GaAs(100)$ и $Ga_xIn_{1-x}P/GaAs(100)$ в области составов х~0.50. Показана возможность появления модулированных релаксационных структур на поверхности твердого раствора $Al_xGa_{1-x}As$ и $Ga_xIn_{1-x}P$, вследствие чего появляются сателлиты основных рентгеновских рефлексов, соответствующих однофазной структуре.

Ключевые слова: эпитаксиальные гетероструктуры, сверхструктурые фазы, упорядочение

Развитие современного производства полупроводниковых приборов требует интегрирования большого количества различных элементов в одном электронном устройстве. Создание таких приборов требует управляемого осаждения и производства материалов различного типа: металлов, полупроводников и диэлектриков [1].

Работы по исследованию искусственно созданных полупроводниковых гетероструктур были инициированы идеями о создании периодической структуры из чередующихся тонких слоев [2], в том числе при изучении возможных проявлений резонансного тунелирования через двойные и более сложные потенциальные барьеры [3].

Если характерные размеры полупроводниковых наноструктур сделать меньшими, чем длина свободного пробега электронов, то при наличии почти идеальных гетерограниц вся электронная система перейдет в квантовый режим с пониженной размерностью.

Изготовление подобной кристаллической структуры из сверхтонких слоев является необычайно сложной задачей. Тем не менее, непрерывный прогресс таких методов тонкопленочной технологии, как молекулярно-лучевая эпитаксия (МЛЭ), осаждение металлорганических соединений и гидридов (МОС–гидридная эпитаксия) сделали возможным создание гетероструктур на основе систем типа Al_xGa_{1-x}As/GaAs и Ga_xIn_{1-x}P/GaAs с хорошо согласующимися постоянными решетки, имеющими требуемый профиль потенциала и распределение примесей, контролируемые с точностью до постоянной решетки толщины слоев и фактически бездефектные границы разделов [2]

Осаждаемые атомы в процессе эпитаксиального роста выстраиваются на выращиваемой поверхности, связываясь с исходными атомами на подложке. Атомное совершенство поверхности монокристаллической подложки определяет последующее аналогичное распределение атомов в плоскости растущего слоя, который фактически является прямым продолжением атомной структуры подложки.

Все же не всегда в ходе роста можно получить заданный технологически профиль структуры. Ряд явлений, происходящий вследствие неравновесных термодинамических процессов в реакторах, а также в виду наличия полей деформации, возникающих из-за малейших рассогласований параметров решетки пленки и подложки, проводит к таким явлениям, как композиционный распад растущей пленки, в том числе и спинодальный, образование доменной структуры на поверхности структуры [4-6].

Все эти условия также могут привести к случаям, когда вследствие процессов самоупорядочения в хорошо изученных системах возникают сверхструктурные фазы: химические соединения, обладающие уникальными свойствами в противовес твердым растворам с гомоморфным пленке составом.

Изучение возможных неравновесных фазовых переходов, кинетики превращения представляет актуальную научную задачу и отвечает запросам практики по росту упорядоченных самоорганизованных наноструктур и доменов на основе сверхструктурных фаз упорядочения в условиях эпитаксиального роста.

Поэтому целью данной работы стало изучение влияния условий роста на структурные и оптические свойства эпитаксиальных твердых растворов в гетероструктурах Al_xGa_{1-x}As/ GaAs(100) и Ga₂In₁, P/ GaAs(100).

Середин Павел Владимирович, кандидат физико-математических наук, старший научный сотрудник. E-mail: paul@phys.vsu.ru

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В работе исследовались образцы, изготовленные в ФТИ им. А. Ф. Иоффе РАН. Методом осаждения из газовой фазы металлорганических соединений и гидридов на монокристаллических под-ложках GaAs (100) АГЧО-типа с n=10¹⁸ см⁻¹ были выращены эпитаксиальные слои твердых растворов Al_xGa_{1-x}As и Ga_xIn_{1-x}P в области составов с x~0.50.

Согласование параметров в гетероструктурах определяли методом рентгеновской дифракции с использованием Cu_{кб1,2}-излучения на дифрактометре ARL X'TRA в режиме пошагового сканирования.

Микрофотографии поверхности и сколов образцов были сделаны с помощью сканирующего электронного микроскопа SEM JSM 6380 LV, при ускоряющем напряжении ~ 30kV и атомно-силового микроскопа Femtoscan 001.

ИК-спектры отражения были получены с использованием ИК-Фурье спектрометра Vertex 70 Bruker.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ АНАЛИЗ

Гетероструктуры $Ga_{x}In_{1-x}P/GaAs$ (100).

Изучение композиционного состава и структурного качества, исследуемых в работе образцов гетероструктур, проводили по профилям рентгеновских дифракционных линий (600).

Рассмотрим дифракцию от каждого из образцов подробно. На рис 1,*а* приведен профиль рентгеновской дифракционной линии (600) от монокристаллической пластины GaAs(100), на которой был произведен рост исследуемых структур. На дифрактограмме присутствует один Кб_{1,2}–дублет, причем интенсивность Кб₁ компоненты которого больше интенсивности компоненты Кб₂ в два раза в точном соответствии с теорией. Точное разложение Кб_{1,2}–дублета на компоненты позволяет наиболее точно определять параметр решетки арсенида галлия, но и в дальнейшем производить расчеты параметров решеток твердых растворов.

Разложение профилей на составляющие проводили с помощью программного пакета SigmaPlot 10, позволившего используя различные аналитические функции минимизировать погрешности разложения профилей и автоматизировать процесс подбора моделирующего профиля.

Процесс разложения экспериментальных линий (600) на компоненты начинался с выделения на дифрактограмме Кб_{1,2} – дублета подложки GaAs(100). Для того чтобы выделить диф-

ракцию от пленки, необходимо из общего профиля экспериментальной линии гетероструктуры вычесть дублет рентгеновской дифракционной линии (600) от подложки GaAs (100), учитывая, что в силу своей малой толщины ~1м эпитаксиальная пленка незначительно ослабляет брэгговское отражение от подложки, т.к. слой половинного ослабления рентгеновского излучения для нашей системы составляет ~17м [4]. Использование для расчетов дальних дифракционных линий, в нашем случае (600), позволяет повысить точность в определении межплоскостных расстояний, не только за счет уменьшения систематических ошибок эксперимента, но и за счет снижения ошибок, появляющихся при компьютерном моделировании дифракционных дублетов.

Результаты разложения дифракционных профилей образцов ЕМ794 и ЕМ796 показали, что эти структуры являются наиболее согласованными по параметрам решетки. Причем если для образца ЕМ794 по данным моделирования наблюдается небольшое угловое расхождение в положении Кб_{1,2}–дублетов твердого раствора и подложки, то в случае образца ЕМ796 выбор технологических режимов роста позволил получить полностью самосогласованную по параметру решетки гетероструктуру.

Результаты разложения на компоненты для образца ЕМ809 показывают наибольшее рассогласование параметров решетки – $K\delta_{1,2}$ –дублеты пленки и подложки в этом образце оказываются наиболее разделенными. Состав твердого раствора в этом образце х=0.53 в наибольшей степени отличается от половинного состава. При этом, из-за наибольшего рассогласования параметров эпитаксиальная пленка оказывается подвергнутой сильным механическим напряжениям, и $K\delta_{1,2}$ линии становятся почти в два раза шире по сравнению с $K\delta_{1,2}$ -линиями монокристаллической подложки GaAs(100).

Наиболее интересный случай представляют собой (600) профили дифракции для образцов ЕМ804 и ЕМ806. Результаты разложения показывают, что в образце ЕМ804 эпитаксиальная пленка распадается на твердые растворы с двумя близкими составами с x=0.50 и x=0.51, а в образце ЕМ806 с составами: x=0.52, x=0.53.

Таким образом, возможным оказывается два варианта роста твердых растворов $Ga_x In_{1-x} P$ на подложках GaAs (100). В первом случае (рис. 1,*b* – 1,*d*) пленка $Ga_x In_{1-x} P$ растет композиционно устойчивой, т.е. твердые растворы этих образцов не распадаются на компоненты, а профили рентгеновской дифракции от этих гетероструктур представляют собой два независимых дублета.

Во втором случае растущие твердые растворы Ga, In, P образцов EM804 и EM806 являют-

Рис. 1. Результаты разложения профилей рентгеновской дифракции (600) от гетероструктур Ga_xIn_{1-x}P/GaAs(100): Образцы а – GaAs(100); b – EM796; c – EM794; d – EM809; e – EM804; f – EM806. Линии дифракции на рисунках: (1) – эксперимент; (2) – аппроксимация; (3),(5) – Ga_xIn_{1-x}P; (4) – подложка GaAs (100)

ся композиционно неустойчивыми и распадаются на компоненты. Причем состав компонентов твердого раствора варьируется около х~0.50 и таким образом можно говорить о том, что тонкая пленка имеет модуляцию своего состава в направлении роста.

В табл. 1 приведены составы, и параметры кристаллических решеток твердых растворов Ga_xIn_{1-x}P с учетом внутренних напряжений, рассчитанные на основе теории упругости [5].

На рис. 2 приведены результаты исследования поверхности двух эпитаксиальных гетероструктур, в одной из которых по данным рентгеновской дифракции наблюдается распад твердого раствора. Как видно из полученных данных образец ЕМ796 имеют довольно гладкую поверхность, нарушаемую в некоторых местах микродефектами в виде углублений (рис. 2,*a*). В тоже время, исследование морфологии образца ЕМ806 (рис. 2,*b*) показало, что на их поверхности наблюдаются рельеф в виде статистического распределения неоднородностей – "микродоменов", которые имеют размер около 10-12 и ориентированы вдоль одного направления. Наблюдаемые микродомены могут быть представлены в виде прямоугольных параллелепипедов размерности arbrc, где а – длина параллелепипеда, b – ширина, с – высота. Из эксперимента найдено, что эти величины находятся между собой в следующем соотношении: b = a / 3 и с = a / 2 (рис. 2,*b*).

ГЕТЕРОСТРУКТУРЫ AL_xGA_{1-x}AS/GAAS (100)

На основе данных, полученных дифрактометрическим и фотографическим методами рентгеноструктурного анализа, определена постоянная кристаллической решетки монокристалли-

Образец	d _{эксп} , Å	азксп	Х	a ^v , Å
EM794	0.9420	5.6520	0.51(7)	5.6529
EM796	0.9422	5.6532	0.51(3)	5.6532
EM804	0.9434	5.6604	0.50(6)	5.6568
	0.9427	5.6562	0.51(1)	5.6547
EM806	0.9395	5.6370	0.53(4)	5.6451
	0.9410	5.6460	0.52(3)	5.6496
EM809	0.9395	5.6373	0.53(4)	5.6452

Таблица 1. Результаты рентгендифракционного анализа гетероструктур Ga_xIn_{1-x}P/ GaAs(100)

Рис. 2. Изображения участков поверхности образцов гетероструктур Ga_xIn_{1-x}P/GaAs(100), полученные при помощи сканирующего электронного микроскопа: EM796 (слева) и EM806 (справа)

ческой пластины GaAs (100) а=5.653 Е, практически совпадающая со значением, приведенным на сайте ФТИ им. А.Ф. Иоффе [8]. Наиболее точно постоянная решетки GaAs(100) была измерена нами рентгенографическим методом обратной съемки линии (711) и составила 5.6532 ±0.0001 Е [5]. Данное значение совпадает с приведенным в [8].

При разложении дифрактометрической линии (400) для образцов EM49 (x=0.49) и EM135 (x=0.50) и рентгенографической линии (711) для образца EM135 на компоненты (рис. 3) помимо $K6_{12}$ -дублетов от монокристаллической подложки GaAs (100) и твердого раствора $Al_xGa_{1-x}As$ обнаружено появление дифракционных линий от неизвестной фазы с параметром решетки a=5.649 Е меньшим, чем параметр GaAs 5.6532 E [5].

До наших исследований в литературе отмечалось возможное образование сверхрешеток в пленках $Al_x Ga_{1-x} As$ при **x**=0.25-0.75, выращенных на подложках GaAs (110) [9-11]. Возникающая в этом случае упорядоченная структура имела тетрагональную симметрию, аналогичную структуре сплава CuAu I [10, 11]. Однако анализ полученных нами результатов [5] эпитаксии твердых растворов с x~0.50 на подложках GaAs (100) привел к заключению о том, что обнаруженная нами неизвестная фаза представляет собой хи-

мическое соединение AlGaAs₂ и является сверхструктурой к решетке сфалерита, которую имеют как GaAs, AlAs, так и твердый раствор Al_xGa₁. _xAs. Решетку обнаруженной фазы упорядочения AlGaAs₂ можно описать структурой InGaAs₂типа (Layered Tetragonal) [12] с [100]-направлением упорядочения. В этой структуре элементарная ячейка соответствует двум ячейкам типа сфалерита, поставленным друг на друга вдоль оси **с**. Отношение **с**/2**а**, наблюдаемое в фазах с данной структурой, может быть как больше, так и меньше единицы [13].

Уменьшение параметра решетки у обнаруженной нами сверхструктуры AlGaAs, объясняется тем фактом, что в идеальном твердом растворе Al_xGa_{1-x}As распределение атомов Al и Ga в подрешетке металла происходит статистическим образом, и параметр решетки в твердом растворе представляет собой среднюю величину периода кристаллической решетки для множества ячеек. В случае же сверхструктуры образуется химическое соединение AlGaAs₂, и происходит так называемое тетрагональное сжатие чередующихся слоев, заполненных только атомами Ga или Al и разделенных слоями As. В результате за счет слоевого упорядочения расположения атомов Al и Ga в подрешетке A³ параметр фазы AlGaAs₂ **с**^{4%}=2**а**^{4%}_{измер.}=11.292 Ē <

Рис.3. Полное разложение профиля дифракционных линий (400) гетероструктуктур Al_{0.50}Ga_{0.50}As/GaAs(100) (слева) и Брэгговское отражение от плоскостей (711) гетероструктуры Al_{0.50}Ga_{0.50}As/GaAs(100), зарегистрированное на рентгеновскую пленку методом обратной съемки на отражение на камере КРОС-1 (вверху) и результат оцифровки этой дифракции того же образца (справа)

 $2a^{4\%}_{Al0.50Ga0.50As}$ =11.322 Е. При этом параметр $c^{4\%}$ направлен по нормали к плоскости (100), т.е. тетрагональное сжатие элементарной ячейки происходит в направлении роста эпитаксиальной пленки и составляет величину $c^{4\%}_{AlGaAs2}$ / $2a^{4\%}_{Al0.50Ga0.50As}$ =0.997<1 в области упорядочения.

Соотношение интенсивностей Кб12-дублетов сверхструктурной фазы AlGaAs, и твердого раствора у отражений (400) и (711), свидетельствует о значительном объеме (~15%) областей упорядоченного твердого раствора Al_{0.50}Ga_{0.50}As с образованием сверхструктурной фазы AlGaAs, в эпитаксиальных гетероструктурах с x~0.50. По данным, полученным из атомно - силовой микроскопии, области упорядочения, обнаруженные на поверхности МОС - гидридного образца с x~0.50 в твердом растворе, проявляются в виде упорядоченного нанорельефа с периодом ~ 115 нм, кратным параметру с слоистой тетрагональной фазы AlGaAs, (рис. 4). Обнаруженные нами области упорядоченного нанорельефа мы связываем с областями существования сверхструктурной фазы AlGaAs, с кристаллической решеткой InGaAs,-типа (Layered Tetragonal) и параметрами а = 5.6532 ъ и с4%=11.292 ъ [5, 14].

Следует обратить внимание, что величина параметра с~1.13 нм кратна периоду поверхностного упорядочения нанорельефа n~115 нм, что является одним из характерных признаков самоорганизованных структур [15].

В области упорядочения, которую мы видим на рисунке 4 с периодом наноструктурирования ~115 нм, домены и антидомены сгруппированы в чередующиеся полосы или ленты, которые образуют "ёлочку" или "паркет". Кроме контраста, обусловленного наличием различных атомов (алюминия или галлия) на поверхности полосы шириной в ~115 нм, эти полосы имеют и различную высоту. Поэтому перепад глубины вдоль нанорельефа достигает ~30нм. Эта глубина обусловлена существенно различной реакционной способностью слоев Al и Ga, находящихся на поверхности и связанных со слоями мышьяка ковалентно – ионными связями, которые в случае Al-As имеют большую ионную составляющую.

Данные ИК - спектрометрии отражения, показали, что в спектре МОС-гидридной эпитаксиальной гетероструктуры Al_{0.54}Ga_{0.46}As/ GaAs(100) (рис. 5) помимо мод колебаний, отвечающих связям Ga - As и Al - As (основным колебаниям), присутствуют еще два осциллятора. По данным дисперсионного анализа, частоты поперечных колебаний этих осцилляторов щ_{то1}=241 см⁻¹ и щ_{то2}=327 см⁻¹ сдвинуты в сторону длинных волн относительно основных колебаний AlAs (щ_{то}=365 см⁻¹) и GaAs (щ_{то}=272 см⁻¹) происходит в длинноволновую область и 5 см-1.я практических всех ЖФЭ гетероструктур является значительно низкой, по сравнению с. Появление дополнительных мод в экспериментальном спектре мы связываем с возникновением фазы упорядочения AlGaAs, в эпитаксиальных твердых растворах Al_xGa_{1-x}As выращенных на подложках GaAs (100) со значениями х, близкими или равными 0.50.

Появление интерференционных мод в экспериментальном спектре в области 280-350 см⁻¹ ИК – спектра отражения МОС-гидридной эпитаксиальной гетероструктуры Al_{0.54}Ga_{0.46}As/

Рис.4. Морфология поверхности МОСГФЭ эпитаксиальной гетероструктуры Al_xGa_{1-x}As/ GaAs (100) с x~0.50. - изображение упорядоченного нанорельефа рельефа поверхности

GaAs(100) может быть обусловлено возникновением периодической структуры нанорельефа в областях упорядочения гетероструры с х~0.50, обнаруженной методом ACM [6, 14].

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Проблема неустойчивости твердых растворов полупроводниковых соединений особенно в области составов х~0.50 является одной из наиболее остростоящих в физике тонких пленок. Рост эпитаксиальных структур, а в частности многослойных, с хорошо согласованными параметрами решеток зачастую приводит к тому, что за счет малого рассогласования параметров решеток, а также особенностей механизмов роста могут возникать достаточно большие внутренние напряжения. Так в случае гетероструктуры Ga_xIn_{1-x}P/GaAs(100) разница между параметрами решеток твердого раствора и монокристаллической подложки для концентраций x=0.50 составляет 0.00635ъ, а гетероструктура $Al_xGa_{1-x}As/GaAs(100)$ считается практически согласованной по параметру решетки, однако как видно из полученных экспериментальных данных этой разницы вполне достаточно для возникновения в процессе роста неустойчивости твердых растворов и возникновения модуляции их состава.

Теоретически возможны два различных типа механизма неустойчивости: термодинамический и кинетический. При тер-модинамическом типе твердый раствор неустойчив относительно спонтанного разделения на фазы, а упругая энергия возникает вследствие требования когерентного (бездислокационного) сопряжения разделяющихся фаз, а при кинетической неустойчивости упругие напряжения способствуют возникновению и последующему усилению пространственной модуляции состава. Этим кинетиче-ская неустойчивость принципиально отличается от термодинамической не-устойчивости, при которой упругие напряжения могут только стабилизировать твердый раствор.

При эпитаксиальном росте в условиях спинодального распада первоначальное разде-ление фаз происходит в нескольких первых монослоях растущего твердого рас-твора. При последующей послойной эпитаксии новые слои твердого раствора вырастают на кристалле, в котором уже имеется модуляция состава. При этом пространственное распределение состава оказывается замороженным везде, кроме тонкой приповерхностной области (порядка нескольких монослоев). Имеющаяся в этой области диффузия стремится привести свободную энергию к условному минимуму, соответствующему замороженному составу в глубине уже выращен-ного эпитаксиального слоя. Т.е. при перестройке надмо-

Рис. 5. ИК – спектр эпитаксиальной гетероструктуры Al_xGa_{1-x}As/GaAs (100) с x~0.50: 1 – эксперимент, 2 - расчет

лекулярных структур начинают проявляться фундаментальные свойства больших коллективов частиц. Это свидетельствует о фазовых переходах критического типа, которые характеризуются сильной пространственно-временной коррелированностью частиц, высоким уровнем флуктуации. При таком поведение системы можно говорить о близости к ее к границе термодинамической устойчивости – спинодали, которая ограничивает область неустойчивых (лабильных) однородных состояний. В критической точке спинодаль соприкасается с линией равновесия сосуществующих фаз. При быстром протекании фазовых переходов в условиях эпитаксиального роста одна (или обе) из сосуществующих фаз находится вне области вполне устойчивых состояний, поэтому в начальной стадии фазового превращения, когда систему предварительно удается перевести в лабильное состояние и её релаксация сопровождается усилением случайных неоднородностей концентрации частиц. Оказывается возможным появление модулированных релаксационных структур.

Таким образом, как видно из полученных экспериментальных данных, распад эпитаксиальных твердых растворов $Al_{x}Ga_{1 \text{-}x}As$ и $Ga_{x}In_{1 \text{-}x}P$ происходит с образованием периодического распределения выделяющихся фаз (модулированной структуры), а также как следствие упорядоченного нано и микрорельефа на поверхности твердого раствора. Возникающие фазы отличаются только концентрацией и параметром кристаллической решетки, вследствие чего появляются сателлиты основных рентгеновских рефлексов, соответствующих однофазной структуре, а так же дополнительные колебательные моды в ИК-спектрах отражения в области полосы остаточных лучей. Существование этих сателлитов можно объяснить, если предположить, что параметр решетки, сам по себе являющийся усредненной величиной (и концентрация атомов в металлической подрешетке), периодически изменяется в направлениях кристаллографических осей.

Благодарности:

Автор выражает глубокую признательность Домашевской Э.П., Арсентьеву И.Н., Тарасову И.С., Винокурову Д.А.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Х. Кейси, М. Паниш.* Лазеры на гетероструктурах. Т. 1. //М.:Мир.,1981.- 299с.
- 2. Л.В.Келдыш // ФТТ 4, 2265 (1962)
- 3. Д. Бом. Квантовая теория // М.: Наука, 1965.-732 с.
- 4. Э.П. Домашевская, Н.Н. Гордиенко, Н.А. Румянцева, П.В. Середин и др. // ФТП 42, 9, 2008.
- 5. Э.П. Домашевская, П.В. Середин и др.// ФТП, 3, с 354-360, 2005
- 6. E.P. Domashevskaya, P.V. Seredin $u \partial p$. // Surface and Interface Analysis. 2006.V.8, I. 4 , P. 828 832.
- D Zhou and B.F. Usher.// J. Phys. D: Appl. Phys. 34 (2001) 1461-1465.
- Goldberg Yu A. Handbook Series on Semiconductor Parameters, Vol. 2 // Levinshtein M., Rumyantsev S. and Shur M., (eds).World Scientific: London, 1999; pp. 1–36.
- 9. *T.S. Kuan.* Long-Range Order in $Al_xGa_{1-x}As$ // Phys. Rev. Lett. 1985. V.54, P.201.
- B.D. Pattreson. Spontaneous Ordering in AlGaAs // PSI annual report 1997. www.physik.unizh.ch/reports/ report1999.html
- 11. E. Muller and B. Patterson (PSI). //PSI annual report 2000. www.physik.unizh.ch/reports/report2000.html
- Alex Zunger. Spontaneous Atomic Ordering in Semiconductor Alloys: Causes, Carriers, and Consequences // MRS-IRS bulletin/ July 1997. http:/ /www.sst.nrel.gov/images/mrs97
- В. Пирсон. Кристаллохимия и физика металлов и сплавов. Части 1-2. // М.: Мир, 1977г, перевод.
- Домашевская, П.В. Середин и др. ИК-спектры отражения и морфология поверхности эпитаксиальных гетероструктур Al_xGa_{1-x}As/GaAs(100) с фазой упорядочения // ФТП. – 2006. – Т.40, вып.4. – С. 411-418.
- Сато. Х. Применение метода эпитаксиальных пленок для изучения электронной структуры некоторых сплавов // Монокристаллические пленки [под. Ред. З.Г. Пинскера].- М.: Мир, 1966. – С. 371-390

SPINODAL DECOMPOSITION IN EPITAXIAL SOLID SOLUTIONS OF HETEROSTRUCTURES $Al_xG_{1,x}As/GaAs(100)$ AND $Ga_xIn_{1,x}P/GaAs(100)$

© 2009 P.V. Seredin

Voronezh State University

Using the methods of XRD, SEM, ASM and IR-spectroscopy was studied the phenomenon of instability epitaxial semiconductors solid solutions in $Al_x Ga_{1-x} As/GaAs(100)$ and $Ga_x In_{1-x} P/GaAs(100)$ heterostructures in range of x~0.50. Was shown capability of formation the modulated relaxation structures on $Al_x Ga_{1-x} As$ and $Ga_x In_{1-x} P$ solid solutions surface, whereupon arising satellite of basic XRD patterns corresponding with single-phase structure.

Key words: epitaxial heterostructures, superstructures phases, structural ordering

Pavel Seredin, Candidate of Physics and Mathematics, Chief Research Fellow. E-mail: paul@phys.vsu.ru