УДК 621.391.63

ОСОБЕННОСТИ ФАЗИРОВАНИЯ ЭЛЕКТРООПТИЧЕСКИХ ПОВЕРХНОСТЕЙ

© 2009 С.А. Матюнин¹, Г.И. Леонович², В.Д. Паранин¹

¹ Самарский государственный аэрокосмический университет ² Самарский научно-технического центр РАРАН

Поступила в редакцию 14.04.2009

Предложен функционал, позволяющий определить преимущественный тип электрооптического эффекта в конструкции дискретного оптического элемента. Проведен анализ влияния ориентации вектора напряженности электрического поля на показатель преломления электрооптического материала для волн различных поляризаций.

Ключевые слова: адаптивный оптический элемент, электрооптический материал, фазовая функция поверхности, функционал преимущественного типа электрооптического эффекта

ВВЕДЕНИЕ

Дискретные оптические элементы (ДОЭ), в т.ч. дифракционные оптические элементы, широко используются в качестве фокусаторов лазерного и широкополосного оптического излучения в произвольную область, корректоров волнового фронта, выполняют функции спектрального и амплитудного преобразования [1,2]. К настоящему времени сформированы обобщенные теоретические модели и методы расчета и синтеза ДОЭ со статическими параметрами, имеющие достаточно высокую практическую точность [2].

Одним из путей развития элементной базы оптики является создание перестраиваемых оптических элементов с управляемыми (адаптивными) оптическими характеристиками и синтезируемой апертурой, что позволит расширить функциональность элементов и устройств на их основе.

Разработка ДОЭ на периодических, в том числе дифракционных структурах (решетках), в силу малой величины электрооптического эффекта [3] требует оптимального сочетания параметров электрооптического материала (ЭОМ), взаимной пространственной ориентации оптических осей ЭОМ, светового потока и силовых линий электрического поля.

Проведенный анализ показывает, что даже для простых структур ДОЭ нельзя заранее предсказать эффективность выбранного конструктивного варианта реализации ДОЭ и применяе-

E-mail: leogi1@rambler.ru

Паранин Вячеслав Дмитриевич, студент. E-mail: vparanin@mail.ru мого ЭОМ. В тоже время введение ряда критериев позволяет оценить как эффективность использования электрических полей в ДОЭ, так и эффективность пространственной ориентации оптических осей ЭОМ и световых потоков.

ФУНКЦИОНАЛ ПРЕИМУЩЕСТВЕННОГОТИПА ЭЛЕКТРООПТИЧЕСКОГОЭФФЕКТА

Для упрощенного анализа ДОЭ с периодической структурой разобьем ДОЭ на ряд элементарных базовых оптических элементов (ЭБОЭ) таким образом, чтобы добавление очередного ЭБОЭ к группе уже сформированных ЭБОЭ не влияло на характеристики последних. Для оценки типа распределения электрического поля в ЭБОЭ и выбора соответствующего типа электрооптического введем понятие функционала *G* преимущественного типа электрического поля в ЭБОЭ:

$$G = \frac{\int_{0}^{a} \int_{0}^{d} [\left|F^{x}(x, y)\right| - \left|F^{y}(x, y)\right|] dx dy}{\int_{0}^{a} \int_{0}^{d} [\left|F^{x}(x, y)\right| + \left|F^{y}(x, y)\right|] dx dy},$$

где:
$$F^{x}(x, y) = E^{x}(x, y) \cdot n \ (x, y) \cdot a^{x}(x, y)$$

 $F^{y}(x, y) = E^{y}(x, y) \cdot n \ (x, y) \cdot a^{y}(x, y);$

а, *d* – габаритные размеры ДОЭ вдоль осей *х*, *у* соответственно;

 $E_{i,j}^{x}, E_{i,j}^{y}, a_{i,j}^{x}, a_{i,j}^{y}$ - проекции вектора электрической напряженности и вектора *A* направления распространения световой волны на оси

Матюнин Сергей Александрович, доктор технических наук, профессор, заведующий кафедрой "Электронные системы и устройства". E-mail: mitrea.sgau@rambler.ru Леонович Георгий Иванович, доктор технических наук, профессор, Главный научный руководитель. E-mail. logi.d@nambla.ne.

координат *x*, *y*; *n*(*x*,*y*) – координатная зависимость коэффициента преломления ЭОМ.

В частности, для ДОЭ на основе дифракционных решеток, в зависимости от отношения периода решетки к толщине резонансного слоя наблюдается существенное перераспределение продольной и поперечной составляющих электрооптического эффекта (рис. 1).

На рис. 1 вектор **A** указывает направление распространения световой волны.

На рис.2 величины функционала G от отно-

шения
$$\frac{a}{d}$$

Из рис.1,2 видно, что при
$$\frac{a}{d} = 8$$
 доля $E_{i,j}^{x}$

компоненты электрического поля доминирует и составляет величину порядка 90%, а электрооптический эффект в этом случае поперечный.

При
$$\frac{a}{d} = 1,2$$
 доля $E_{i,j}^x$ компоненты элект-

рического поля уменьшается до величины порядка 60%, а электрооптический эффект в этом случае преимущественно поперечный с долей продольной компоненты порядка 30%.

При
$$\frac{a}{d} = 0,3$$
 доля $E_{i,j}^{x}$ компоненты элект-

рического поля уменьшается до величины порядка 50%, а электрооптический эффект в этом случае смешанный с долей продольной компоненты порядка 50%.

Вывод. Устанавливая классификационную величину функционала *G* например по уровням

в зависимости от отношения
$$\frac{a}{d}$$

0,1 и 0,9 (рис. 2), получим три зоны преимущественного типа электрооптического эффекта: І – преимущественно поперечный электрооптический эффект; II – смешанный (промежуточный) электрооптический эффект; III – преимущественно продольный электрооптический эффект.

Определение. Под фазированием оптической поверхности будем понимать создание требуемого одно- или двумерного распределения фазы Φ_{surf} светового пучка, пересекающего данную поверхность.

В общем случае световая волна может распространяться перпендикулярно фазируемой поверхности или пересекать ее под некоторым углом.

Поскольку фактически получаемая фазовая функция Φ_f может не совпадать с целевой Φ_{surf} , для количественной характеристики сходимости Φ_f и Φ_{surf} можно ввести интегральную $\Delta \varphi_{int}$ ошибку:

$$\Delta \varphi_{\rm int} = \int_{S} (\Phi_{surf} - \Phi_f)^2 \, dS \, ,$$

где S – фазируемая поверхность. В этом случае требование к формируемой фазовой функции Φ_f должно удовлетворять критерию минимума среднеквадратичной ошибки:

$$\Delta \varphi_{\rm int} \rightarrow \min$$

Для создания фазовой функции электрооптически активной поверхности можно предложить несколько методов, основанных на управлении распределением электрического поля в объеме ЭОМ, выборе определенной ориентации ЭОМ, а также их комбинации.

Для описания пространственных электрических полей и оптических осей ЭОК введем понятия системы координат кристалла (СКК) и электрического поля (СКЭП).

Рис. 2. Зависимость величины функционала *G*

от отношения
$$\frac{a}{d}$$

Координатной системой СКК служит ортогональный базис векторов $x_2y_2z_2$, параллельных оптическим осям ЭОК, причем для рассматриваемых ниже одноосных кристаллов вектор z_2 полагается совпадающим с осью оптической анизотропии.

Система СКЭП является фиксированной системой координат с ортогональными направляющими $x_i y_i z_i$, в которой задаются величины и направления внешних электрических полей, геометрия и ориентация управляющих электродов, направление распространения световой волны, т.е. в СКЭП задается большинство исходных данных задачи. В общем случае оси $x_2 y_2 z_2$ СКК могут быть как параллельными координатным осям $x_i y_i z_i$ СКЭП, так и ориентированными под произвольными углами.

ВЛИЯНИЕ ОРИЕНТАЦИИ ВЕКТОРА НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ЭЛЕКТРООПТИЧЕСКОГО МАТЕРИАЛА ДЛЯ ВОЛН ОСНОВНЫХ ПОЛЯРИЗАЦИЙ

Данный частный случай характеризуется тем, что сочетание элементов матрицы электрооптических коэффициентов r_{ij} и действующих электрических полей E_k таково, что в уравнении эллипсоида показателей преломления коэффициенты при переменных $x_{2^p} y_{2^p} z_2$ зависят от двух или более составляющих E_k . Это позволяет, используя методы независимого регулирования по каждому из векторов электрического поля E_{x2^p} $E_{y2^p} E_{z2}$ путем выбора ориентации кристалла, поляризации световой волны, изменять показатель преломления в объеме ЭОК в соответствии с целевой функцией.

В качестве примера рассмотрим изменение показателей преломления x_2, y_2 – поляризованных волн в ниобате лития, ориентированного так, как это показано на рис. З. Электрическое поле создается с помощью двух протяженных электродов и включает составляющие $E_{x1} = E_{y2}$ и $E_{y1} = E_{z2}$ (оси x_2, y_2, z_2 СКК параллельны осям z_1, x_1, y_1 СКЭП). Световая волна распространяется вдоль оси $z_1 \| y_4$.

Изменение эллипсоида показателей преломления в плоскости $x_2 y_2$ примет вид:

$$\left(\frac{1}{n_0^2} - r_{22}E_{y2} + r_{13}E_{z2}\right)x_2^2 + \left(\frac{1}{n_0^2} + r_{22}E_{y2} + r_{13}E_{z2}\right)y_2^2 = 1$$

или в системе СКЭП:

$$\left(\frac{1}{n_0^2} - r_{22}E_{x1} + r_{13}E_{y1}\right)z_1^2 + \left(\frac{1}{n_0^2} + r_{22}E_{x1} + r_{13}E_{y1}\right)x_1^2 = 1$$

Показатели преломления для *x*₂, *y*₂-поляризованных волн будут равны:

$$n_{x2} = n_0 + \frac{1}{2}n_0^3 r_{22} E_{y2} - \frac{1}{2}n_0^3 r_{13} E_{z2};$$

$$n_{y2} = n_0 - \frac{1}{2}n_0^3 r_{22} E_{y2} - \frac{1}{2}n_0^3 r_{13} E_{z2}.$$
 (1)

Из выражений (1) следует, что фазовая функция светового пучка в выходном межэлектродном промежутке формируется двумя составляющими электрического поля — $E_{_{u2}}$ и $E_{_{z2}}$, которые являются соответствующими проекциями полей E_{x_1}, E_{u_1} СКЭП на оси симметрии кристалла x_2, y_2, z_2 (рис. 3). Поэтому, путем выбора ориентации ЭОК, возможно изменение вклада каждой составляющей электрического поля на показатели преломления материала. Например, вращение СКК вокруг оси z, уменьшит электрическое поле *Е*_{и2} и увеличит составляющую *Е*_{х2} при неизменной величине Е₂. Таким образом, с использованием определенного среза ЭОК, возможно формирование требуемого фазового распределения световой волны на выходе структуры.

Для рассмотренного варианта фазирования необходимы, по крайней мере, две составляющие электрического поля, с целью изменения их соотношения в величине фазового набега, а также наличие определенных ненулевых электрооптических коэффициентов r_{ij} . Для простого случая ориентации осей симметрии кристалла параллельно осям СКЭП данные требования оформлены в виде табл. 1.

Переход от векторов $x_{1,y_{1},z_{1}}$ к $x_{2,y_{2},z_{2}}$ или от E_{x1}, E_{y1}, E_{z1} к E_{x2}, E_{y2}, E_{z2} в данном случае задается простым соответствием осей СКК и СКЭП, однако

Направление световой волны	Составляющие электри ческого поля в СКК	Поляризация световой волны	Электрооптические коэффициенты	Класс симметрии кристалла
$z_2 \ y_1$	Ez_2, Ex_2	x ₂ y ₂	r11, r13 r21, r23	1,m,3,3m 1,m,3,3m
	Ez_2, Ey_2	x ₂ y ₂	r12, r13 r22, r23	1,3,3m 1,3,3m
y ₂ y ₁	Ey_2, Ex_2	X ₂ Z ₂	r11, r12 r31, r32	1,m,3, 6 1,m,3
	Ey ₂ , Ez ₂	x ₂ Z ₂	r12, r13 r32, r33	1,3,3m 1,3m
$\mathbf{x}_2 \ \mathbf{y}_1$	Ex_2, Ey_2	y2 Z2	r21, r22 r31, r32	1,m,3, 6 1,m
	Ex_2, Ez_2	y ₂ Z ₂	r21, r23 r31, r33	1,m,3m 1,m

Таблица 1. Требования к матрице электрооптических коэффициентов.

при произвольной ориентации СКК в СКЭП должен осуществляться через линейное преобразование базисных векторов в пространстве.

Вывод: для реализации рассмотренного типа фазирования оптической поверхности ЭОК должен иметь как минимум 2 ненулевых элемента, по крайней мере, в одной из первых трех строк матрицы электрооптических коэффициентов. Это обстоятельство ограничивает номенклатуру материалов, не позволяет выбрать материалы с высокими значениями электрооптических коэффициентов.

ВЛИЯНИЕ ОРИЕНТАЦИИ ВЕКТОРА НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ЭЛЕКТРООПТИЧЕСКОГО МАТЕРИАЛА ДЛЯ ВОЛН ПРОМЕЖУТОЧНЫХ ПОЛЯРИЗАЦИЙ

Данный частный случай характеризуется тем, что сочетание элементов матрицы электро-ОПТИЧЕСКИХ КОЭФФИЦИЕНТОВ r_{ij} и действующих электрических полей E_k таково, что в уравнении эллипсоида показателей преломления при наличии внешнего электрического поля возникают ненулевые коэффициенты как при переменных x_2, y_2, z_2 , так и при слагаемых $x_2 y_2, x_2 z_2$ и т.п, причем изменение показателя преломления для волн x_2^-, y_2^-, z_2^- и $x_2 y_2^-, x_2 z_2^-$ и т.п. поляризаций происходит под действием различных составляющих поля E_{x2}, E_{y2}, E_{z2} .

Влияние управляющего поля будет выражаться в одновременном изменении оптической индикатрисы вдоль основных осей x_2, y_2, z_2 и новых (наведенных) осей x_3, y_3, z_3 эллипсоида показателей преломления. Это позволяет использовать влияние векторов электрического поля E_{x2}, E_{y2}, E_{z2} на показатель преломления в объеме ЭОК путем выбора ориентации кристалла и поляризации световой волны. Принципиальным отличием от предыдущего частного случая будет использование световых волн с промежуточной поляризацией типа x_2y_2 -, x_2z_2 - и т.п., либо поляризованных вдоль новых оптических осей.

В качестве примера рассмотрим изменение показателей преломления x_2z_2 – поляризованных волн в ниобате лития, ориентированного так, как это показано на рис. 4. Электрическое поле создается с помощью двух протяженных электродов и включает составляющие $E_{x1} = E_{x2}$ и $E_{y1} = E_{y2}$ (оси z_2y_2, x_2 СКК параллельны осям z_1, y_1, x_1 СКЭП). Световая волна распространяется вдоль оси $y_1 | y_1$.

Изменение эллипсоида показателей преломления в плоскости *x*,*z*, примет вид:

$$\left(\frac{1}{n_0^2} - r_{22}E_{y2}\right)x_2^2 + \left(\frac{1}{n_e^2}\right)z_2^2 + 2z_2x_2r_{51}E_{x2} = 1.$$
(2)

Наличие в выражении (2) слагаемого $2z_2x_2r_{5t}E_{x2}$ приводит к связи z_2 -, x_2 -поляризованных волн и повороту главных осей эллипса показателей преломления в плоскости x_2z_2 на угол Θ (рис. 5). В частном случае, когда уравнение (2) симметрично относительно переменных x_2 , z_2 , угол Θ постоянен и равен $\pi/4$.

Тогда преобразование осей x_2 , z_2 к новым главным осям x_3 , z_3 примет вид:

$$\begin{cases} \vec{x}_2 = \vec{x}_3 \cos \Theta - \vec{z}_3 \sin \Theta \\ \vec{z}_2 = \vec{x}_3 \sin \Theta + \vec{z}_3 \cos \Theta \end{cases}$$
(3)

Подставляя систему выражений (3) в уравнение (2) и полагая коэффициент при $x_3 z_3$ равным нулю, получим показатели преломления для новых осей и угол их поворота Θ :

Рис. 4. Ориентация оптических осей кристалла в СКЭП

$$n_{x3} = \frac{1}{\sqrt{\frac{\cos^2(\Theta)}{n_0^2} + \frac{\sin^2(\Theta)}{n_e^2} - r_{22}E_{y2}\cos^2(\Theta) + 2r_{51}E_{x2}\sin(\Theta)\cos(\Theta)}}$$

$$n_{z3} =$$

$$\frac{1}{\sqrt{\frac{\sin^2(\Theta)}{n_0^2} + \frac{\cos^2(\Theta)}{n_e^2} + r_{22}E_{y2}\sin^2(\Theta) - 2r_{51}E_{x2}\sin(\Theta)\cos(\Theta)}}$$

$$tg(2\Theta) = \frac{2r_{51}E_{x2}}{\left(\frac{1}{n_0^2} + \frac{1}{n_e^2} - r_{22}E_{y2}\right)}.$$
 (4)

Из выражений (4) следует, что фазовая функция светового пучка, поляризованного под углом Θ к осям x_2, z_2 ЭОК, в выходном межэлектродном промежутке формируется двумя составляющими электрического поля – E_{x2} и E_{y2} . В данном случае это достигается только при одном ненулевом элементе r_{22} матрицы электрооптических коэффициентов в первых трех строках и ненулевом элементе r_{51} для волн связанных поляризаций. Составляющие поля E_{x2}, E_{y2} в общем случае являются проекциями полей E_{x1}, E_{y1} СКЭП на оптические оси кристалла x_2, y_2, z_2 . Поэтому, путем выбора ориентации ЭОК возможно изменение вклада каждой составляющей электрического поля на показатели преломления материала.

Для рассмотренного случая существуют обязательные требования к ЭОК, заключающиеся в наличии определенных ненулевых электрооптических коэффициентов r_{y} . Для ориентации осей симметрии кристалла параллельно осям СКЭП данные требования оформлены в виде табл. 2. По сравнению с табл. 1 отсутствует графа "Используемая поляризация световой волны", поскольку электрическое поле изменяет показатель преломления для волн промежуточных поляризаций.

Рис. 5. Поворот главных осей эллипса показателей преломления в плоскости x₂z₂

Вывод: для реализации рассмотренного типа фазирования оптической поверхности ЭОК должен иметь как минимум 2 ненулевых элемента матрицы электрооптических коэффициентов, обуславливающих влияние ортогональных составляющих электрического поля на показатель преломления и фазовую функцию волн промежуточных поляризаций.

Данный способ управления оптическим элементом может быть реализован для большего числа материалов по сравнению с предыдущим методом, однако также не позволяет использовать наиболее эффективные кристаллы классов 2mm, 4mm.

ВЛИЯНИЕ ОРИЕНТАЦИИ ОСЕЙ ЭЛЕКТРООПТИЧЕСКОГО КРИСТАЛЛА. СЛУЧАЙ, КОГДА ОДНА ИЗ ОСЕЙ ЭЛЕКТРООПТИЧЕСКОГО КРИСТАЛЛА ПАРАЛЛЕЛЬНА БАЗИСНОМУ ВЕКТОРУ СКЭП И НАПРАВЛЕНИЮ РАСПРОСТРАНЕНИЯ СВЕТОВОЙ ВОЛНЫ

Рассмотрим частный случай ориентации ЭОК, когда одна из его оптических осей (например, ось анизотропии z_2) сонаправлена с осью СКЭП (например, z_1) и направлением распространения световой волны, а две другие ориентированы под произвольным углом α к базисным векторам x_1, y_1 СКЭП (рис. 6).

Переход от системы координат x_i , y_i СКЭП к x_2 , y_2 СКК будет осуществляться с помощью матрицы А линейного преобразования [4]:

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = A \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}.$$
(5)

Если оси x_2 , y_2 ортогональны и угол между векторами x_1 , x_2 составляет α , то элементы a_{ij} матрицы в выражении (5) равны $a_{11} = \cos(\alpha)$, $a_{12} = \sin(\alpha)$, $a_{21} = -\sin(\alpha)$, $a_{22} = \cos(\alpha)$:

$$\vec{x}_2 = \vec{x}_1 \cos(\alpha) + \vec{y}_1 \sin(\alpha)$$

$$\vec{y}_2 = -\vec{x}_1 \sin(\alpha) + \vec{y}_1 \cos(\alpha)$$
 (6)

Направление световой волны	Составляющие электрического поля в СКК	Электрооптические коэффициенты	Класс симметрии кристалла
$z_2 y_1$	Ez_2, Ex_2	r11, r63 r13, r61 r11, r13, r61 r11, r13, r63 r11, r61, r63 r13, r61, r63 r11, r13, r61, r63	1 1,3,3m 1,3 1 1 1 1
	Ez ₂ , Ey ₂	r22, r63 r23, r62 r22, r23, r62 r22, r23, r63 r22, r62, r63 r23, r62, r63 r22, r23, r62, r63	1,2 1 1,3 1 1 1
	Ey ₂ , Ex ₂	r11, r52 r12, r51 r11, r12, r51 r11, r12, r52 r11, r51, r52 r12, r51, r52 r11, r12, r51, r52 r11, r12, r51, r52	1,3,32 1,3,3m 1,3 1,3 1,3 1,3 1,3 1,3
y ₂ y ₁	Ey ₂ , Ez ₂	r32, r53 r33, r52 r32, r33, r52 r32, r33, r53 r32, r52, r53 r33, r52, r53 r33, r52, r53 r32, r33, r52, r53	1,m 1,2 1,3,4,6 1 1 1 1
$\mathbf{x}_2 \ \mathbf{y}_1$	Ex ₂ , Ey ₂	r21, r42 r22, r41 r21, r22, r41 r21, r22, r42 r21, r41, r42 r22, r41, r42 r21, r22, r41, r42 r21, r22, r41, r42	1,m,3,3m 1,2,3 1,3 1,3 1,3 1,3 1,3 1,3
	Ex_2, Ez_2	r31, r43 r33, r41 r31, r33, r41 r31, r33, r43 r31, r41, r43 r33, r41, r43 r31, r33, r41, r43	1,m 1,2,3,4,6 1 1 1 1 1

Таблица 2. Требования к матрице электрооптических коэффициентов

Рис. 6. Ориентация осей x_2, y_2 кристалла относительно базиса x_1, y_1 СКЭП

Переход из системы СКК в СКЭП будет осуществляться аналогичным образом с помощью обратной матрицы А⁻¹, равной:

$$A^{-1} = \frac{1}{[A]} \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}$$

где [A] – определитель матрицы A (в данном случае равный 1). Элементы A_{11} , A_{12} , A_{21} , A_{22} являются алгебраическими дополнениями a_{11} , a_{12} , a_{22} , a_{22} и соответственно равны $cos(\alpha)$, $-sin(\alpha)$, $sin(\alpha)$, $cos(\alpha)$:

$$\vec{x}_1 = \vec{x}_2 \cos(\alpha) - \vec{y}_2 \sin(\alpha)$$
$$\vec{y}_1 = \vec{x}_2 \sin(\alpha) + \vec{y}_2 \cos(\alpha)$$

Таким образом, между базисами СКК и СКЭП существует однозначная связь, определяемая углом поворота α , позволяющая по заданным координатам элемента (вектора, точки, плоскости) в одной системе координат определить его положение в другой системе.

Используя рассмотренный выше математический аппарат, определим электрические поля E_{x2}, E_{y2} , наведенные составляющими E_{x1}, E_{y1} и действующие вдоль оптических осей кристалла x_2, y_2 .

В дальнейшем будем учитывать только абсолютные значения векторов поля, поскольку их направления при расчете величины электрооптического эффекта не принципиальны.

Исходя из сделанных утверждений, для величин E_{x2} , E_{y2} с учетом выражения (6) можно записать:

$$E_{x2} = \left| E_{x1} \cos(\alpha) + E_{y1} \sin(\alpha) \right|$$
$$E_{y2} = \left| -E_{x1} \sin(\alpha) + E_{y1} \cos(\alpha) \right|.$$
(7)

Необходимо отметить, что в общем случае $E_{x2} + E_{y2} \leq E_{x1} + E_{y1}$ вследствие того, что производится векторное сложение полей, при этом ни одна из составляющих поля не может быть отрицательной.

Вид эллипса показателей преломления в плоскости x_{y} , запишем, полагая координату $z_{2}=0$:

$$\left(\frac{1}{n_{x2}^2} + r_{11}E_{x2} + r_{12}E_{y2}\right) x_2^2 + \\ + \left(\frac{1}{n_{y2}^2} + r_{21}E_{x2} + r_{22}E_{y2}\right) y_2^2 + \\ + 2x_2y_2 \left(r_{61}E_{x2} + r_{62}E_{y2}\right) = 1$$
 (8)

где составляющие E_{x2}, E_{y2} определены в (7).

Последующий анализ электрооптического эффекта по выражениям (7), (8) включает в себя две задачи:

1) определение новых главных осей x_3 , y_3 эллипса показателей преломления в системе СКК при наличии внешних электрических полей и положения новых осей в СКЭП с помощью матрицы перехода A⁻¹;

2) определение показателя преломления n_{y4} для волны с произвольным вектором поляризации y_4 и положения (координат) этого вектора в СКЭП.

С целью упрощения анализа перепишем (8) в виде:

$$b_{11}x_2^2 + 2b_{12}x_2y_2 + b_{22}y_2^2 = 1.$$
 (9)

Для приведения квадратичной формы (9) к каноническому виду $Bx_3^2 + Cy_3^2$ необходимо вместо переменных x_2 , y_2 подставить их значения, выраженные через новые оси x_3 , y_3 :

$$x_{2} = x_{3}\cos(\Theta) - y_{3}\sin(\Theta)$$

$$y_{2} = x_{3}\sin(\Theta) + y_{3}\cos(\Theta)$$
(10)

где *Q* – угол поворота новых осей относительно осей СКК. Тогда выражение (9) примет вид:

$$x_{3}^{2}[b_{11}\cos^{2}(\Theta) + 2b_{12}\sin(\Theta)\cos(\Theta) + b_{22}\sin^{2}(\Theta)] + y_{3}^{2}[b_{11}\sin^{2}(\Theta) - 2b_{12}\sin(\Theta)\cos(\Theta) + b_{22}\cos^{2}(\Theta)] + x_{3}y_{3}[-2b_{11}\sin(\Theta)\cos(\Theta) + 2b_{12}(\cos^{2}(\Theta) - ...(11)) - \sin^{2}(\Theta)) + 2b_{22}\sin(\Theta)\cos(\Theta)] = 1$$

Для приведения (11) к канонической форме приравняем множитель при *x*₃*y*₃ к нулю:

$$-2b_{11}\sin(\Theta)\cos(\Theta) + 2b_{12}(\cos^2(\Theta) - \\ -\sin^2(\Theta)) + 2b_{22}\sin(\Theta)\cos(\Theta) = 0$$
(12)

Учитывая тождества $2sin(\Theta)cos(\Theta) = sin(2\Theta)$

$$u\cos^{2}(u)-\sin^{2}(\Theta)=\cos(2\Theta),$$

разделим (12) на $cos(2 \Theta)$ и выразим из него переменную Θ :

$$\Theta = \frac{1}{2} \operatorname{arctg}\left(\frac{2b_{12}}{b_{11} - b_{22}}\right).$$
(13)

Из (13) следует, что при одинаковых значениях b_{1t} , b_{22} угол Θ будет равен $\pi/4$, при $b_{12}=0$ значение Θ будет равно θ при любых b_{1t} , b_{22} , т.к. в отсутствие электрического поля деформации индикатрисы не происходит. Коэффициенты b_{1t} , b_{12} , b_{22} в общем случае содержат не только показатели преломления материала, но также электрооптические константы и величины действующих электрических полей, поэтому угол поворота оптических осей для b_{1t} , b_{22} будет зависеть от напряженности поля.

Поскольку при задании системы (10) полагалось, что поворот осей x_2 , y_2 происходит в положительном направлении против хода часовой стрелки, то для нахождения положения осей x_3 , y_3 в СКЭП (векторы $x_{3,1}, y_{3,1}$) справедливы зависимости:

$$\vec{x}_{3,1} = \vec{x}_1 \cos(\alpha + \Theta) + \vec{y}_3 \sin(\alpha + \Theta)$$
$$\vec{y}_{3,1} = -\vec{x}_3 \sin(\alpha + \Theta) + \vec{y}_3 \cos(\alpha + \Theta)$$
$$\vec{x}_{3,1} \in x_1 tg(\alpha + \Theta)$$
$$\vec{y}_{3,1} = -x_1 ctg(\alpha + \Theta)$$

Для определения показателя преломления n_p для световой волны произвольной поляризации

 p_2 воспользуемся квадратичной формой (9). Состояние поляризации зададим в виде вектора, ориентированного под углом β к оси x_2 :

$$\vec{p}_2 = p_{x2}\vec{x}_2 + p_{y2}\vec{y}_2 = \vec{x}_2\cos(\beta) + \vec{y}_2\sin(\beta).$$
(14)

Как следует из (14), вектор поляризации p лежит на прямой $y_2 = tg(\beta)x_2$ (аналогично рис. 5).

Для нахождения показателя преломления в точке $(x_{2,p}y_{2,p}), (-x_{2,p}-y_{2,p})$ решим систему уравнений:

$$\begin{cases} b_{11}x_2^2 + b_{22}y_2^2 + 2x_2y_2b_{12} = 1\\ y_2 = tg(\beta)x_2 \end{cases}.$$
 (15)

Значение показателя преломления n_p определится как модуль вектора, соединяющего центр координат x_2, y_2 и найденное решение, например ($x_{2,j}, y_{2,j}$). Решая систему (15) стандартным методом подстановки и учитывая тригонометрическое тождество $1 + tg^2(\beta) = 1/cos^2(\beta)$, найдем значение n_p :

$$n_{p} = \sqrt{x_{2,1}^{2} + y_{2,1}^{2}} = \frac{1}{\cos(\beta)\sqrt{b_{11} + 2b_{12}tg(\beta) + b_{22}tg^{2}(\beta)}} \cdot (16)$$

Для упрощенного определения положения вектора p_2 в исходной системе координат x_i , y_i , без использования матриц линейного преобразования, можно воспользоваться зависимостью:

$$\vec{p}_{1} = p_{x1}\vec{x}_{1} + p_{y1}\vec{y}_{1} = \vec{x}_{1}\cos(\alpha + \beta) + + \vec{y}_{1}\sin(\alpha + \beta) \vec{p}_{1} \in y_{1} = tg(\alpha + \beta)x_{1}$$
(17)

где знак "+" перед α , β соответствует углам, откладываемым в положительном направлении, знак "-" - для углов α , β , откладываемых в от-

рицательных направлениях.

В случае, когда вектор поляризации задается в системе СКЭП в виде $p_1 = x_1 cos(\gamma) + y_1 sin(\gamma)$, а затем преобразуется в СКК с целью нахождения показателя преломления, для определения вектора p_2 в базисе x_2y_2 предлагается воспользоваться формулой:

$$\vec{p}_{2} = p_{x2}\vec{x}_{2} + p_{y2}\vec{y}_{2} = \vec{x}_{2}\cos(\gamma - \alpha) + + \vec{y}_{2}\sin(\gamma - \alpha) \vec{p}_{2} \in y_{2} = tg(\gamma - \alpha)x_{2}$$
(18)

Вывод: задавая вектор поляризации световой волны в системе координат x_1y_1 или x_2y_2 с помощью зависимостей (16) – (18) можно определить показатель преломления n_p для волны любой поляризации при наличии внешних управляющих электрических полей в кристалле, произвольно ориентированных в плоскости.

Благодарности. Работа выполнена при поддержке Министерства образования и науки РФ в рамках аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы", проект № 10в-Б001-053.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бобров С.Т., И. Грейсух Г.И., Туркевич Ю.Г. Оптика дифракционных элементов и систем. Л.: Машиностроение, 1986. 223 с.
- Сойфер В.А. Методы компьютерной оптики. М.: Физматлит, 2003. 688 с.
- Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. 616 с.
- Данко П. Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. М.: ОНИКС 21 век, 2003. 304 с.

FEATURES OF ELECTRO-OPTICAL SURFACES PHASING

© 2009 S.A. Matyunin¹, G.I. Leonovich², V.D. Paranin¹

¹ Samara State Aerospace University ² RARAS Samara Scientific and Technical Centre

Primary electro-optical effect functional for discrete optical element construction is proposed. An influence of electric field vector orientation on electro-optical material refractive index for optical waves with various polarizations is considered.

Keywords: adaptive optical element, electro-optical material, phase surface function, functional of primary electro-optical effect

Sergey Matyunin, Doctor of Technics, Professor, Head at "Electronic systems and devices" Department. E-mail: mitrea.sgau@rambler.ru George Leonovich, Doctor of Technical Science, professor,

Chief scientific adviser. E-mail: leogi1@rambler.ru Vyacheslav Paranin, student. E-mail: vparanin@mail.ru