УДК 666.691.43-431

ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ ОБЖИГА КЕРАМИЧЕСКОГО КИРПИЧА НА ОСНОВЕ БЕЙДЕЛЛИТОВОЙ ГЛИНЫ, ФОСФОРНОГО ШЛАКА И ЗОЛОШЛАКА

© 2009 И.В. Ковков¹, Е.С. Абдрахимова¹, В.З. Абдрахимов²

 $^{1}\Pi K$ "Наука", Усть-Каменогорск 2 Самарский государственный архитектурно-строительный университет

Поступила в редакцию 17.03.2008

Исследования показали, что использование в составах керамических масс фосфорного шлака и золошлака способствует образованию муллита и волластонита в кирпиче. Муллит повышает прочность керамических изделии, а волластонит способствует снижению усадки, т.е. снижает деформационные искривления кирпича.

Ключевые слова: керамические массы, фосфорный шлак, золошлак, муллит, волластонит.

Фазовый состав и текстура определяют главным образом эксплуатационные свойства керамических изделий [1-2]. Наличие примесей или специально введенных добавок (минерализаторов) может в значительной степени повлиять на процесс формирования керамического изделия [2-3].

Фосфорный шлак — это побочный продукт производства фосфора термическим способом в электропечах при температуре 1300...1500 °C. Получается шлак в результате химического процесса в герметизированной дуговой печи. Этот процесс протекает в сильно восстановительной среде, которая при высокой температуре приводит к восстановлению фосфора. Фосфат кальция взаимодействует с углеродом кокса и кремнеземом, в результате чего образуется фосфор и шлаковый расплав. Шлак сливается из печей в огненно-жидком состоянии и гранулируется мокрым способом. На 1 тонну фосфора приходится 10...12 т шлака [2]. На крупных химических предприятиях получают до двух млн. т. шлака в год.

На Челно-Вершинском комбинате строительных материалов Самарской области была выпущена опытная партия керамического кирпича. В качестве глинистого компонента использовалась глина Образцовского месторождения, в качестве отощителя — Тольяттинский фосфорный шлак, а в качестве отощителя и выгорающей добавки — золошлак (золошлаковый материал) Тольяттинской ТЭС. Керамический кирпич состава, мас. %: бейделлитовая глина — 60, фосфорный шлак — 25, золошлак — 15, выпущенный в

Ковков Илья Валерьевич, заведующий лабораторией. E-mail: kovkoviv@mail.ru.

Абдрахимова Елена Сергеевна, кандидат технических наук, заместитель директора по науке.

Абдрахимов Владимир Закирович, доктор технических наук, профессор.

производственных условиях и обожженный при температуре 1050 °C имел марку M200.

Химический состав исследуемых сырьевых компонентов приведен в табл. 1.

Бейделлитовая глина изучена в работах [2, 4, 5] и характеризуется как среднедисперсная, преимущественно с низким содержанием мелких и средних включений. Основным породообразующим минералом глины является бейделлит.

Гранулометрические составы фосфорного шлака и золошлака представлены в табл. 2.

На рис. 1 и в табл. 3 приведены поэлементные усредненные химические анализы и составы фосфорного шлака и золошлака, проведенные с помощью электронного растрового сканирующего микроскопа Phillips 525M.

Для анализа размера частиц фосфорного шлака и золошлака, был проведен металлографический анализ на микроскопе МИН – 8М при увеличении в 200 раз, (рис. 2, a, б).

Как видно из рис. 2 в фосфорном шлаке более высокое содержание включений размером более 10 мкм, чем в золошлаке.

Рентгенограммы золошлака и фосфорного шлака представлены на рис. 3.

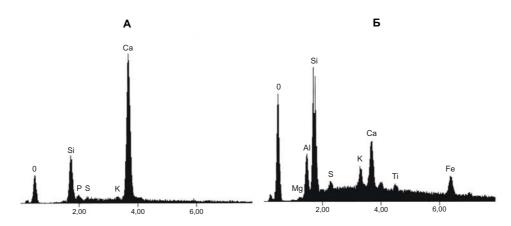

Надифрактометре порошка золошлака (рис. 2, а) отмечаются характерные интенсивные линии ($d/n=0.182;\,0.223;\,0.245;\,0.334$ и 0.424 нм) кварца, присутствие линии ($d/n=0.198\,$ 7нм) обусловлено кристобалитом, линии (d/n=0.368 нм) магнетитом, ($d/n=0.212;\,0.220$ и 0.269 нм) муллитом, ($d/n=0.251;\,0.255$ и 0.269 нм) гематитом, (d/n=0.319 нм) анортитом. О повышенном содержании стеклофазы в исследуемом золошлаке свидетельствует соотношение интегральных площадей аморфного гало и дифракционных отражений на рентгенограммах.

Таблица 1. Химические составы сырьевых компонентов

Компоненты		Содержание оксидов, мас. %								
	SiO_2	Al_2O_3	CaO	MgO	Fe ₂ O ₃	R_2O	SO_3	п.п.п.		
Образцовская глина	57,13	19,25	2,0	1,32	5,72	1,5	1,01	8,8		
Золошлак	47,16	17,7	3,99	2,36	6,42	1,48	0,52	19,94		
Фосфорный шлак	43,8	0,8	48,4	1,45	0,73	0,42	0,21	2,48		

Таблица 2. Гранулометрический состав фосфорного шлака

Компонент	Содержание фракций (мм), %								
ROMHOHEHI	>5	2,5-5	1,25-2,5	0,63-1,25	0,315-0,63	0,14-0,315	<0,14		
Фосфорный шлак	0,7	18,2	30,8	18,2	13,2	9,5	9,4		
Золошлак	0,2	12,5	28,4	15,8	19,3	12,7	11,1		

Рис. 1. Поэлементный химический анализ компонентов: $a- \varphi$ осфорный шлак, 6-золошлак

Таблица 3. Поэлементный химический состав фосфорного шлака и золошлака

Компонент	Содержание элементов, мас. %								
	О	Si	Al	P	S	K	Ti	Fe	Ca
Фосфорный шлак	44,46	6,74	_	0,56	_	0,39	_	_	47,89
Золошлак	53,48	15,44	5,5	_	1,1	3,59	1,44	9,12	10,33

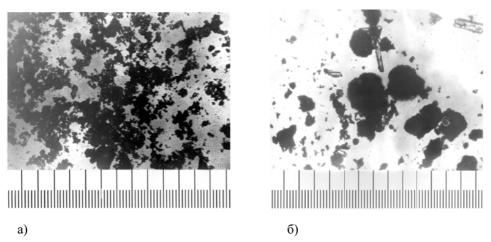
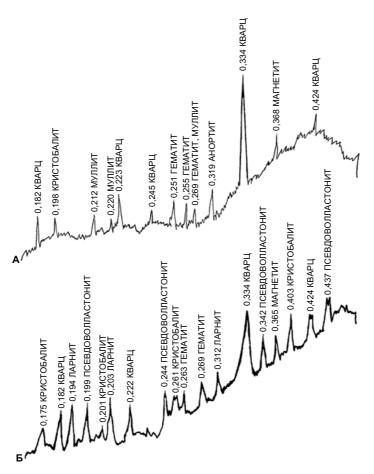



Рис. 2. Металлографический анализ: А % золошлак Б – фосфорного шлака

Фосфорный шлак представлен следующими минералами: кристобалитом ($d/n=0,175;\ 0,201;\ 0,261\ u\ 0,403\ нм$); кварцем ($d/n=0,182;\ 0,222;\ 0,0,334\ u\ 0,424\ нм$); ларнитом ($d/n=0,194;\ 0,203\ u\ 0,312\ нм$);

псевдоволластонитом (d/n = 0.199; 0,244; 0,342 и 0,437 нм) и гематитом (d/n = 0.251; 0,269 и 0,365 нм).

Основным компонентом золы является стеклофаза (45-50%). Она неоднородно, представле-

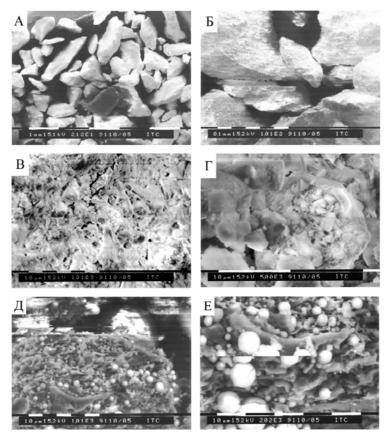
Рис. 3. Рентгенограммы компонентов: а - золошлак, б - фосфорный шлак

но двумя разновидностями: одно бесцветное, имеет светопреломление 1,54, другое — в виде оплавленных шариков до 0,5 мм желтого, реже желто-бурого цвета, обусловленного наличием оксида железа; светопреломление этой разновидности около 1,6.

Наличие муллита ($3Al_2O_3\cdot 2SiO_2$) в исследуемом золошлаке будет способствовать образованию муллита, который придает керамическим материалам основные физико-механические свойства.

Анортит — полевой шпат ($CaO \cdot Al_2O_3 \cdot 2SiO_2$), как было указано в работах [1-3] является конечным членом плагиоклазов, обладает всеми свойствами, присущими полевошпатовым минералам, и в составе неметаллических материалов встречается только в устойчивой модификации.

Волластонит — метасиликат кальция (β — CaO·SiO $_2$) полиморфен; кристаллизуется в двух модификациях - α и β [2]. Высокотемпературную α - модификацию называют псевдоволластонитом, а собственно волластонит - его низкотемпературная β - модификация.


Ларнит – двухкальциевый силикат (β– 2CaO·SiO₂). Полиморфизм двухкальциевого си-

ликата широко известен и достаточно подробно освещен в литературе, хотя до последнего времени нет еще точных данных ни о его количестве полиморфных модификаций, ни о температурных интервалах их устойчивости [6]. В составе неметаллических включений наиболее часто встречается β - модификация этого силиката.

Для оксида железа известны полиморфные модификации: устойчивая α - модификация или гематит (α - $\mathrm{Fe_2O_3}$) и неустойчивая β - $\mathrm{Fe_2O_3}$ модификация образуется при нагревании $\mathrm{Fe_3O_4}$ в окислительной среде 220 °C [6]. Гематит в керамических материалах способствует образованию железистого стекла, которое инициирует образование муллита.

На рис. 4 представлены фотографии фосфорного шлака и золошлака, сделанные на электронном растровом сканирующем микроскопе Phillips 525M.

В настоящей работе с помощью рентгенофазового, ИК-спектроскопического, электронномикроскопического и микроскопического методов анализа исследованы фазовые превращения керамического кирпича в интервале температур 950-1100 °C.

Рис. 4. Микроструктура компонентов: A, Б, B, Γ - фосфорного шлака; Π , E - золошлака; увеличение: A – x20; Б – x100; B, Π – x1000; E – x2000; Π – x5000

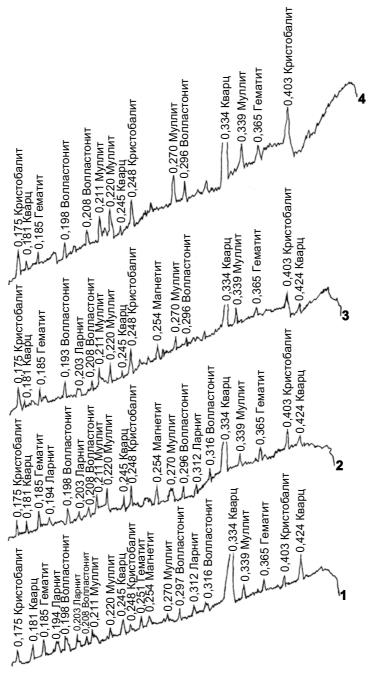
Рентгенофазовый анализ порошкообразных проб проводился на дифрактометре ДРОН-6 с использованием СоК_{α} - излучения при скорости вращения столика с образцом 1 град/мин при напряжении на трубке 40 кВ и токе 2 мА с использованием сцинтилляционного счетчика NаJ (TL).

ИК-спектры поглощения получены на спектрофотометре "Spekord-75JR". Образцы были приготовлены в виде суспензии порошка с вазелиновым маслом.

Петрографические исследования проводили с использованием иммерсионных жидкостей, прозрачных шлифов и аншлифов под микроскопом МИН-8 и МИН-7. Прозрачные шлифы исследованных керамических материалов изготовляли по методике [7].

Исследование микроструктуры керамического кирпича, обожженного в интервале температур $1000\text{-}1050\,^{\circ}\text{C}$, проводили с помощью электронного растрового сканирующего микроскопа Phillips 525M.

При температуре $950\,^{\circ}$ С в керамическом кирпиче особых изменений фазового состава не происходит за исключением перехода α - модификации волластонита в более устойчивую β - модификацию (рис. 5,1) и появления жидкой фазы. Под микроскопом видны бесцветные желтоватые и бурые стекла с показателями преломления

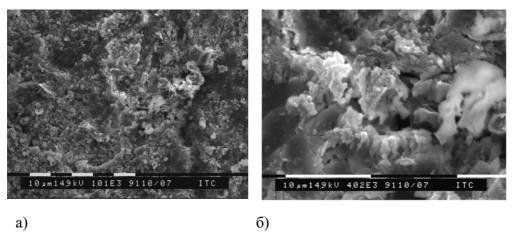

от n =1,50 до 1,54, образовавшиеся в результате плавления шпатов и смешаннослойных глинистых образований. Появление жидкой фазы при температуре 950 °C объясняется присутствием R_2O и повышенным содержанием оксида железа (Fe_2O_3) в бейделлитовой глине и золошлаке.

Спекание керамического кирпича идет с участием жидкой фазы, от свойств которой во многом зависят процесс формирования структуры материала и его свойства. Повышение реакционной способности жидкой фазы в керамическом кирпиче по отношению к тугоплавким их составляющих, дает возможность интенсифицировать процесс спекания, что позволит уменьшить расход топлива [1-2].

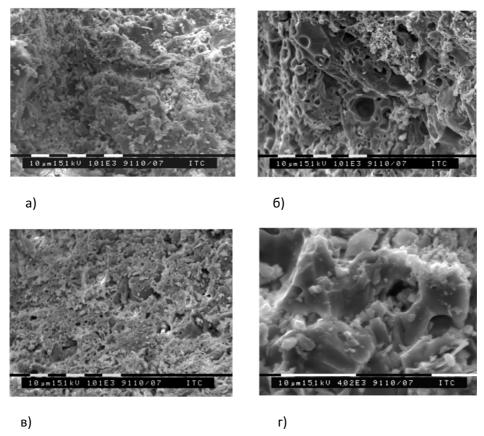
Повышение температуры обжига до 1000° С способствует повышению жидкой фазы в образцах (рис. 5, 2).

Электронно-микроскопическое исследование керамического кирпича сопряжено со значительными трудностями получения реплик от образцов, обожженных в области температуры 1000 °C, когда жидкая фаза содержит много неполностью растворенных глинистых частиц.

Под микроскопом в образцах наблюдаются бесцветные, желтоватые и бурые стекла с показателями преломления ${\bf N}$ от 1,50 до 1,54, которые образовались в результате плавления шпа-


Рис. 5. Рентгенограммы исследуемых кирпичей при температурах обжига 950-1100 °C. Температура обжига, °C: 1-950, 2-1000, 3-1050, 4-1100

тов и смешаннослойных глинистых образований. Присутствие в бейделлитовой глине и золошлаке ${\rm Fe_2O_3}$ и ${\rm R_2O}$ способствует появлению значительного количества жидкой фазы жидкой фазы при $1000~{\rm ^{\circ}C}$ (рис. 6).


Дальнейшее увеличение температуры обжига до 1050 °С способствует увеличению содержание муллита, кристобалита и жидкой фазы (рис. 5, 3). Кристаллизация кристобалита отмечается по трещинам и краям кварца. Микроскопические исследования показали, что в кирпиче, обожженном при 1050 °С, образуются желтоватые и бурые стекла до 25-30 с показателями преломления **п** от 1,56 до 1,58.

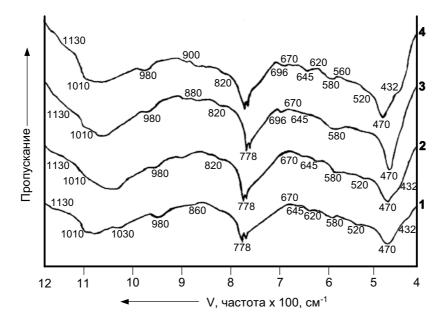
Повышение температуры обжига до $1050\,^{\circ}$ С способствует увеличению содержанию стеклофазы в кирпиче (рис. 7). Показатели преломления стекла N увеличиваются от 1,54 до 1,61. Возможно, это связана с переходом некоторой части Fe_2O_2 в стекло.

В кирпиче, обожженном при 1050 °С, основную роль играют узкие щелевидные поры и группы соединяющих пор весьма причудливой формы (рис. 7). Изометрические закрытые поры также присутствуют, но их значение в общей пористости структуры сравнительно невелико. Щелевидные поры, как правило, узкие (2-5 мкм), обычно изогнутые, серповидные, но иногда пря-

Рис. 6. Микроструктура керамического кирпича, обожженного при температуре $1000\,^{\circ}$ С. Увеличение: а -1000, б -4000

Рис. 7. Микроструктура керамического кирпича, обожженного при температуре $1050\,^{\circ}$ С. Увеличение: a-100; b-100; b-1000; b-1000; b-1000; b-1000

молинейные. Содержание закрытых пор типа "каналов" в кирпиче больше, чем у кирпича, обожженного при 1000 °C.


Наличие муллита в обожженном кирпиче показывают также и ИК – спектроскопические исследования (рис. 8).

Решетка муллита ($3Al_2O_3 \cdot 2SiO_2$) весьма близка решетки силлиманита и обладает дефектной структурой последнего. Поэтому рентгенограммы муллита и силлиманита весьма близки, тогда как их инфракрасные спектры поглощения, наоборот, весьма различны, что делает спект-

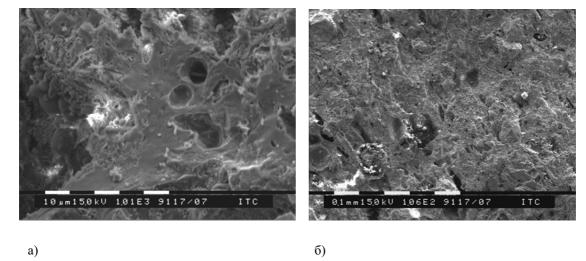
ральный анализ удобным для определения этих минералов [8].

Характерно незначительное поглощение электромагнитных волн муллитом в интервале при \mathbf{v} =580 см⁻¹ и резком пике поглощения у силлиманита при \mathbf{v} =691 см⁻¹. Таким образом, наличие муллита в исследуемых образцах подтверждают полосы поглощения \mathbf{v} =580 см⁻¹ на ИК-спектре (рис. 8).

Повышение температуры обжига до 1100 °C способствует значительному увеличению содержания муллита, кристобалита (увеличение пи-

Рис. 8. ИК-спектры поглощения исследуемых кирпичей при температурах обжига 950-1100 °C. Температура обжига, °C: 1-950, 2-1000, 3-1050, 4-1100

ков соответственно 0,211; 0,220; 0,270 и 0,175; 0,248; 0,403 нм) и жидкой фазы (рис. 5, 4). Аморфный кремнезем, образующийся в образцах при муллитизации, по-видимому, растворяется в расплаве, количество которого значительно увеличивается при температуре $1100\,^{\circ}$ С. Микроскопические исследования показывают, что в кирпиче, обожженном при $1100\,^{\circ}$ С, образуются в основном бурые стекла до $35\text{-}40\,\mathrm{c}$ показателями преломления \mathbf{n} от 1,58 до 1,62.


Увеличение температуры обжига до 1100°C приводит к значительному возрастанию жидкой фазы. Показатели преломления стекла ${\bf N}$ увеличиваются от 1,61 до 1,67. Это связана с переходом значительного количества ${\rm Fe_2O_3}$ и некоторой части CaO в стекло.

В кирпиче, обожженном при 1100°С, имеют

место преимущественно изолированные изометрические, иногда овальные поры размером 3-10 мкм (рис. 9). Кроме того, присутствуют сравнительно редко крупные поры (до 40 мкм) овальной формы, но также обычно изометричные поры типа "каналов". Именно эти поры, по всей видимости, определяют водопоглощение.

выводы

Таким образом, исследования показали, что для получения высокомарочного кирпича в составы керамических масс целесообразно вводить фосфорный шлак и золошлаковый материал. Муллит повышает прочность керамических изделии, а волластонит способствует снижению усадки, т.е. снижает деформационные искривле-

Рис. 9. Микроструктура керамического кирпича, обожженного при температуре $1100\,^{\circ}$ C. Увеличение: а -1000; б -1500

ния кирпича. Электронно-микроскопическое изучение керамического кирпича показало, что при температуре обжига 1000°C образуется значительное количество стеклофазы. Увеличение температуры обжига до 1050°C способствует увеличению содержанию стеклофазы в кирпиче. Показатели преломления стекла $\mathbf N$ увеличиваются от 1,54 до 1,61. Возможно, это связана с переходом некоторой части Fe₂O₃ в стекло. При этом основную роль играют узкие щелевидные поры и группы соединяющих пор весьма причудливой формы. Изометрические закрытые поры также присутствуют, но их значение в общей пористости структуры сравнительно невелико. Щелевидные поры, как правило, узкие (2-5 мкм), обычно изогнутые, серповидные, но иногда прямолинейные. Содержание закрытых пор типа «каналов» в кирпиче больше, чем у кирпича, обожженного при 1000°C. Увеличение температуры обжига до 1100°C приводит к значительному возрастанию жидкой фазы. Показатели преломления стекла N увеличиваются от 1,61 до 1,67. Это связана с переходом значительного количества Fe₂O₃ и некоторой части CaO в стекло.

СПИСОК ЛИТЕРАТУРЫ

- Павлов В.Ф. Физико-химические основы обжига изделий строительной керамики. М: Стройиздат, 1977. 272 с.
- 2. Абдрахимов В.З., Абдрахимова Е.С. Химическая технология кирпича с использованием техногенного сырья. Самара: Самарский государственный архитектурно-строительный университет, 2007. 432 с.
- 3. *Павлов В.Ф.* Физико-химические основы регулирования фазового состава и процесса спекания при обжиге керамических масс // Тр. ин-та НИИстройкерамики. 1979. Вып. 34. С. 18-28.
- Исследование бейделлитовой глины для производства керамических материалов / Е.В. Вдовина, В.В. Шевандо, А.В. Абдрахимов, В.З. Абдрахимов, Е.С. Абдрахимова // Известия вузов. Строительство, 2007. №7. С. 41-46.
- Исследование методом ядерной гамма-резонансной спектроскопии черной сердцевины при обжиге бейделлитовой легкоплавкой глины / Е.В. Вдовина, В.В. Шевандо, А.В. Абдрахимов, В.З. Абдрахимов, Е.С. Абдрахимова / / Известия. Вузов. Строительство. 2007. №5. С. 26-32.
- Петрография неметаллических включений / Т.И. Литвинова, В.П. Пирожкова, А.К. Петров. М: Металлургия, 1972. 183 с.
- Астреева О.М. Петрография вяжущих материалов. М: Гостройиздат, 1959. 163 с.
- 8. *Куколев Г.В.* Химия кремния и физическая химия силикатов. М: Высшая школа, 1966. 463 с.

PHYSIC-CHIME PROCESS AT VARIOUS TEMPERATURES OF ROASTING OF THE CERAMIC BRICK ON BASIS BAYDIALYT OF CLAY, PHOSPHORIC SLAG AND ASHESSLAG

© 2009 I.V. Kovkov¹, E.S. Abdrakhimova¹, V.Z. Abdrakhimov²

¹PK "SCIENCE", Ust-Kamenogorsk, Kazakhstan ²Samara State Architecture-Building University

Researches have shown that use in structure of ceramic weights of phosphoric slag and ashesslag promotes formation mulyte and volastonit in a brick. Mulyt raises durability ceramic a product, and volastonit promotes decrease reduction of the sizes, reduces deformation curvatures of a brick.

Key words: ceramic weights, phosphoric slag, ashesslag, mulyte, volastonit.

Ilya Kovkov, Laboratory Head. E-mail: kovkoviv@mail.ru. Elena Abdrahimova, Candidate of Technics, Deputy Director for Science.

Vladimir Abdrahimov, Doctor of Technics, Professor.