УДК 536.2.081.7

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МАКСИМУМОВ ТЕПЛОПРОВОДНОСТИ ДИОКСИДА УГЛЕРОДА В КРИТИЧЕСКОЙ ОБЛАСТИ

© 2009 Г.Г. Гусейнов ^{1,2}

¹ Институт физики Дагестанского научного центра РАН ² Дагестанский государственный технический университет

Поступила в редакцию 27.11.2009

Впервые экспериментально исследована эффективная теплопроводность пористого стекла, насыщенного диоксидом углерода в критической области. В критической области обнаружены: максимум теплопроводности, уменьшение его амплитуды, смещение температуры максимума в сторону низких температур, проявление максимума в более широком интервале температур, чем для чистого диоксида углерода.

Ключевые слова: теплопроводность, критическая область, фазовый переход, наноструктуры

Исследования пористых материалов, насыщенных флюидами вблизи фазовых переходов 2-го рода и критического состояния вещества необходимы: для развития теорий фазовых переходов и критических явлений; для изучения поверхностных явлений на границе твердое тело-жидкость; для развития сверхкритических технологий экстракции остаточной нефти из пластов [1, 2]. Неисследованной при этом остается специфика теплопроводности (λ) в микропористых и дисперсных системах. Особенно важно изучение поведения веществ в замкнутых объемах и пористых средах для исследования различных размерных эффектов.

Цель работы: изучение поведения λ диоксида углерода (CO₂) в пористом стекле.

В настоящем сообщении приведены результаты, демонстрирующие необычное поведение λ для CO₂ в микропористом стекле, в частности, в критической области. В качестве объектов исследования были выбраны пористые стекла, имеющие твердый каркас и взаимопроникающие поры. Они однородны и могут быть использованы как модели гетерогенных сред. Образцы имели средний размер пор 16·10⁻⁶ м, диаметр 42·10⁻³ м и толщину 3055·10⁻⁶ м. Другим объектом исследования было выбрано чистое вещество – CO₂, у которого λ достаточно хорошо изучена в широкой области параметров состояния, включая критическую область [3-5].

Измерения λ проведены абсолютным стационарным методом плоского горизонтального слоя с погрешностью, не превышающей 1,2%. Подробности о конструкции устройств и методики определения λ приведены в работе [6].

В работе впервые приводятся результаты экспериментального исследования эффективной теплопроводности ($\lambda_{3\phi}$) пористого стекла, насыщенного CO₂, в интервале температур 290-370 К и давлении 7,379 МПа (рис. 1).

Рис. 1. Зависимость эффективной теплопроводности (λ_{эφ}) от температуры (Т, К) по критической изобаре 7,379 МПа: пористое стекло, насыщенное диоксидом углерода (данные автора)

Из рис.1. видно, что с увеличением температуры $\lambda_{3\phi}$ пористого стекла, насыщенного СО ₂, в основном, растет. Рост $\lambda_{3\phi}$ в зависимости от температуры для пористого стекла, насыщенного СО₂, составляет 10,08%. Пористые стекла, насыщенные СО₂, представляют систему, состоящую из многих фаз – сочетания, твердого, жидкого и газообразного состояний [7]. В пористом стекле, насыщенном СО₂, тепло передается через скелет – каркас, контактные пятна, молекулами газа или жидкости и излучением:

Гусейнов Гасан Гусейнович, кандидат технических наук, старший научный сотрудник. E-mail: guseinovgg@mail.ru

$$Q = Q_{\text{кондукт.}} + Q_{\text{конвекц.}} + Q_{\text{рад.}}$$
 (1)

Радиационную составляющую λ оценивали по формуле из [8]:

$$\lambda_{\rm pag} = 2\varepsilon^2 \sigma \,{\rm T}^3 \,h \tag{2}$$

где: є – степень черноты поверхности поры (для кварцевого стекла 0,03); *σ* – постоянная Стефана-Больцмана – (5,67032·10⁻⁸ Вт м⁻²К⁻⁴); T – температура, K – (300 K); h – в приближении размер поры – 16·10⁻⁶ м. Вычисленное по формуле (2) значение $\lambda_{pad} = 4,41 \ 10^{-8} \text{ Bt} \cdot \text{M}^{-1} \cdot \text{K}^{-1}$, что составляло $13 \cdot 10^{-60}$ от $\lambda_{3\phi}$ пористого стекла, и $3 \cdot 10^{-60}$ % от величины молекулярной λ кварцевого стекла ($\lambda_{\kappa варца}$), и ею можно пренебречь. Передачу тепла конвекцией не учитывали из-за ограниченного размера пор и микрозазоров на стыке частиц, что препятствует ее возникновению. Таким образом, передача тепла в пористой среде, насыщенной CO_2 , в основном осуществляется λ основы – скелета пористого материала - стекла, и имеет место фононный механизм передачи тепла.

Рассматривая результаты исследования $\lambda_{3\phi}$, приведенной на рис. 1, видим, что на изобаре 7,379 МПа при температуре 303,85 К наблюдается резко выраженный максимум. Были сравнены параметры, при которых наблюдается максимум теплопроводности (λ_{max}) для пористого стекла, насыщенного CO₂, и для CO₂, находящегося в свободном состоянии (рис. 2). Для этого воспользовались результатами экспериментального исследования λ для CO₂, выполненных в критической области [3, 4]. Из сравнения видно, что наблюдаемый на рис. 2. – λ_{max} для пористого стекла, насыщенного CO₂, попадает в область критического состояния чистого CO₂[1, 3-5].

Можно констатировать факт того, что нами впервые экспериментально исследована $\lambda_{3\phi\phi}$ пористого стекла, насыщенного CO₂, в критической области и обнаружен λ_{max} . Из рис. 2., по данным [3, 4] видно, что λ_{max} чистого CO₂, находящегося в свободном состоянии, наблюдается при критическом давлении P_к=7,4077 МПа и критической температуре T_к=304,35 К. Критические параметры для CO₂, установленные по изучению других физических свойств (P, ρ , T), выполненные с высокой точностью [10], составляют: P_к=7,3773 МПа и T_к=304,128 К.

Таким образом, видно, что T_{κ} для CO_2 внутри пористого стекла наблюдается при температуре соответственно на 0,5° и на 0,278° ниже T_{κ} , чем у чистого CO_2 , установленных соответственно [4, 5] и [9]. Сравнения же амплитуд λ_{max} в критической области пористого стекла, насыщенного CO₂, с λ_{max} чистого CO₂, по критической изобаре (см. рис. 2), показывает, что амплитуда λ_{max} для чистого CO₂ в 3,2 раз больше. λ_{max} для CO₂ возрастает на 81,7% от величины значения λ основания, и этот рост наблюдается в интервале температур в 1°, в то время как λ_{max} для пористого стекла, насыщенного CO₂, возрастает по сравнению с основанием только на 4%, которое наблюдается в интервале температур в 12°.

Рис. 2. Зависимость эффективной теплопроводности (λ_{эфφ}) от температуры (Т, К) по критической изобаре 7,379 МПа в окрестности критической точки (Т_к): 1 – пористого стекла, насыщенного CO₂ (данные автора); 2 – CO₂ – по данным [4].

Смещение температуры фазового перехода и уменьшение амплитуды λ_{max} в пористом стекле, насыщенном СО₂, скорее всего происходит из-за того, что под влиянием поверхностного поля стекла СО₂, находящаяся на стыках зерен-флюид, структурируется. Повидимому, начинают проявляться размерные эффекты в пористом стекле, т.е. на поведение CO₂ начинает влиять развитая поверхность пор. Подобные же образования по изучению других свойств и на других веществах были обнаружены в работе [10]. На структурирование жидкости в поверхностном слое, особенно в критической области, указывается и в работе [11]. Хотя доля структурированного состояния CO₂ еще очень мала по сравнению с объемной фазой, тем не менее они могут оказывать влияние и определять объемные свойства СО₂.

Размерные эффекты в ограниченном пространстве пор могут привести к понижению внутренней энергии СО₂, что в свою очередь

приводит к смещению температуры фазового перехода (Т_к) - СО₂ внутри пор. Одновременно увеличенная поверхность пор не дает развиваться флуктуациям плотности CO₂, гасит амплитуду λ_{max} пористого стекла, насыщенного СО₂. Размытость температуры перехода в критической области для λ_{ab} пористого стекла, насыщенного СО₂, по нашему мнению, происходит из-за дисперсии толщины прослоек СО₂ между зернами в стекла. Кроме того, доля граничного ориентационного-упорядоченного слоя СО₂ на стыке зерен увеличивается по мере продвижения от центра поры к микропятнам касания зерен, т.к. это соответствует другому состоянию СО2, то и фазовый переход второго рода будет происходить постепенно в некотором интервале температур. Из сказанного выше можно сделать следующий вывод: находящийся внутри пористого стекла СО2 все-таки проявляет свои индивидуальные особенности в критической области.

Для выяснения поведения CO_2 внутри пор была рассчитана его λ . Выяснено, что λ для CO_2 внутри пор на 18,64% больше, чем в свободном объеме. По- видимому, это тоже связано с тем, что CO_2 внутри пор у поверхности стекла (на определенную толщину) более структурирован, образуются двухфазные аморфно-кристаллические структуры – наноструктуры в CO_2 (с толщиной слоя в 10-1000 нм), и обладает большей λ , чем в свободном объеме.

Воспользуемся данными о плотности стекла XC-3 при 290 К [12], равном 2490 кгм⁻³ и формулой, предложенной Шибряевым Е.Ф. [13]:

$$\lambda_{\mathrm{5}\phi, \mathrm{nop}} \lambda^{-1}_{\mathrm{5}\phi, \mathrm{K}} = \rho_{\mathrm{nop}}^{2} \rho_{\mathrm{K}}^{-2}$$
(3)

где $\lambda_{3\phi, \text{пор.}}$, $\lambda_{3\phi, \text{к.}}$ – эффективная теплопроводность пористого и компактного (сплошного) материала; $\rho_{\text{пор.}}$, $\rho_{\text{к.}}$ – плотность пористого и без пористого материала (стекла). Тогда можно написать:

 $ρ_{\text{пор.}} = ρ_{\text{ κ.}} (λ_{3\phi. \text{ пор.}} \lambda_{3\phi. \text{ κ.}}^{-1})^{\frac{1}{2}}$

Формула связывает характеристики пористых сред по правилу искажения. Рассчитанная по этой формуле эффективная плотность CO₂ увеличивается с приближением к критической области, достигает максимального значения при T_к и уменьшается по мере удаления от нее. По-видимому, это связано с увеличением локальной плотности CO₂ вблизи поверхности стекла и его структурированием. Выводы: предлагается новый подход к изучению свойств наноразмерных образований в пористых и дисперсных системах по исследованию их теплофизических свойств, которые открывают новые пути к пониманию физико-химических процессов в наноструктурах. Полученные данные по теплопроводности внесут определенный вклад в изучение физики фазовых переходов второго рода и критического состояния вещества, позволят оптимально проектировать установки по сверхкритической экстракции тяжелых углеводородов из земных недр.

СПИСОК ЛИТЕРАТУРЫ:

- 1. *Анисимов, М.А.* Критические явления в жидкостях и жидких кристаллах. – М.: Наука, 1987. – 271 с.
- Гиматудинов, Ш.К. Физика нефтяного и газового пласта / Ш.К. Гиматудинов, А.И. Ширковский. – М.: Недра, 1982. – 312 с.
- Guildner, L.A. Thermal conductivity of gases. II. Thermal conductivity of carbon dioxide near the critical point // J. Res. NBS. – 1962. – V. 66 A, N. 4. – P. 34.
- Michels, A. Thermal conductivity of carbon dioxide in the critical region / A. Michels, J.V. Sengers, P.S. Van der Gulik // Physica. – 1962. - V. 28, N. 12. – P. 1201-1264.
- Sengers, J.V. Transport properties of fluid near critical points // Int. J. Thermophys. 1985. V. 6, N. 3. P. 203-232.
- 6. Патент Российской Федерации № 2124717 кл. 6 G 01 N25/18. Гусейнов Г.Г. Устройство для измерения теплопроводности. – Бюл. Изобретения. ВНИИПИ. – М. 1999, № 1, С. 414.
- Хейфец, Л.И. Многофазные процессы в пористых средах / Л.И. Хейфец, А.В. Неймарк. – М.: Химия, 1982. – 319 с.
- Мень, А.А. Степень черноты кварцевого стекла / А.А. Мень, З.С. Сеттарова / Теплофизика высоких температур. – 1972. – Т. 10, №2. – С. 279-284.
- Duschek, W. Measurement and correlation of the relation of carbon dioxide / W. Duschek, R. Kleinrahm, W. Wagner // J. Chem. Thermodynamics. – 1990. – V. 22. – Р. 841-864.
 Дерягин, Б.В. Оптическая анизотропия гранич-
- Дерягин, Б.В. Оптическая анизотропия граничных слоев нитробензола, образованных на поверхности стекла / Б.В. Дерягин, Ю.М. Поповский, Г.П. Силенко // ДАН СССР. 1972. Т. 207. С. 1153-1157.
- Пшеницын, В.И. Исследование отражения света и толщины поверхностного слоя в системе гексан – нитробензол / В.И. Пшеницын, А.И. Русанов // ЖФХ. – 1972. – Т. 46, вып. 4. – С. 1031-1033.
- 12. *Миснар, А.* Теплопроводность твердых тел, жидкостей, газов и их композиций. – М.: Мир, 1968. – 464 с.
- 13. Шибряев, Е.Ф. Пористые проницаемые спеченные материалы. – М.: Металлургия, 1982. – 167 с.

(4)

EXPERIMENTAL RESEARCH OF THERMAL CONDUCTIVITY MAXIMUM OF CARBON DIOXIDE IN CRITICAL AREA

© 2009 G.G. Guseynov^{1,2}

¹ Institute of Physics Dagestan Scientific Centre RAS ² Dagestan State Technical University

For the first time effective thermal conductivity of the porous glass saturated by carbon dioxide in critical area is experimentally researched. In critical area are detected: maximum of thermal conductivity, decrease of its amplitude, displacement of temperature maximum aside low temperatures, appearance of maximum in wider interval of temperatures, than for pure carbon dioxide.

Key words: thermal conductivity, critical area, phase change, nanostructures

Gasan Guseynov, Candidate of Technical Sciences, Senior Research Fellow. E-mail: guseinovgg@mail.ru