АНАЛИЗ РАЗВИТИЯ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ В ПОВЕРХНОСТНОМ СЛОЕ ПРИ УЛЬТРАЗВУКОВОМ АЛМАЗНОМ ВЫГЛАЖИВАНИИ

© 2010 В.И. Малышев, А.С. Селиванов

Тольяттинский государственный университет

Поступила в редакцию 10.03.2010

В статье представлена математическая модель эволюции плотности дислокаций в поверхностном слое при ультразвуковой обработке алмазным выглаживанием.

Ключевые слова: математическая модель, плотность дислокаций; алмазное выглаживание; ультразвук; поверхностный слой.

ВВЕДЕНИЕ

Величина пластической деформации в поверхностном слое при алмазном выглаживании (АВ) обусловлена приложенной к материалу определенной статической нагрузки. Вместе с тем, согласно эффекта Блага-Лангенеккера [1] при энергетическом воздействии ультразвуковых колебаний возможно снижение предела текучести материала, он становится более пластичным, что обусловлено увеличением плотности подвижных дислокаций в поверхностном слое (ПС). Под действием напряжений движение и размножение дислокаций осуществляется в определенных плоскостях скольжения, различным образом ориентированных в зернах. Действующие плоскости скольжения наблюдаются как система линий скольжения, состоящих из множества выхода дислокационных линий. Развитие пластической деформации во времени происходит в результате увеличения плотности полос скольжения, их расширения, за счет механизма двойного поперечного скольжения (ДПС) и последующего слияния.

Установив закономерности кинетики накопления плотности дислокаций в деформируемом объеме ПС от условий внешнего воздействия при ультразвуковом алмазном выглаживании (УЗАВ), представляется возможным воздействовать на характер протекания пластической деформации в ПС, а следовательно, и управлять его прочностными свойствами и обеспечивать на выходе требуемые параметры качества.

Целью настоящего исследования являлось установление количественной взаимосвязи накапливаемой плотности дислокаций в деформируемом объеме ПС с внешними параметрами процессов АВ и УЗАВ.

РЕЗУЛЬТАТЫ

Взаимосвязь интенсивности напряжений с плотностью дислокаций можно представить [2] в виде:

$$\sigma_i(z) = \sigma_{0,2} + \alpha \cdot G \cdot b \cdot \sqrt{\rho(z)}, \qquad (1)$$

где $\sigma_i(z)$ – интенсивность напряжений, Н/мм², действующих на некоторой глубине z, от поверхности мм; $\sigma_{0,2}$ – условный предел текучести; α – коэффициент междислокационного взаимодействия (0,1...0,2[3]); G – модуль сдвига, Н/мм²; b – вектор Бюргерса, мм; $\rho(z)$ – плотность дислокаций на глубине z, 1/мм²

Из (1) можно получить формулу для расчета плотности дислокаций, в зависимости от действующих напряжений:

$$p(z) = \left(\frac{\sigma_i(z) - \sigma_{0,2}}{K}\right)^2, \qquad (2)$$

где $K = \alpha \cdot G \cdot b$.

Для расчета плотности дислокаций на глубине Z по формуле (2) необходимо знать величину напряжений $\sigma_i(z)$, действующих на этой глубине.

Для этого следует установить характер их распределения по глубине поверхностного слоя в результате действия внешней нагрузки. Из приближенного решения упруго-пластической задачи о напряженном состоянии в полубесконечном теле при внедрении шара воспользуемся выражением для расчета интенсивности напряжений, полученное Б.А.Кравченко [4]:

$$\sigma_{i}(z) = \sigma_{0} \cdot \left[\frac{1.5}{1 + \left(\frac{z}{r}\right)^{2}} - (1 + \mu) \cdot \left(\left(1 - \frac{z}{r} \cdot \operatorname{arctg}\left(\frac{r}{z}\right)\right) \right], (3)$$

где σ_0 – нормальное давление на поверхности контакта инструмента с обрабатываемой поверхностью Н/мм²; μ – коэффициент Пуассона ($\mu = 0,3$); r – радиус отпечатка, мм.

Известно и другое выражение для расчета действующих напряжений в поверхностном слое, предложенное Я.И. Барацем [5]:

$$\sigma_i(z) = \sigma_0 \cdot \left[1 - 2 \cdot \left(\frac{z}{r}\right)^2 + \frac{2 \cdot \left(\frac{z}{r}\right)^3}{\sqrt{1 + \left(\frac{z}{r}\right)^2}} \right]. \quad (4)$$

Малышев Владимир Ильич, кандидат технических наук, заведующий кафедрой "Оборудование и технологии машиностроительного производства". E-mail: rsi-tgu@tltsu.ru. Селиванов Александр Сергеевич, старший преподаватель кафедры "Оборудование и технологии машиностроительного производства". E-mail: SelivAS@inbox.ru.

Графические зависимости, построенные по формулам (3), (4) в безразмерном виде

$$\sigma_i / \sigma_0 = f(z / r)$$
, показаны на рис. 1.

Как следует из анализа рис. 1 зависимости напряжений по глубине поверхностного слоя близки к показательному (экспоненциальному) распределению. Для аппроксимации графических зависимостей определим физически обоснованную область существования безразмерной

координаты $\frac{z}{r}$. Полагаем, что напряжения изменяются от максимальных напряжений на поверхности контакта (z = 0) до напряжений, действующих на некоторой глубине упрочненного слоя $z = \Delta$. На глубине Δ интенсивность напряжений $\sigma_i = \sigma_{0,2}$,где $\sigma_{0,2}$ – предел текучести. На основании анализа работ в области

обработки ППД отношение глубины упрочненного слоя к радиусу отпечатка $\frac{\Delta}{r}$, характерное для большинства процессов обработки ППД не превышает 3 [5, 6].

Автор [8] установил, что при контакте сферы с пластическим полупространством впервые пластические деформации возникают на глубине $z \approx 0, 5 \cdot r$.

Аппроксимируя графические зависимости, представленные на рис. 1. в физически обоснованном интервале значений безразмерной координаты $\frac{z}{r}$, изменяющейся от 0,5 до $\frac{z}{r} = \frac{\Delta}{r} = 3$, получим уравнение:

$$\sigma_i(z) = \sigma_0 \cdot \exp(-0.8 \cdot \frac{z}{r}).$$
 (5)

Для расчета интенсивности напряжений в случае наложения на инструмент УЗК и, учитывая дополнительное внедрение инструмента в обрабатываемый материал в результате действия амплитудного напряжения, получим решение:

$$\sigma_{i(V3K)}(z) = (\sigma_0 + \sigma_{\xi}) \cdot \exp(-0.8 \cdot \frac{z}{r_{V3K}}), (6)$$

Рис. 1. Зависимости распределения безразмерного напряжения σ_i / σ_0 побезразмерной координате Z/r: 1 – зависимость по [5]; 2 – зависимость по [4]

где σ_{ξ} – амплитуда напряжения, Н/мм², r_{V3K} – радиус отпечатка при ультразвуковом воздействии инструмента, мм.

Для упрощения расчетов в случае ультразвуковой обработки, учтем только действие максимальных напряжений в поверхностном слое, возникающих в результате максимального дополнительного внедрения инструмента в поверхность на величину $h_{\infty} = \frac{1}{2} \cdot \xi$, где $\xi -$ амплитуда колебаний, мкм.

 $h_{\partial} = \frac{1}{2} \cdot \xi$, где ξ – амплитуда колебаний, мкм. Радиус отпечатка при ультразвуковой обработке r_{y3K} определим из приближенного соотношения, устанавливающего связь радиуса отпечатка с глубиной внедрения инструмента в случае пластического контакта:

$$r = \sqrt{2 \cdot R_u \cdot h} \,. \tag{7}$$

Для случая ультразвуковой обработки выражение (7) запишем в виде:

$$r_{y_{3K}} = \sqrt{2 \cdot R_u \cdot (h + \frac{1}{2} \cdot \xi)}.$$
 (8)

Выполняя некоторые преобразования и учитывая (7) получим:

$$r_{y_{3K}} = r \cdot \sqrt{K_r} , \qquad (9)$$

где $K_r = 1 + \frac{\xi}{2 \cdot h}$ – безразмерный коэффициент,

учитывающий увеличение радиуса отпечатка при ультразвуковой обработке.

Подставляя (5), (6) в (2), а также учитывая (9) и выполняя некоторые преобразования, получим для процесса AB:

$$\rho(z) = \left(\frac{\sigma_{0,2}}{K}\right)^2 \cdot \left[\frac{p_0}{\sigma_{0,2}} \cdot \exp(-0.8 \cdot \frac{z}{r}) - 1\right]^2, \quad (10)$$

для процесса УЗАВ:

$$\rho_{(y_{3K})}(z) = \left(\frac{\sigma_{0,2}}{K}\right)^2 \cdot \left[\frac{(\sigma_0 + \sigma_{\xi})}{\sigma_{0,2}} \cdot \exp(-0.8 \cdot \frac{z}{r \cdot K_r}) - 1\right]^2.$$
(11)

Полученные уравнения характеризуют распределение плотности дислокаций в единице объема по глубине поверхностного слоя в зависимости от распределения в нем действующих напряжений. Однако, они не учитывают накопление плотности дислокаций за конечное время действия нагрузки на единичный микрообъем поверхностного слоя. Для расчета кинетики накопления плотности дислокаций в единице микрообъема поверхностного слоя рассмотрим скорость изменения плотности дислокаций по глубине. Расчет выполним для обычного AB. Продифференцируем выражение (10) по *dz*:

$$\frac{d\rho}{dz} = -2 \cdot \left(\frac{\sigma_{0,2}}{K}\right)^2 \cdot \left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \frac{0.8}{r} \cdot \exp(-0.8 \cdot \frac{z}{r}) \cdot \times \\ \times \left[\left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \exp(-0.8 \cdot \frac{z}{r}) - 1\right]$$
(12)

Уравнение (12) определяет скорость изменения плотности дислокаций по глубине *z*. Знак "минус" в выражении (12) показывает, что с увеличением глубины ПС скорость уменьшается.

За некоторый, бесконечно малый промежуток времени dt, дислокации, двигаясь со скоростью V_{∂} под действием напряжений, переместятся на расстояние dz. Очевидно, что за конечное время обработки t они распространятся на глубину $z = \Delta$ (глубина упрочненного слоя). Таким образом, подставляя в (12) вместо dzвыражение $V_{\partial} \cdot dt$, получим уравнение, характеризующее скорость изменения плотности дислокаций в деформируемом микрообъеме поверхностного слоя на глубине z в зависимости от времени dt действия нагрузки (знак "минус" опускаем):

$$\frac{d\rho}{dt} = 2 \cdot v_{\theta} \cdot \left(\frac{\sigma_{0,2}}{K}\right)^2 \cdot \left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \frac{0,8}{r} \cdot \exp(-0,8 \cdot \frac{z}{r}) \times \\ \times \left[\left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \exp(-0,8 \cdot \frac{z}{r}) - 1 \right]$$
(13)

В (15) неизвестна скорость дислокаций V_{∂} . Принимая во внимание, что скорость дислокаций связана со скоростью пластической деформацией соотношением $V_{\partial} = \dot{\varepsilon} / b \cdot \rho$ [2] ($\dot{\varepsilon}$ – скорость пластической деформации, и учитывая связь скорости $\dot{\varepsilon}$ со скоростью деформирования (выглаживания) v в виде $\dot{\varepsilon} = \varepsilon \cdot (v/L_{\kappa})$ [6], получим формулу для расчета средней скорости движения дислокаций в микрообъеме ПС:

$$v_{\partial} = \frac{\varepsilon \cdot v}{L_{\kappa} \cdot \rho \cdot b}, \qquad (14)$$

где $\mathbf{\varepsilon}$ – относительная деформация, определяемая для обработки выглаживанием из соотношения h_{ss}/R_u ; h_{ss} – глубина внедрения инструмента в обрабатываемый материал, мм; L_{κ} – длина контакта инструмента с обрабатываемой поверхностью, мм.

Подставляя (14) в (13) и, вводя некоторые обозначения, получим следующее выражение для скорости накопления плотности дислокаций в единичном микрообъеме ПС:

$$\frac{d\rho}{dt} = A \cdot \frac{1}{\rho},\tag{15}$$

THE
$$A = 2 \cdot \frac{\varepsilon}{b} \cdot \frac{\upsilon}{L_k} \cdot \left(\frac{\sigma_{0,2}}{K}\right)^2 \cdot \left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \frac{0.8}{r} \times \exp(-0.8 \cdot \frac{z}{r}) \cdot \left[\left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \exp(-0.8 \cdot \frac{z}{r}) - 1\right]$$

Выполняя интегрирование с учетом начальных условий t = 0 и $\rho(t = o) = \rho_{ucx}$, получим формулу для расчета плотности дислокаций в микрообъеме поверхностного слоя на глубине *Z* за время обработки (время воздействия инструментом на единицу площадки контакта)

$$t = \frac{L_{\kappa}}{v} \cdot N$$
, где N – число циклов приложения нагрузки:

$$\rho(z) = \sqrt{3.2 \cdot k \cdot \left(\frac{\varepsilon \cdot N}{r}\right) \cdot \frac{1}{b} \cdot \left(\frac{\sigma_{0,2}}{K}\right)^2 \cdot \left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \exp(-0.8 \cdot \frac{z}{r}) \cdot \left[\left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \exp(-0.8 \cdot \frac{z}{r}) - 1\right] + \rho_{ucc}^2}$$
(16)

Принимая выражения для относительной

деформации
$$\varepsilon = \frac{h_{eu}}{R_u} = \frac{r^2}{2 \cdot R_u^2}$$
 и числа циклов

$$N = \frac{2 \cdot r}{s},$$
учитывая $K = \alpha \cdot b \cdot G$, получим:

$$\rho(z) = \sqrt{\left(\frac{3.2}{\alpha^2 \cdot b^3}\right) \cdot \left(\frac{r}{R_u}\right)^2 \cdot \left(\frac{1}{s}\right) \cdot \left(\frac{\sigma_{0,2}}{G}\right)^2 \cdot \left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \exp(0.8 \cdot \frac{z}{r}) \cdot \left[\left(\frac{\sigma_0}{\sigma_{0,2}}\right) \cdot \exp(0.8 \cdot \frac{z}{r}) - 1\right] + \rho_{uex}}$$
(17)

Для расчета контактного напряжения σ_0 воспользуемся соотношением, полученным в [6]:

$$\sigma_0 = c' \cdot \sigma_{0,2} , \qquad (18)$$

где коэффициент $c' = 2,87 \cdot \left(\frac{HV_0}{HV(z)}\right)_{ucx}$, HV_0 и

HV (*z*) – соответственно значения исходной (после предшествующей обработки) микротвердости на поверхности и в глубине ПС.

С учетом (20), выражение (19) примет вид:

$$\rho(z) = \sqrt{\left(\frac{9.2}{\alpha^2 \cdot b^3}\right) \cdot \left(\frac{r}{R_b}\right)^2 \cdot \left(\frac{1}{s}\right) \cdot \left(\frac{\sigma_{0,2}}{G}\right)^2 \cdot \left(\frac{HV_0}{HV(z)}\right)_{ucx} \cdot \exp(0.8 \cdot \frac{z}{r}) \cdot \left[2.87 \left(\frac{HV_0}{HV(z)}\right)_{ucx} \cdot \exp(0.8 \cdot \frac{z}{r}) - 1\right] + \rho_{ucx}^2}$$
(19)

Из (21), приравняв z = 0, определим поверхностную плотность дислокаций:

$$\rho_{0} = \sqrt{\left(\frac{9,2}{\alpha^{2} \cdot b^{3}}\right) \cdot \left(\frac{r}{R_{u}}\right)^{2} \cdot \left(\frac{1}{s}\right) \cdot \left(\frac{\sigma_{0,2}}{G}\right)^{2} \cdot \left(\frac{HV_{0}}{HV(z)}\right)_{ucx}} \cdot \left[2,87 \cdot \left(\frac{HV_{0}}{HV(z)}\right)_{ucx} - 1\right] + \rho_{ucx}^{2}.$$
(20)

Для процессов механической обработки, предшествующих выглаживанию (точение, шлифование), отношение $\left(\frac{HV_0}{HV(z)}\right)_{ux}$ примерно равно 1 [6]. Анализ зависимости (20) показал, что последний член слагаемого в правой части выражения не оказывает существенного влияния на величину ρ_0 , поэтому представим итоговую формулу в виде:

$$\rho_0 = \left(\frac{4,15}{\alpha \cdot b^{3/2}}\right) \cdot \left(\frac{r}{R_u}\right) \cdot \left(\frac{1}{s}\right)^{1/2} \cdot \left(\frac{\sigma_{0,2}}{G}\right). \quad (21)$$

Сучетом(21)формула(19) примет следующий вид:

$$\rho(z) = \sqrt{0.53 \cdot (\rho_0^2 - \rho_{ucx}^2) \cdot \exp(-0.8 \cdot \frac{z}{r}) \cdot \left[2.87 \cdot \exp(-0.8 \cdot \frac{z}{r}) - 1\right]} + \rho_{ucx}^2.$$
(22)

Упростим выражение (24), разложив экспонециальные члены в ряд и ограничившись первыми двумя членами ряда, а также учитывая, что $(\rho_0 / \rho_{uex})^2 >> 1$, в итоге получим:

$$\rho(z) = \rho_0 \cdot \left(1 - 0.8 \cdot \frac{z}{r}\right). \tag{23}$$

Аналогичным образом получим расчетные соотношения для определения плотности дислокаций, накапливаемых в единице микрообъема ПС при УЗАВ.

С учетом числа циклов приложения нагрузки при ультразвуковой обработке $N = \frac{60 \cdot f}{s \cdot V} \cdot \pi \cdot r_{(ysk)}^2$ получим следующее выражение:

$$\rho(z)_{(yx)} = \sqrt{A \cdot \exp(-0.8 \frac{z}{r \cdot \sqrt{K_r}})} \cdot \left[\left(\frac{\sigma_0 + \sigma_{\xi_{Y3K}}}{\sigma_{0,2}} \right) \cdot \exp(-0.8 \frac{z}{r \cdot \sqrt{K_r}}) - 1 \right] + \rho_{ucx}^2},$$
(24)

где

$$A = \frac{0.3}{(\alpha^2 \cdot b^3)} \cdot \left(\frac{r^3}{R_u^2}\right) \cdot \frac{f}{s \cdot V} \cdot K_r^{\frac{3}{2}} \cdot \left(\frac{\sigma_0 + \sigma_{\xi}}{\sigma_{0,2}}\right) \cdot \left(\frac{\sigma_{0,2}}{G}\right)^2$$

Принимая z = 0 в выражении (24) и учитывая принятое обозначение A, получим формулу для расчета поверхностной плотности дислокаций при ультразвуковой обработке:

$$\rho_{0(yx)} = \sqrt{\frac{0.3}{(\alpha^2 \cdot b^3)}} \cdot \left(\frac{r^3}{R_u^2}\right) \cdot \frac{f}{s \cdot V} \cdot K_r^{\frac{3}{2}} \cdot \left(\frac{\sigma_0 + \sigma_{\xi}}{\sigma_{0,2}}\right) \cdot \left(\frac{\sigma_{0,2}}{G}\right)^2 \cdot \left[\left(\frac{\sigma_0 + \sigma_{\xi}}{\sigma_{0,2}}\right) - 1\right] + \rho_{ucx}^2$$
(25)

Введем безразмерный коэффициент

 $K_{p} = \frac{\sigma_{0} + \sigma_{\xi}}{\sigma_{0}}$, характеризующий отношение

контактного давления при AB иУЗAB. С учетом коэффициента K_p , а также выражения (19), учитывая принятые допущения, формула (25) преобразуется к виду:

$$\rho_{0(yzk)} = \sqrt{\frac{0,86}{(\alpha^2 \cdot b^3)} \cdot \left(\frac{r^3}{R_u^2}\right) \cdot \frac{f}{s \cdot V} \cdot K_r^{\frac{3}{2}} \cdot K_p \cdot \left(\frac{\sigma_{0,2}}{G}\right)^2 \cdot \left[2,87 \cdot K_p - 1\right] + \rho_{ucx}^2}$$

Тогда, учитывая (26) и выполняя ряд преоб-

разований, а также учитывая
$$\left(\frac{\rho_{0(yx)}}{\rho_{ux}}\right)^2 >>1$$
, фор-

мула (25) примет следующий вид:

$$\rho(z)_{(y_{3K})} = \rho_{0(y_{3K})} \sqrt{\exp(-0.8 \frac{z}{r \cdot \sqrt{K_r}}) \cdot \left[\left(\frac{2.87 \cdot K_p}{2.87 \cdot K_p - 1} \right) \cdot \exp(-0.8 \frac{z}{r \cdot \sqrt{K_r}}) - 1 \right]}.$$
(27)

Таким образом, получены аналитические зависимости для расчета плотности дислокаций накапливаемых в единице деформируемого микрообъема ПС в зависимости от параметров процессов АВ и УЗАВ

Используя полученные уравнения для конкретных условий обработки AB и УЗАВ, можно составить критериальные уравнения, обеспечивающие взаимосвязь деформационных процессов, происходящих в поверхностном слое с внешними, управляемыми параметрами обработки.

Работа выполнена при поддержке Федерального агентства по образованию рамках ФЦП "Научные и научно-педагогические кадры России на 2009 – 2013 года" по направлению "Создание и обработка кристаллических материалов" (мероприятие 1.2.2, госконтракт № П990).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ультразвук. Маленькая энциклопедия: [гл. редактор И.П. Голямина]. М.: Советская энциклопедия", 1979. 400 с.
- 2. Старков В.К. Дислокационные представления о резании металлов. М: Машиностроение, 1979. 160 с.
- Одинг И.А. Современные методы испытания металлов. Учебное пособие. М. Металлургиздат, 1944. 299 с.
- Кравченко Б.А. Теория формирования поверхностного слоя деталей машин при механической обработке. Куйбышев: КПтИ, 1981. 90 с.
- Барац Я.И. Финишная обработка металлов давлением. Теплофизика алмазного выглаживания. Саратов: СГТУ. 1982. 164 с.
- 6. Суслов А.Г. Качество поверхностного слоя деталей машин. М.: Машиностроение, 2000. 320 с.
- Торбило В.М. Алмазное выглаживание. М.: Машиностроение, 1972, 104 с.
 Одинцов Л.Г. Финишная обработка деталей алмаз-
- Одинцов Л.Г. Финишная обработка деталей алмазным выглаживанием и вибровыглаживанием. М.: Машиностроение, 1981. 160 с.

ANALYSIS OF PLASTIC DEFORMATION ON THE SURFACE IN THE PROCESS OF ULTRASONIC DIAMOND BURNISHING

© 2010 V. I. Malyshev, A. S. Selivanov

Togliatti State University

In article we develop mathematic model of the evolution defects crystal structure in the process of ultrasonic diamond burnishing.

Ключевые слова: математическая модель, плотность дислокаций; алмазное выглаживание; ультразвук; поверхностный слой.

Vladimir Malyshev, Candidate of Technics, Head at the of Equipment and Technologies machine-building Industry Department. E-mail: rsi-tgu@tltsu.ru. Alexander Selivanov, Senior Lecturer at the Equipment and Technologies machine-building Industry Department. E-mail: SelivAS@inbox.ru