УДК 621.9.025

ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ИЗНОСОСТОЙКИХ ИОННО-ПЛАЗМЕННЫХ ПОКРЫТИЙ НА ОСНОВЕ НИТРИДА ТИТАНА

© 2010 В.П. Табаков, А.В. Чихранов

¹ Ульяновский государственный технический университет ² Технологический институт – филиал Ульяновской государственной сельскохозяйственной академии, г. Димитровград

Поступила в редакцию 07.12.2010

Рассмотрены методики определения механических характеристик ионно-плазменных покрытий. Исследованы микротвердость, модуль упругости первого рода, предел текучести, критический коэффициент интенсивности напряжений и вязкость разрушения износостойких ионно-плазменных покрытий на основе нитрида титана.

Ключевые слова: износостойкие ионно-плазменные покрытия, микротвердость, твердость по Мейеру, модуль упругости первого рода, предел текучести, критический коэффициент интенсивности напряжений, вязкость разрушения

Разработка новых составов и конструкций износостойких ионно-плазменных покрытий может осуществляться только на основе анализа их механических характеристик. К ним в первую очередь относятся твердость (микротвердость для покрытий), модуль упругости первого рода, предел текучести, критический коэффициент интенсивности напряжений, вязкость разрушения.

В качестве материалов износостойких покрытий были выбраны ионно-плазменные покрытия на основе нитрида титана, легированного кремнием, алюминием, цирконием, железом, молибденом и хромом. Покрытия наносились методом конденсации вещества с ионной бомбардировкой (КИБ) при давлении азота в камере 0,53 Па, токе катушек 0,3 А и напряжении 160 – 170 В. Все наносимые покрытия по составу были близки к стехиометрическому. Содержание металлоида в покрытиях приведено в табл. 1.

Определение микротвердости ионно-плазменных покрытий осложняется влиянием на результаты измерения толщины самого покрытия. В работе [1] рекомендуется использовать образцы толщиной не менее 10-кратной глубины отпечатка. В случае с износостойкими ионно-плазменными покрытиями, толщина которых из-за снижения качественных характеристик не может превышать 6...8 мкм, диагональ отпечатка пирамиды Виккерса (как наиболее широко используемой) составляет 3...6 мкм. Применение других инденторов – пирамид Кнуппа, Берковича или бицилиндрического наконечника – не нашло такого широкого применения при измерении твердости. В то же время измерение отпечатков малых размеров требует применения оборудования с высоким разрешением оптики.

В работе [2] для определения истинной твердости покрытий предлагается использовать метод экстраполяции на нулевую глубину проникновения индентора. При этом зависимость твердости системы "покрытие – инструментальная основа" от глубины проникновения индентора описывается выражением:

$$H_{c} = H_{o} + \frac{H_{\mu}^{0} - H_{o}}{1 + \frac{h_{\mu}^{2}}{\alpha h}},$$
 (1)

где $H_{\rm C}$ – твердость системы "покрытие – инструментальная основа", Па; $H_{\rm Q}$ – твердость инструментальной основы, Па; $H_{\rm \mu}^0$ – твердость покрытия, Па; $h_{\rm \mu}$ – глубина проникновения индентора, м; h – толщина покрытия, м; α – коэффициент, м.

Таким образом, измерив твердость системы "покрытие-инструментальная основа" при нескольких нагрузках, зная геометрические размеры индентора и твердость основы H_0 , можно найти коэффициент α и истинную твердость покрытия H_0^{μ} .

Измерение микротвердости системы "покрытие – инструментальная основа" Н_с покрытий по восстановленному отпечатку проводили на приборе ПМТ-3 с использованием пирамиды Виккерса. Обработку экспериментальных данных проводили с помощью математических пакетов Mathcad 2000 Professional и Microsoft Excel 2007.

На рис. 1 в качестве примера показано влияние глубины проникновения индентора в покрытие TiCrN на величину микротвердости системы "покрытие – инструментальная основа".

Табаков Владимир Петрович, доктор технических наук, профессор, заведующий кафедрой "Металлорежущие станки и инструменты". E-mail: vpt@ulstu.ru.

Чихранов Алексей Валерьевич, кандидат технических наук, заведующий кафедрой "Физико-математические и технические дисциплины". E-mail: chihranov@mail.ru

				-		
Покрытие	TiAlN	TiZrN	TiSiN	TiFeN	TiCrN	TiMoN
Содержание легирующего элемента, % мас.	17,55	15,63	1,25	0,85	21,70	13,99

Рис. 1. Зависимость микротвердости системы "покрытие TiCrN – инструментальная основа ВК6" от глубины проникновения индентора: • – экспериментальные данные; — теоретическая зависимость

Используя величину микротвердости H^0_{μ} , полученную из выражения (1), можно определить твердость покрытия по Мейеру НМ по формуле:

$$HM = \frac{H^0_{\mu}}{\sin 68^\circ}.$$
 (2)

Результаты измерений и расчетов микротвердости H_c и H^0_{μ} и твердости по Мейеру HM ионно-плазменных покрытий представлены в табл. 2.

Другой важной механической характеристикой материала является модуль упругости первого рода Е (модуль Юнга). Традиционные методики определения его величины (испытания на растяжение - сжатие, изгиб, кручение) в случае изучения тонких покрытий применить невозможно. В работе [3] для определения модуля упругости первого рода предложена методика, основанная на индентировании поверхности испытуемого материала пирамидой Кнуппа. В результате упругого восстановления размеры отпечатка после снятия нагрузки искажаются по сравнению с размерами самого индентора. Зависимость между модулем упругости первого рода и размерами пирамиды Кнуппа и отпечатка микротвердости имеет вид:

$$\frac{b'}{d'} = \frac{b}{d} - \alpha \frac{H_{K}}{E}, \qquad (3)$$

где b и d – длины меньшей и большей диагона-

лей пирамиды Кнуппа (рис. 2, б) (
$$\frac{b}{d} = \frac{1}{7,11}$$
); b'

и d' – длины меньшей и большей диагоналей отпечатка (рис. 2, б); α – коэффициент (α = 0,45); H_K – микротвердость по Кнуппу.

На рис. 2 показаны отпечаток пирамиды Кнуппа на поверхности покрытия TiN и расчетная схема для определения модуля упругости первого рода.

Модуль упругости первого рода можно определить используя метод кинетической микротвердости [4, 5], заключающийся в построении диаграммы вдавливания (рис. 3).

Покрытие	Микр инструмент	отвердость си альная основа І	ютемы «покры» Н _С , ГПа, п Н	Микро-твердость покрытия Н ⁰ _µ ,	Твердость покрытия по Мейеру НМ,	
	0,49	0,98	1,47	2,06	1110	1 1 1a
TiN	28,42	27,84	27,04	26,50	29,16	31,45
TiAlN	37,59	36,67	36,01	35,08	38,39	41,40
TiZrN	37,98	37,37	36,44	35,62	38,85	41,91
TiSiN	33,93	33,09	32,31	31,66	34,67	37,39
TiFeN	32,31	31,61	30,95	29,26	33,18	35,79
TiCrN	33,62	32,99	32,21	31,29	34,50	37,21
TiMoN	34,09	33,49	32,43	31,91	34,90	37,64

Таблица 2. Механические свойства ионно-плазменных покрытий

Примечание: микротвердость инструментальной основы (твердого сплава ВК6) – 17,05 ГПа

Величина модуля упругости определяется по кривой разгружения по формуле [5]:

$$E = \frac{1 - v^2}{\frac{c_{\phi} \sqrt{A_{\text{max}}}}{\left(\frac{dP}{dh}\right)} - \frac{1 - v_{_{\text{H}H}}^2}{E_{_{\text{H}H}}}}, \quad (4)$$

где ν – коэффициент Пуассона материала покрытия; $E_{_{\rm HH}}$, $\nu_{_{\rm HH}}$ – модуль упругости первого рода и коэффициент Пуассона материала индентора ($E_{_{\rm HH}}=950\Gamma\Pi a$; $\nu_{_{\rm HH}}=0,07$); $c_{_{\rm Q}}$ – постоян-

ная (для пирамиды Виккерса с_ф=1,142), $\left(\frac{dP}{dh}\right)$ –

производная нагрузки по глубине проникновения индентора в начале кривой разгружения, Н/м; А_{тах} – максимальная площадь отпечатка, м².

Максимальная площадь отпечатка A_{max} определяется по формулам [5]:

где k_d – коэффициент формы индентора (для пирамиды Виккерса $k_d = 5$).

Результаты исследований механических характеристик при испытании износостойких покрытий методом кинетической микротвердости и индентированием пирамидой Кнуппа представлены в табл. 3.

Из полученных результатов видно, что оба метода измерения модуля упругости первого рода дают близкие результаты. Расхождение между полученными результатами измерений не превышает 7%.

Одной из основных механических характе-

Рис. 2. Фотография отпечатка (а), полученного на покрытии TiN при индентировании пирамидой Кнуппа при нагрузке 2,55 H и расчетная схема для определения величины модуля упругости первого рода E (б).

Инструментальная основа – твердый сплав ВК6

Рис. 3. Диаграмма вдавливания [5]: 1 – кривая нагружения; 2 – кривая разгружения; Р_{max} – максимальная нагрузка; h_{max} – максимальная глубина проникновения индентора; h_r – остаточная глубина проникновения индентора при снятии нагрузки

ристик материала покрытия является предел текучести. Для объемных материалов его определение основано на построении диаграмм растяжения или сжатия. Для тонких хрупких покрытий, которые к тому же никак нельзя отделить от инструментальной основы, этот метод применить невозможно. В этом случае предел текучести материала покрытия можно определить косвенными методами, основанными на связи предела текучести с твердостью и модулем упругости первого рода [4, 5].

В работе [4] для определения величины предела текучести σ_τ твердых малопластичных материалов предложена зависимость, полученная Р. Хиллом в виде:

$$\frac{q}{\sigma_{T}} = \frac{2}{3} \left[1 + \frac{3}{3 - A} \ln \frac{3}{A + 3B - AB} \right]$$

$$A = (1 - 2\nu) \frac{\sigma_{T}}{E} , \qquad (6)$$

$$B = (1 + \nu) \frac{\sigma_{T}}{E}$$

где q – среднее контактное давление, Па; v – коэффициент Пуассона.

Для покрытия TiN коэффициент Пуассона, согласно работе [6], равен 0,29. Учитывая, что легирование материалов не приводит к существенному изменению его величины [7], это значение можно использовать и для покрытий сложного состава.

Величину контактного давления q в формуле (6) согласно рекомендациям работы [4] приближенно можно взять равной твердости по Мейеру НМ. Однако для твердых материалов различие между этими значениями может достигать значительной величины, что может при-

Покрытие	P _{max} , H	h _{max} , мкм	h _r , мкм	$ \begin{pmatrix} \frac{d P}{d h} \\ M H/M \end{pmatrix}, $	Е*, ГПа	Е**, ГПа
TiN		1,30	0,65	1,538	307	311
TiAlN		1,26	0,63	1,587	369	347
T iZ rN		1,25	0,62	1,587	379	393
T i S iN	0,5	1,28	0,64	1,563	350	337
TiFeN		1,29	0,65	1,563	332	312
TiCrN		1,28	0,63	1,538	344	-
TiMoN		1,28	0,65	1,587	358	-

Таблица 3. Результаты исследований механических характеристик при испытании износостойких покрытий методом кинетической микротвердости* и индентированием пирамидой Кнуппа**

вести к большой погрешности при расчете предела текучести. Учитывая вышесказанное и используя данные работы [8] по измерению твердости, в Mathcad 2000 Professional была получена регрессионная зависимость между твердостью по Мейеру НМ и средним контактным давлением q:

$$\frac{q}{HM} = 1 - 0.23 \left(\frac{HM}{E}\right)^{0.5} + 4.356 \left(\frac{HM}{E}\right) - 27.233 \left(\frac{HM}{E}\right)^{1.5} + 45.586 \left(\frac{HM}{E}\right)^2 - 24.539 \left(\frac{HM}{E}\right)^{2.5}.$$
 (7)

Экспериментальная проверка полученной зависимости (7) показала хорошее соответствие между расчетными и экспериментальными данными (рис. 4).

На основе полученной зависимости (7) и экспериментальных значений твердости HM (табл. 2) были рассчитаны значения контактного давления q и предела текучести $\sigma_{\rm r}$ для различных износостойких покрытий (табл. 4).

Из представленных данных видно, что леги-

рование покрытий приводит к увеличению значения предела текучести на 17...30%. Это связано с повышением сопротивления упруго-пластической деформации сложных растворов замещения на основе нитрида титана, что косвенно подтверждается также увеличением твердости и модуля упругости первого рода покрытий.

В механике разрушения для оценки сопротивления хрупких материалов процессам развития трещины используют понятие критического коэффициента интенсивности напряжений К_{IC}. Выражение для его определения получено на основании математического анализа распространения в непрерывной упругой среде бесконечно острой трещины при абсолютно хрупком разрушении материала, т. е. при условии, что у вершины трещины отсутствует проявление его пластических свойств. В то же время в работах [9-11] отмечается, что хрупкому разрушению реальных материалов всегда предшествует определенная пластическая деформация, возникающая около ее вершины. Величина зоны пластических деформаций и ее интенсивность зависят прежде всего от механических свойств материала. Для учета запаса пластичности материала при развитии трещины используют понятие вязкости разрушения K_{ICII} . При этом для расчета величин K_{IC} и К_{ІСП} применяют одно и то же уравнение [9, 12].

Критический коэффициент интенсивности напряжений $K_{\rm IC}$, согласно работе [9], определяется по формуле:

$$K_{\rm IC} = \sqrt{\frac{2E\gamma}{1-\nu^2}},\qquad(8)$$

где γ – поверхностная энергия твердого тела, Дж/м².

Вязкость разрушения К_{ІСП} можно определить как [12]:

$$K_{\rm ICII} = \sqrt{\frac{2E\gamma_{\rm s}}{1-\nu^2}},\qquad(9)$$

где γ_s – эффективная поверхностная энергии, Дж/м², равная сумме поверхностной энергии твердого тела γ и удельной работы пластичес-

Покрытие	q, ГПа	σ _τ , ΓΠα	а, нм	С, ММ	C/c	Критический коэффициент интенсивности напряжений К _{IС} , МПа·м ^{1/2}	Вязкость разрушения К _{IСП} , МПа·м ^{1/2}
TiN	26,25	9,53	0,4235		2,49	3,39	12,29
TiAlN	33,20	12,26	0,4230		2,62	4,07	14,77
TiZrN	33,66	12,38	0,4293	0,126	2,75	4,22	14,44
TiSiN	30,55	11,17	0,4256		2,45	3,88	14,46
TiFeN	31,01	11,61	0,4234		2,92	3,67	12,59
TiCrN	32,22	11,80	0,4224		2,88	3,80	13,04
TiMoN	32,79	11,26	0,4251		2,63	3,96	13,84

Таблица 4. Механические свойства износостойких покрытий

кой деформации материала у конца трещины γ_{nn} .

При исследовании прочностных свойств относительно хрупких материалов более часто используют величину критического коэффициента интенсивности напряжений К_{ис}. Использование такой характеристики объясняется простотой ее расчета. Кроме того, считается, что вклад работы γ_{пп}, затрачиваемой на пластическую деформацию материала у конца трещины, невелик и можно считать, что $\gamma_s \approx \gamma$ (или, соответственно, $K_{ICII} \approx K_{IC}$). Такой подход был использован в работе [13] при оценке трещиностойкости износостойких покрытий. В то же время экспериментальные данные показывают [9, 14], что величина К_{IC} дает заниженное значение прочности даже для относительно хрупких материалов, где пластические деформации невелики.

Для определения критического коэффициента интенсивности напряжений $K_{\rm IC}$ в работе [14] предложена энергосиловая модель разрушения межатомных связей в кристалле, исходя из силового критерия С. Инглиса. Согласно работе [14], величина $K_{\rm IC}$ равна:

$$K_{\rm IC} = \frac{\sigma_{\rm reop}}{2K} \sqrt{\frac{a\pi}{2(1-v^2)}},$$
 (10)

где а – период кристаллической решетки, м; σ_{reop} – теоретическая прочность кристалла, Па, К – коэффициент, учитывающий нелинейность эффектов для предельно напряженного состояния в конце трещины и среду ее распространения и приблизительно равный 0,107.

Величину σ_{теор} можно определить как [15]:

$$\sigma_{\text{reop}} = \frac{E}{4\pi(1-\nu^2)}.$$
 (11)

Подставляя выражение (11) в (10), получим:

$$K_{\rm IC} = \frac{E}{8K(1-\nu^2)} \sqrt{\frac{a}{2\pi(1-\nu^2)}} \,.$$
(12)

Как видно из зависимости (12), для расчета критического коэффициента интенсивности напряжений необходимо знать размеры периода кристаллической решетки материала покрытий. Измерение величины а проводили на дифрактометре "ДРОН-ЗМ" с использованием фильтрованного Си_{кб}-излучения. Полученные результаты представлены в табл. 4.

При разрушении покрытий, трещины возникающие в них, распространяются в направлении, перпендикулярном границе раздела "покрытие – инструментальная основа". Для таких трещин (трещины Палмквиста [4]) величину вязкости разрушения К_{ІСП} можно определить по формуле [4]:

$$K_{ICII} = 0.035\sigma_{T}\sqrt{c}\left(\frac{E}{\sigma_{T}}\right)^{0.4}\left(\frac{C}{c}-1\right)^{-\frac{1}{2}},$$
 (13)

где с – размер отпечатка, м; С – длина трещины Палмквиста, м.

Схема образования трещин Палмквиста при индентировании покрытий пирамидой Виккерса показана на рис. 5, а на рис. 6 представлена фотография такого отпечатка, полученного на покрытии TiAlN.

Результаты расчета критического коэффициента интенсивности напряжений К_{IC} и вязкости разрушения К_{ІСП} для различных покрытий представлены в табл. 4. Как видно из данных табл. 4, величина вязкости разрушения К_{исп} больше критического коэффициента интенсивности напряжений К_{IC} в 3,4...3,7 раза. Это свидетельствует об упруго-пластическом разрушении материала покрытия при развитии в нем трещин. Поэтому для расчета сопротивления процессам развития трещины материалов износостойких ионно-плазменных покрытий на основе нитрида титана необходимо использовать величину вязкости разрушения К_{ІСП}, а не критического коэффициента интенсивности напряжений К_{IC}. Последний может лишь служить для грубой предварительной

Рис. 5. Схема образования трещин Палмквиста при индентировании пирамидой Виккерса [4]

оценки на начальном этапе выбора материала износостойкого покрытия.

Следует также отметить, что для покрытий сложного состава наблюдается увеличение как значения критического коэффициента интенсивности напряжений $K_{\rm IC}$ (на 8...25%), так и величины вязкости разрушения $K_{\rm IC\Pi}$ (на 2...20%). Это в первую очередь связано с изменением таких механических характеристик материалов покрытий, как твердость по Мейеру HM, модуля упругости первого рода E и предела текучести $\sigma_{\rm T}$.

СПИСОКЛИТЕРАТУРЫ

- Колмаков А.Г., Терентьев В.Ф., Бакиров М.Б. Методы измерения твердости. Справочное издание. М.: Интермет Инжиниринг, 2000. 128 с.
- Korsunsky A.M., McGurk M.R., Bull S.J., Page T.F. On the hardness of coated systems // Surface and Coatings Technology 99, 1998. P. 171 – 183.
- Riester L., Bell T.J., Fischer-Cripps A.C. Analysis of depthsensing indentation tests with a Knoop indenter // J. Mater. Res. 2001. № 6. P. 1660 – 1665.
- 4. *Булычев С.И., Алехин В.П.* Испытание материалов непрерывным вдавливанием индентора. М.: Машиностроение, 1990. 224 с.
- 5. Giannakopoulos A.E., Suresh S. Determination of

Рис. 6. Фотография отпечатка, полученного на покрытии TiAlN при индентировании пирамидой Виккерса при нагрузке 600H

elastoplastic properties by instrumented sharp indentation // Scripta Materialia. 1999. №10. P. 1191 – 1198.

- Барвинок В.А. Управление напряженным состоянием и свойства плазменных покрытий. М.: Машиностроение, 1990. 384 с.
- Штремель М.А. Прочность сплавов. Часть II. Деформация: учебник для вузов. М.: МИСИС, 1999. 527 с.
- Булычев С.И. Разработка теоретических основ неразрушающегося контроля физико-механических свойств и структуры материалов методом кинетического индентирования. Дисс. ... докт. тех. наук: 05.01.12. М., 2000. 252 с.
 Кремнев Л.С. Критический коэффициент интенсивнос-
- Кремнев Л.С. Критический коэффициент интенсивности напряжения и вязкость разрушения высокопрочных инструментальных материалов // Металловедение и термическая обработка металлов. 1996. №1. С. 30 – 35.
- Партон В.З., Морозов Е.М. Механика упругопластического разрушения. М.: Наука, 1985. 504 с.
- 11. Пестриков В.М., Морозов Е.М. Механика разрушения твердых тел: курс лекций. СПб.: Профессия, 2002. 320 с.
- 12. *Черепанов Г.П.* Механика хрупкого разрушения. М.: Наука, 1974. 640 с.
- Табаков В.П., Смирнов М.Ю., Циркин А.В. Работоспособность торцовых фрез с многослойными износостойкими покрытиями. Ульяновск: УлГТУ, 2005. 151 с.
- Мешков Ю.Я. Энергетический критерий Гриффитса в микро- и макромеханике разрушения хрупких тел // Металловедение и термическая обработка металлов. 1996. №1. С. 25 – 30.
 Колбасников Н.Г. Теория обработки металлов давле-
- Колбасников Н.Г. Теория обработки металлов давлением. Сопротивление деформации и пластичность. СПб.: СПбГТУ, 2000. 314 с.

DETERMINATION OF THE MECHANICAL CHARACTERISTICS OF WEAR-RESISTANT ION-PLASMA COATINGS BASED ON TITANIUM NITRIDE

2010 V.P. Tabakov¹, A.V. Chihranov²

¹Ulyanovsk State Technical University

²Technological Institute - Branch of the Ulyanovsk State Agricultural Academy, Dimitrovgrad

The techniques of determining the mechanical properties of ion-plasma coatings are considered. Investigated microhardness, modulus of elongation, yield stress, critical stress intensity factor and fracture toughness wear-resistant ion-plasma coatings based on titanium nitride

Key words: wear-resistant ion-plasma coatings, microhardness, hardness Meyer, modulus of elongation, yield stress, critical stress intensity factor, fracture toughness.

Vladimir Tabakov, Doctorof Technics, Professor, Head at the Metal-Cutting Machines and Tools Department. E-mail: vpt@ulstu.ru. Alexey Chihranov, Candidate of Technics, Head at the Physico-Mathematical and Technical Subjects Department. E-mail: chihranov@mail.ru