УДК 69:691.4

ОСОБЕННОСТИ ПОДХОДА ПРИ ОПРЕДЕЛЕНИИ РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В ПРЕССУЕМЫХ ОБРАЗЦАХ ИЗ ПОРОШКООБРАЗНЫХ СМЕСЕЙ

© 2010 А.Н. Потапенко, Н.С. Требукова, А.Н. Семернин

Белгородский государственный технологический университет им. В.Г. Шухова

Поступила в редакцию 21.11.2010

Рассмотрен подход, связанный с определением областей с неравномерной плотностью в прессуемых образцах из порошкообразных смесей на основе вычислительных экспериментов и с возможностью его применения для проектирования пресс-форм.

Ключевые слова: прессование, плотность, математическое моделирование, автоматизированная система

В процессе производства изделий из порошкообразных смесей применяется прессование полуфабрикатов [1]. Однако в настоящее время не существует прямых методов экспериментальной оценки качества получаемого при прессовании полуфабриката, причём в первую очередь невозможно выполнить экспресс-анализ на основе экспериментальных исследований распределения плотности ρ в горизонтальном и вертикальном сечениях прессуемого образца, так как это распределение зависит от многих факторов, в том числе и от способа прессования. В целом имеется проблема определения физического параметра в процессе прессования полуфабрикатов из порошкообразных смесей в виде некоторой картины распределения плотности в них. Если бы имелась возможность определения этих данных, то соответственно они бы позволили судить о прочности полученных полуфабрикатов ещё до начала процесса термообработки, а также давали бы возможность проектировать пресс-формы с возможностью управления этими параметрами. Среди существующих способов прессования отметим основные три, при которых порошкообразная смесь уплотняется: помощью прессов с односторонним давлением; с помощью прессов с двухсторонним давлением; с помощью прессов с двухсторонним давлением, прикладываемым последовательно.

Потапенко Анатолий Николаевич, кандидат технических наук, профессор кафедры электротехники и автоматики. E-mail: potapenko@intbel.ru

Требукова Надежда Семеновна, старший преподаватель кафедры электротехники и автоматики. Email: ntrebukova@yandex.ru

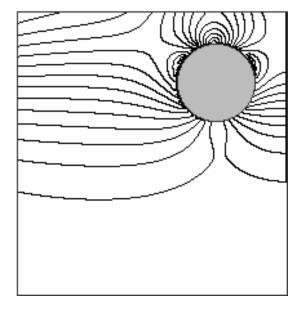
Семернин Андрей Николаевич, кандидат технических наук, доцент кафедры электротехники и автоматики. E-mail: SAN@intbel.ru

Известно, что однородное уплотнение достигается только при всестороннем постоянном прессовании, что в теоретическом плане возможно только для жидкости. Анализ известных и специально поставленных экспериментальных исследований [2] распределения плотности ρ при одностороннем прессовании с учётом неподвижной формы показывает, что распределение ρ в целом не равномерно в вертикальном сечении образца с учётом приложения давления в этом же направлении, причём экспериментальные данные при одностороннем прессовании показывают, что распределение ρ может быть неравномерно не только в вертикальном сечении образца, но и в горизонтальном его сечении. Эти результаты о распределении плотности образца при одновременном двухстороннем давлении и с учётом неподвижной формы показывают, что распределение ρ более равномерно в вертикальном сечении образца, чем при одностороннем прессовании.

Цель данной работы заключается в разработке подхода для определения распределения плотности в сечениях прессуемых образцов из различных порошкообразных смесей, зависящей от многих факторов, в том числе и от способа прессования.

Существует подход [3, 4], позволяющий с помощью математического моделирования определять распределения плотности в горизонтальных и вертикальных сечениях образцов, полученных из порошкообразных смесей. С помощью вычислительного эксперимента имеется возможность получения картины распределения плотности в образцах, что позволяет в целом судить о их прочности. На основе подхода [3] были выполнены исследования

распределения плотности образцов при одностороннем и двухстороннем давлениях с неподвижной формой для получения изделий с более равномерной плотностью с использованием следующего уравнения


$$\vartheta^{2} \frac{\partial^{2} \psi}{\partial x^{2}} + v \frac{\partial^{3} \psi}{\partial t \partial x^{2}} + 2\alpha \left(\vartheta^{2} \frac{\partial \psi}{\partial x} + v \frac{\partial^{2} \psi}{\partial t \partial x} \right) - \frac{\partial^{2} \psi}{\partial t^{2}} = 0$$
(1)

где $g^2 = E/\rho$, E — модуль упругости смеси; ρ — плотность данной смеси; ψ — сжатие смеси в сечении x в момент времени t; $v = \eta/\rho$, причём η — коэффициент динамической вязкости смеси; $2\alpha = f\xi/R$, причём f — коэффициент трения смеси о стенки пресс-формы; ξ — коэффициент бокового распора порошкообразной смеси; R — гидравлический радиус пресс-формы.

Для учета внешнего воздействия на порошкообразную смесь при перемещении штампа $h_1(t)$ под воздействием усилия прессования происходит сжатие смеси $\psi_1(t)$, изменяющееся во времени, например, по S-образной характеристике. При этом принимается следующее нестационарное условие в виде зависимости [3]:

$$\psi_1(t) = \psi_0 \left(1 - \left(1 + \frac{t}{\tau_0} \right) e^{-t/\tau_0} \right), \tag{2}$$

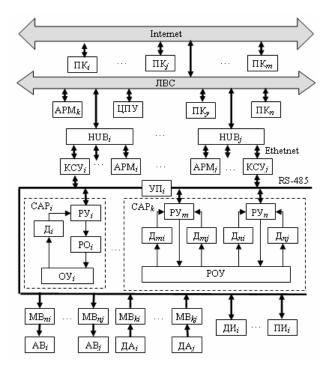

где τ_0 — постоянная времени, характеризующая процесс изменения $\psi_1(t)$ во времени; ψ_0 — максимальное сжатие смеси. Результаты расчёта при прессовании силикатных образцов приведены на рис. 1 с учётом данных [3].

Рис. 1. Распределение линий равного уровня ρ^* (представлено в относительных величинах)

Анализ результатов (рис. 1) показывает, что асимметричное расположение в верхней части пресс-формы вкладыша цилиндрической формы приводит к существенной концентрации ρ^* в различных направлениях после прессования образца. При этом наблюдаются характерные зоны распределения плотности по бокам вкладыша и в его верхней и нижней частях. Такого типа концентрации плотности по различным сторонам вкладыша при последующей термообработке могут привести к появлению трещин, а возможно даже к разрушению образца с учётом зоны распределения плотности по вкладышу вблизи его боковой поверхности. Таким образом, имеется возможность определения областей с неравномерной плотностью при прессовании полуфабрикатов, особенно это важно для элементов приборостроительной промышленности, например, при прессовании различных элементов для приёмопередающих устройств, телекоммуникационных систем и др. Однако определить распределение плотности, например, в керамических полуфабрикатах после прессования в вертикальных и горизонтальных сечениях весьма сложно, причём как с помощью экспериментальных исследований, так и на основе вычислительных экспериментов. Это связано с тем, что для вычислительных экспериментов не определены постоянные коэффициенты, входящие в уравнение (1). Коэффициенты предлагается определять и корректировать в процессе производства на основании опытных данных. Для получения такой информации необходимо использовать современные подходы автоматизированного мониторинга исследуемых процессов на базе автоматизированных систем нижнего уровня, входящих в состав многоавтоматизированной уровневой управления технологическим процессом (АСУТП) производства керамических изделий.

Структура АСУТП (рис. 2) среднего и верхнего уровней содержит контроллеры среднего уровня КСУ_i, ... КСУ_i, связанные с контроллерами регулирующих устройств РУ_і, ..., PY_n нижнего уровня на основе интерфейса RS-485, устройства для «разветвления» сигналов в сегменте сети HUB_i , ..., HUB_i . С учётом территориально-распределённого оборудования при производстве керамических изделий в АСУТП используется интеграция различных сетей, например, на базе RS-485 и технологий Ethernet локальной вычислительной (ЛВС). В структуре системы имеются автоматизированные рабочие места (АРМ) специалистов предприятия АРМ_к и операторов управления распределёнными объектами $APM_i,...,$ APM_j (туннельным сушилом, туннельной печью, гидравлическим прессом и др.), центральный пульт управления ЦПУ на базе сервера с APM диспетчера, персональные компьютеры $\Pi K_y,...,\Pi K_n$ в сети ЛВС и персональные компьютеры $\Pi K_i,...,\Pi K_m$ в сети Internet с учётом возможного удалённого доступа к информации $ACYT\Pi$ и др.

Рис. 2. Блок-схема АСУТП производства керамических изделий

Структура АСУТП нижнего уровня содержит следующие элементы, входящие в состав локальных систем автоматического регулирования CAP_i ,..., CAP_k (см. рис. 2): датчики ты управления OY_i (для процесса производства шамотного огнеупорного кирпича - это туннельное сушило, туннельная печь, гидравлический пресс двойного действия (РОУ) и др.), регулирующие устройства $PY_{i}, ..., PY_{n}$ на базе контроллеров, регулирующие органы РО_і. В автоматизированной системе предусмотрено управление типа старт/стоп агрегатами или оборудованием $AB_i,..., AB_j$ системы через модули ввода/вывода аналоговых и/или дискретных сигналов $MB_{ni}, ..., MB_{ni}$, а также применение автоматизированной системы мониторинга на базе аналоговых датчиков технологических параметров $ДA_{i},..., ДA_{i}$ через модули ввода/вывода аналоговых сигналов $MB_{ki}, ..., MB_{kj}$ «интеллектуальных» датчиков ДИ, и «интеллектуальных» измерительных приборов ПИ_і и др. В структуре АСУТП на нижнем уровне используется промышленная сеть на основе RS-485, в которой установлены усилителиповторители сигнала У Π_i .

На нижнем уровне АСУТП для исследования особенностей процесса прессования керамических изделий из порошкообразных смесей в структуру САР включаются дополнительные датчики для экспериментальных исследований в виде быстродействующих оптических линейных энкодеров ДИ, и датчиков давления ДИ_т типа «Метран-150». Датчики давления ДИ_т входят соответственно в контуры регулирования РУ_т верхнего прессующего механизма и контуры регулирования РУ_п нижнего прессующего механизма гидравлического пресса. Эти датчики установлены в гидравлических системах низкого и высокого давления соответственно для перемещения верхнего и нижнего штампов. Линейные энкодеры ДИ_к установлены с учетом перемещения верхней траверсы со штампом и прессующей траверсы с нижним штампом относительно неподвижных колонн гидравлического пресса. Первичная информация с линейных энкодеров $ДИ_k$ и датчиков давления ДИ_т, являющихся датчиками «интеллектуального» типа, поступает в автоматизированного мониторинга систему АСУТП.

Экспериментальные исследования в натурных условиях на базе автоматизированных систем нижнего уровня АСУТП, на основе «интеллектуальных» датчиков технологических параметров, осуществляющих непрерывно или с минимальным интервалом усреднения измерение параметров процесса, а затем с помощью контроллеров КСУ, осуществляющих в заданном цикле интервала усреднения круглосуточный сбор измерительных данных с этих датчиков, накопление, обработку и передачу их в систему автоматизации, будет получена информация, необходимая для углублённого исследования формуемых с помощью гидравлических прессов керамических изделий из порошкообразных смесей, а также для определения и коррекции коэффициентов в уравнении (1). Следует отметить, что при прессовании полуфабрикатов необходимо учитывать способ прессования. Результаты [3] показали, что характер распределения ρ более равномерен в вертикальном сечении образца при двухстороннем давлении, прикладываемом последовательно, чем при одностороннем, т.е. такой метод прессования является наиболее предпочтительным. Полученные результаты согласуются с экспериментальными данными [2].

Выводы: для получения практических результатов с учётом особенностей процессов прессования полуфабрикатов необходимо развивать математическую модель [3] в направлении её применения для различных порошкообразных смесей. В настоящее время известны постоянные коэффициенты только для прессования силикатных изделий. Важно разработать методику экспериментального определения распределения ρ в образцах с выходом на вычислительный эксперимент.

СПИСОК ЛИТЕРАТУРЫ

1. Зейфман, М.И. Изготовление силикатного кирпича и силикатных ячеистых материалов / М.И. Зейфман. – М.: Стройиздат, 1990. 184 с.

- Hulsenderg, D. Maschinelle Formgebung von Keramic / D. Hulsenderg, H-G. Kruger, T. Rothis, G. Ferriere. VEB, Deutscher Verlag für Grundstoffindustrie, Leipzig, 1980. (Механизация процессов формования керамических изделий/ Д. Хюльзенберг, X-Г. Крюгер, Т. Рётиг, Г. Ферриер. М.: Стройизд., 1984. 263 с.
- 3. Potapenko, A.N. Modeling and Optimization Possibilities for the Process of Compaction of Objects with Cavities / A.N. Potapenko, A.G. Titov, Potapenko E.A. // In a book: Materials and Processing Trends for PM, Components in Transportation. Munich, Germany: EPMA, 2000. V. 1. P. 102-110.
- 4. *Ломакин, В.В.* Автоматизация производства силикатного кирпича на базе программно-аппаратных комплексов управления / Автореф. дис. канд. тех. наук: спец. 05.13.06. Белгород, 2002. 18 с.

FEATURES OF THE APPROACH AT DEFINITION OF DENSITY DISTRIBUTION IN PRESSED SAMPLES FROM POWDER MIXTURES

© 2010 A.N. Potapenko, N.S. Trebukova, A.N. Semernin

Belgorod State Technological University named after V.G. Shuhov

The approach linked with the definition of areas with non-uniform density in pressed samples from powder mixtures on the basis of computing experiments and with an opportunity of its application for designing the mold tools is considered.

Key words: pressing, density, mathematical modeling, automized system

Anatoliy Potapenko, Candidate of Technical Sciences, Professor at the Department of Electrical Engineering and Automation. E-mail: potapenko@intbel.ru

Nadezhda Trebukova, Senior Teacher at the Department of Electrical Engineering and Automation. E-mail: ntrebukova@yandex.ru Andrey Semernin, Candidate of Technical Sciences, Associate

Professor at the Department of Electrical Engineering and Automation.

E-mail: SAN@intbel.ru