УДК 581.192.615.32

ХИМИЧЕСКИЙ АНАЛИЗ РАСТЕНИЙ ANTHYLLIS VULNERARIA L., ПРОИЗРАСТАЮЩИХ НА ЕВРОПЕЙСКОМ СЕВЕРО-ВОСТОКЕ РОССИИ

© 2011 Д.М. Шадрин, Я.И. Пылина, С.О. Володина, В.В. Володин

Институт биологии Коми научного центра УрО РАН, г. Сыктывкар

Поступила в редакцию 04.05.2011

В растениях *Anthyllis vulneraria* L. определено содержание суммы тритерпеновых гликозидов, производных олеаноловой кислоты. Установлено, что в надземной части *A. vulneraria* L. наибольшее количество тритерпеновых гликозидов содержится в листьях в фазу бутонизации и в семенах. Качественный анализ белка позволил выявить наличие 16 протеиногенных аминокислот, 9 из которых являются незаменимыми. Растения из природных популяций богаты макро- и микроэлементами: магнием, железом и марганцем. Содержание алюминия и тяжелых металлов не превышает ПДК.

Ключевые слова: Anthyllis vulneraria L., тритерпеновые гликозиды, микроэлементы, аминокислоты

Язвенник ранозаживляющий (A. vulneraria L.) является ценным кормовым растением [5] и используется в традиционной медицине при нарушении обмена веществ, лечении воспалений, угревой сыпи и ускорения заживления ран, а также как компонент фиточая при интоксикации организма [8]. Установлено, что спиртовой экстракт A. vulneraria препятствует процессу размножения вируса герпеса 1 и вируса полиомиелита 2 в условиях in vitro [8]. Имеются сведения об использовании A. vulneraria в косметологии для увеличения роста волос [5]. Недавними исследованиями показано, что A. vulneraria содержит тритерпеновые гликозиды, производные олеаноловой кислоты [9], однако сведения об их количественном содержании в растениях A. vulneraria, произрастающих на европейском северовостоке России, отсутствуют. Также отсутствуют сведения о его аминокислотном и микроэлементном составе. В связи с этим представлялось интересным проведение химического анализа растений A. vulneraria, произрастающих на европейском северо-востоке России.

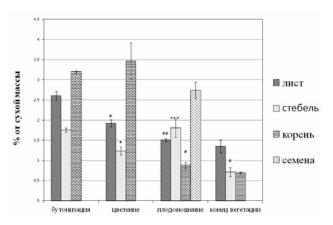
На территории флоры европейского северо-востока России *А. vulneraria* произрастает в бассейнах рек Северной Двины, Кулоя, Онеги [7]. В Республике Коми *А. vulneraria* встречается по обочинам дорог и на железнодорожных насыпях, возможно, является заносным. Нами были

Шадрин Дмитрий Михайлович, младший научный сотрудник лаборатории биохимии и биотехнологии. Email: shdima@ib.komisc.ru

Пылина Яна Игоревна, аспирантка. E-mail: pylina@ib.komisc.ru

Володина Светлана Олеговна, кандидат биологических наук, старший научный сотрудник лаборатории биохимии и биотехнологии. E-mail: volodina@ib.komisc.ru

Володин Владимир Витальевич, доктор биологических наук, заведующий лаборатории биохимии и биотехнологии. E-mail: volodin@ib.komisc.ru


обнаружены несколько его ценопопуляций (ЦП). ЦП-1 — в Ухтинском районе Республики Коми на 2-м км от поворота на 260-ом км с федеральной трассы Сыктывкар-Ухта на пос. Боровской. ЦП-2 — в Ухтинском районе Республики Коми вдоль федеральной трассы Сыктывкар-Ухта на 280 км вблизи моста через р. Ухта. ЦП-3 — в окрестостях г. Великий Устюг Вологодской области вдоль берега р. Сухона. ЦП-4 - в окресностях г. Вельск Архангельской области, вдоль федерального шоссе Москва — Архангельско.

Поскольку известно, что методы определения сапонинов основаны на физико-химических свойствах их агликонов, как наиболее реакционно способных и фармакологически активных структурных фрагментов, то в качестве стандартного образца при количественном определении тритерпеновых сапонинов язвенника ранозаживляющего нами была использована олеаноловая кислота, являющаяся их агликоном. В основу количественного определения тритерпеновых сапонинов в образцах A. vulneraria в пересчете на олеаноловую кислоту положен метод прямой спектрофотометрии. Данный метод позволяет количественно определить всю сумму тритерпеновых гликозидов, производных олеаноловой кислоты независимо от числа и структуры углеводных остатков в составе их молекул. Ранее этот метод был опробован на примере определения сапонинов в корневищах аралии маньчжурской [3].

В связи с возможностью использования *А. vulneraria* в качестве сырья для получения тритерпеновых гликозидов нами было изучено содержание этих соединений в различных частях растений, собранных в ЦП-1. На анализ отбирались листья, стебли, корни на различных фазах развития: бутонизации, цветения, плодоношения и конца вегетации. Анализ растений *А. vulneraria*, отобраных в фазу бутонизации и цветения,

цветения, показал, что наибольшее содержание суммы три-терпеновых гликозидов (СТГ) в пересчете на олеаноловую кислоту содержится в корнях И составляет 3,20% И 3.46%. соответственно по фазам. Однако массовая доля корней в массе целого растения очень мала. Основную массу растения составляют листья и стебли, в которых содержание СТГ составило соответственно 2,60% и 1,75% бутонизации и 1,92% и 1,23% в фазу цветения (рис. 1). В фазу плодо-ношения содержание СТГ в листьях и корнях по сравнению предыдущими фазами уменьшилось и составило 1,50% и 0,88% соответственно. При этом в корнях уменьшилось в несколько раз. В стеблях наоборот возрасло и составило 1,80%. В семенах язвенника ранозаживляющего содер-жание СТГ составило 2,74%. В фазу отмирания во всех наблюдали частях растения пониженное содержание СТГ в сравнении с предыдущими фазами (рис. 1).

Качественный анализ белка растений *A. vulпегагіа* позволил выявить 16 протеиногенных аминокислот, 9 из которых являются незаменимыми: треонин, валин, метионин, изолейцин, лейцин, фенилаланин, гистидин, лизин, аргенин (табл. 1). Суммарное содержание аминокислот составило 10,94 г в 100 г сухого вещества. Показано, что содержание исследуемых аминокислот в растениях этого вида сопоставимо с их содержанием в таких известных кормовых растениях, как клевер, люцерна и кострец безостый, а по содержанию аланина и лизина превосходит их.

Puc. 1. Содержание суммы тритерпеновых гликозидов по органам и фазам развития растения *Anthyllis vulneraria* L.:

* - разница с предыдущей фазой по содержанию ТГ достоверна при P<0,00; ** - разница с предыдущей фазой по содержанию ТГ достоверна при P<0,002; *** - разница с предыдущей фазой по содержанию ТГ достоверна при P<0,05

Таблица 1. Аминокислотный состав надземной части ра	астений Anthyllis vulneraria L.
---	---------------------------------

Аминокислоты	г/100 г сухого	в % от сырого	азот ак	в % от
	вещества	протеина	г/100 с.п.	общего азота
аспарагиновая	1,953	14,881	0,205	9,785
кислота				
треонин	0,573	4,366	0,068	3,217
серин	0,625	4,763	0,083	3,944
глутаминовая	1,119	8,529	0,107	5,074
кислота				
пролин	0,693	5,283	0,085	4,035
глицин	0,571	4,350	0,106	5,070
аланин	0,677	5,157	0,106	5,060
валин	0,662	5,044	0,079	3,752
метионин	0,006	0,049	0,001	0,029
изолейцин	0,482	3,673	0,051	2,452
лейцин	0,819	6,241	0,087	4,166
тирозин	0,534	4,066	0,041	1,967
фенилаланин	0,520	3,963	0,044	2,103
гистидин	0,271	2,061	0,073	3,491
лизин	0,899	6,851	0,172	8,208
фргинин	0,531	4,048	0,170	8,117
сумма	10,936	83,325	1,480	70,470

Количественный химический анализ растений *А. vulneraria*, собранных в ценопопуляции (ЦП-1) показал, что надземная часть растений особенно богата Mg, Fe и Mn (табл. 2). Содержание Cu и Zn в растениях этого вида находится на удовлетворительном уровне по сравнению с другими известными кормовыми и лекарственными растениями, как с точки зрения жизнедеятельности самих растений, а также как источника

микроэлементов [1, 2, 4]. Содержание Al и тяжелых металлов не превышает максимально допустимый уровень, установленный для кормовых и лекарственных растений, за исключением Cr, содержание которого несколько превышает максимально допустимый уровень [6]. Таким образом, A. vulneraria является хорошо сбалансированным растением по содержанию макро- и микроэлементов.

Таблица 2. Содержание микроэлементов в надземной части растений *Anthyllis vulneraria* L.

Хим.	Си,	Pb,	Ni,	Сr,	Zn,	Mn,	Fe,	Al,	Mg,
элементы	мг/кг	мг/кг	мг/кг	мг/кг	мг/кг	мг/кг	мг/кг	мг/кг	мг/кг
Содер- жание	4,8±1,0	1,5±0,4	2,2±0,8	3,9±1,0	16±3	70±21	210±60	170±40	2830±1005

Примечание: $\pm \Delta$ – границы интервала абсолютной погрешности при P=0,95

Выводы: определено количественное содержание тритерпеновых гликозидов в пересчете на олеаноловую кислоту у растений A. vulneraria. Установлено, что в надземной части наибольшее их количество содержится в листьях в фазу бутонизации и в семенах (соответственно 2,6% и 2,7%). По содержанию протеиногенных аминокислот язвенник ранозаживляющий не уступает известным кормовым растениям, а по некоторым даже превосходит их. Содержание алюминия и тяжелых метал-лов не превышает ПДК. Вид может быть реко-мендован для интродукции в Республику Коми в качестве кормового лекарственного расте-ния И источника ценных биологически веществ и микроэлементов.

Работа выполнена при финансовой поддержке Программы Отделения биологических наук РАН «Биологические ресурсы России, оценка состояния и фундаментальные основы мониторинга» (проект № 09-T-4-1002).

СПИСОК ЛИТЕРАТУРЫ:

1. Андрусенко, С.Ф. Изучение химического состава и разработка комплексной переработки унаби (Ziziphus jújuba) / С.Ф. Андрусенко, А.В. Ходько // Материалы докладов Всероссийской научнопрактической конференции, посвященной 80-летию «Биотехнология растительного сырья, качество и

- безопасность продуктов питания». ИрГТУ, 2010. С. 29-33.
- 2. Головко, Т.К. Рапонтик сафлоровидный в культуре на европейском северо-востоке (эколого-физиологические исследования) / Т.К. Головко, Е.В. Гармаш, С.В. Куренкова. Сыктывкар, КНЦ УрО РАН, 1996. 140 с.
- 3. *Писарев, Д.И.* Сапонины и их определение в корневищах аралии маньчжурской в условиях Белгородской области / Д.И. Писарев, Н.А. Мартынова, Н.Н. Нетребенко и др. // Химия растительного сырья. 2009. №4. С. 197-198.
- 4. *Постников*, *Б.А*. Маралий корень и основы введения его в культуру. Новосибирск, 1995. 276 с.
- 5. Растительные ресурсы СССР: Цветковые растения, их химический состав, использование. Семейства: *Hydrangeaceae Haloragaceae*. СПб.: Наука, 1987. С. 145-148.
- 6. *Тютюнников, А.И.* Химический состав нетрадиционных кормовых и лекарственных растений / *А.И. Тютюнников, Б.Г. Цугкиев.* М.: Россельхозакадемия, 1995. 135 с.
- 7. Флора северо-востока европейской части СССР: в 4т./ под ред. *Толмачева А.И.* Л.: Наука, 1976. Т 3: Семейства Nymphaeaceae Hyppuridaceae. 293 с.
- 3. Godevac, D. Antioxidant activity of nine Fabaceae species growing in Serbia and Montenegro / G. Godevac, G. Zdunic, K. Savikin et al. // Fitoterapia. 2008. Vol. 79. P. 185-187.
- 9. Nartowska, J. Triterpenoid sapogenin from Anthyllis vulneraria L. / J. Nartowska, I. Wawer, H. Strzelecka // Acta Pol. Pharm. 2001. Vol. 58, N 4. P. 289-291.

CHEMICAL ANALYSIS OF PLANTS ANTHYLLIS VULNERARIA L., GROWING IN THE EUROPEAN NORTHEAST OF RUSSIA

© 2011 D.M. Shadrin, Yu.I. Pylina, S.O. Volodina, V.V. Volodin Institute of Biology Komi Science Center UrB RAS, Syktyvkar

In plants *Anthyllis vulneraria* L. it was defined the summary maintenance of triterpenoid glycosides, derivatives of oleanolic acid. It is established that in elevated part of *A. vulneraria* L. the greatest quantity of triterpeniod glycosides contains in leaves in a budding phase and in seeds. The qualitative analysis of protein has allowed to reveal presence of 16 proteinogenic amino acids, 9 from which are irreplaceable. Plants from natural populations are rich in macro- and microrlrmrnts: magnesium, iron and manganese. The maintenance of aluminum and heavy metals doesn't exceed maximum concentration limit.

Key words: Anthyllis vulneraria L., triterpenoid glycosides, microelements, amino acids

Dmitriy Shadrin, Minor Research Fellow at the Laboratory of Biochemistry and Biotechnology. E-mail: shdima@ib.komisc.ru
Yana Pylina, Post-graduate Student. E-mail: pylina@ib.komisc.ru
Svetlana Volodina, Candidate of Biology, Senior Research Fellow at the Laboratory of Biochemistry and Biotechnology. E-mail: volodina@ib.komisc.ru
Vladimir Volodin, Doctor of Biology, Chief of the Laboratory of Biochemistry and Biotechnology. E-mail: volodin@ib.komisc.ru