УДК 539.4

ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА СВЯЗИ ЭНЕРГИИ ДЕФОРМАЦИИ С ПАРАМЕТРАМИ СТРУКТУРНОГО СОСТОЯНИЯ МАТЕРИАЛА ДЕФОРМИРУЕМЫХ ПОВЕРХНОСТЕЙ

© 2011 Д.Г. Громаковский, А.А. Ермошкин, А.Г. Ковшов, М.В. Карпухин

Самарский государственный технический университет

Поступила в редакцию 10.11.2011

Приведены результаты экспериментальной оценки методами склерометрии и рентгеноструктурного анализа связи удельной энергии деформации поверхностей металлических образцов после различных видов механической обработки с уровнем повреждаемости тонкой структуры материала поверхностных слоев.

Ключевые слова: образец, поверхность, материал, структура, склерометрия, рентгенография, энергия, деформация, дислокация

Введение

Кинетическая термофлуктуационная концепция деформации и разрушения твердых тел [1,2], рассматривает энергию активации деформации $U_{a,\partial e\phi}=U(\sigma,T,\gamma)=U(\sigma,T,\mathbf{q}_i)$, как функцию действующего напряжения σ , температуры T и структурного состояния деформированного материала γ , характеризуемого уровнем накопленных повреждений $\mathbf{\Sigma} \mathbf{q}_i$. В статье рассмотрена связь удельной энергии деформации поверхностей испытываемых образцов с уровнем повреждаемости тонкой структуры материала приповерхностного слоя.

Методика испытаний

Испытывали торцевые поверхности цилиндрических образцов (диаметром 30 мм, высотой 18 мм) из стали 40Х, титанового сплава ВТ9 и бронзы БрАЖ 9-4 после точения, шлифования и притирки с алмазной пастой. Шероховатость поверхностей измеряли профилографом-профилометром ВИ-201, микротвердость - микротвердомером ПМТ-3 по ГОСТ 9450-76.

Энергию пластической деформации после механической обработки образцов оценивали методом склерометрии [3] на разработанном склерометре в процессе царапания обработанной поверхности алмазным индентором Виккерса с углом между гранями при вершине 136⁰.

Удельную энергию деформации рассчитывали по формуле $U_{\text{деф}} = A_{\text{деф}}/V_{\text{деф}}, \, \text{Дж/мм}^3$, (1) где $A_{\text{деф}} = F_{\tau} \cdot L$, работа деформации, $\, \text{Дж}; \, F_{\tau} \cdot - \, \text{тан-генциальное усилие царапания (деформации), H;} L - длина царапины, мм; <math>V_{\text{деф}} = S \cdot L - \, \text{объем деформированного материала, мм}^3; S = 0,07D^2 - \, \text{площадь,}$

Громаковский Дмитрий Григорьевич, д.т.н., профессор, директор НТЦ «Надежность». E-mail: pnms3@mail.ru Ермошкин Андрей Александрович, ассистент кафедры металловедения, порошковой металлургии, наноматериалов, E-mail: mvm@samgtu.ru

Ковиюв Анатолий Гаврилович, к.т.н., доцент кафедры технологии машиностроения, факультет MuAT, $Cam\Gamma TV$, E-mail:tms@samgtu.ru

Карпухин Михаил Васильевич, аспирант, инженер НТЦ «Надежность

поперечного сечения борозды при царапании, мм²; D – диагональ отпечатка индентора, мм. Для получения достоверных данных с доверительной вероятностью 0,95 проводили порядка 15 измерений.

Состояние тонкой кристаллической структуры поверхностных слоев оценивали методами рентгенографии после соответствующей механической обработки образцов. Оценивали изменения физического уширения рентгеновских интерференционных линий β , размеров блоков мозаик D и микроискажений $\Delta a/a$, параметра решетки а (межатомного расстояния) и рентгенографической плотности дислокаций ρ .

Рентгенографирование деформируемых поверхностей проводили на дифрактометре Thermo Scientiffic в медном K_{α} излучении при режиме работы трубки U=43 кВ, I=38 мА при скорости вращения фиксирующего счетчика (детектора) 2 градуса в минуту. С каждого образца сначала снимали дифрактограмму для выбора интерференционных максимумов hkl после чего проводилось исследование состояния дефектной структуры по глубине поверхностного слоя методом скользящего пучка [4]. Съемки проводили при углах скольжения первичного пучка рентгеновских лучей α =2;5;10 градусов.

Разделение вклада отражения от малых областей когерентного рассеяния (блоков) и микроискажений в физическое уширение рентгеновских линий проводили методом гармонического анализа формы линии. Для практического определения коэффициентов разложения в ряд Фурье экспериментальной и эталонной кривых распределения интенсивности использовали специализированную программу для ЭВМ— WinRP 20-6 RC1. С помощью этого же программного обеспечения проводили расчеты размеров блоков мозайк D и величины микроискажений $\Delta a/a$.

Рентгенографическую плотность дислокаций ρ рассчитывали по формуле $\rho = \frac{3}{D^2}$.

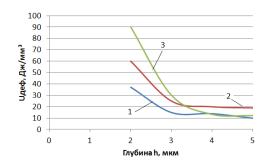
Параметр решетки а (межатомное расстояние) находили с использованием программы XPowder.

Глубину проникновения h лучей в образец, или

толщину материала участвующего в отражении рентгеновских лучей, определяли с учетом природы вещества, длины волны излучения, геометрии съемки и шероховатости поверхности.

Результаты испытаний

Дифрактограммы полученные со шлифованной поверхности, например, образца из стали 40X, приведены на рис.1, а расчетные данные физического уширения для каждого максимума hkl - в табл.1.

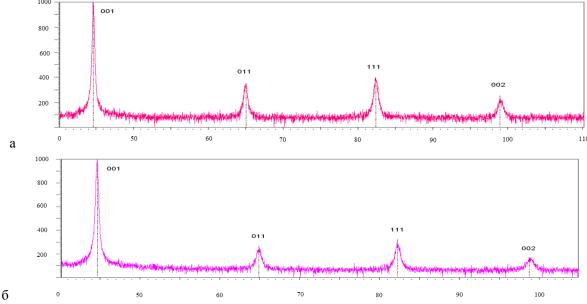

Таблица 1. Результаты оценки физического уширения β (в градусах) интерференционных максимумов hkl в зависимости от угла скольжения α и глубины h проникновения рентгеновских лучей перед склерометрированием

№ обра- зца	α, град	h, мкм	hkl 001	hkl 011	hkl 111	hkl 002
1	90	1015	0,428	0,783	0,813	0,914
1	2	1,51	0,724	0,675	1,011	0,968
1	5	2,75	0,598	1,184	1,070	1,201
1	10	4,78	0,533	1,110	0,742	1,346

Результаты оценки изменений удельной энергии деформации по глубине деформированных поверхностных слоев образцов из указанных конструкционных материалов, подвергнутых обработке шлифованием, приведены на рис. 2.

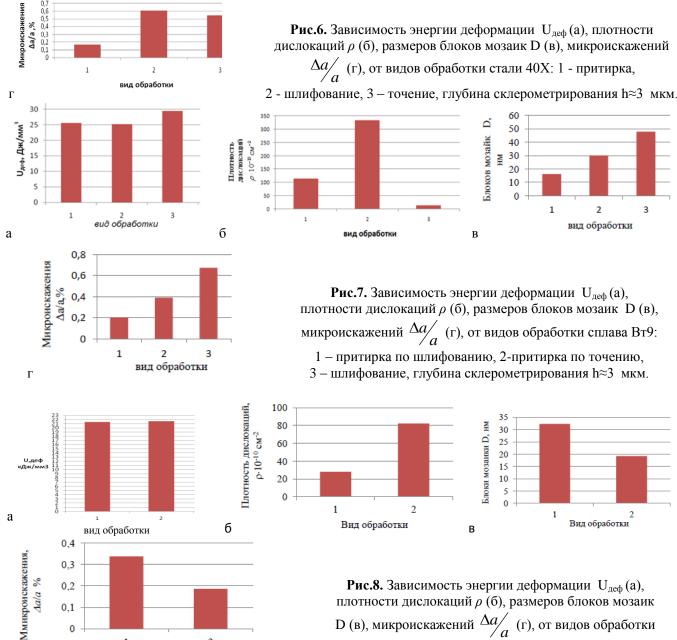
Наибольшая энергия наблюдается у поверхности, что связано с высоким уровнем дефект-ности слоя h<3 мкм, уменьшение энергии по глубине может быть связано со снижением повреждаемости или, возможно, с ростом объёма деформируемого материала.

Рентгеноструктурные исследования изменения параметров тонкой кристаллической структуры по глубине деформированных поверхностных слоев шлифованных образцов (рис. 3.4.5), а также при различных видах механической обработки (рис. 6,


Рис. 2. Зависимость $U_{\text{леф}}$ от глубины внедрения индентора: 1- сталь 40X, шлифование Ra=0,223 мкм, H_{μ} =231; 2 - сплав BT 9, шлифование Ra=0,223 мкм, H_{μ} =285.; 3 - бронза БрАЖ9-4, шлифование Ra=0,223 мкм, H_{μ} =285.

7,8) показали их удовлетворительную корреляцию с изменениями удельной энергии деформации.


Как показали испытания, с увеличением глубины склерометрирования от поверхности энергия деформации $U_{\text{деф}}$ снижается по закону изменения плотности дислокаций ρ в материале поверхностного слоя.


В соответствии с дислокационной теорией прочности, развиваемой Коттрелом, Бейли, Хиршем и др., удельная энергия разрушения (деформации) определяется [5] при достижении в деформированном поверхностном слое критической плотности дислокаций $\rho_{\text{кp}}{=}10^{11}...10^{12}~\text{см}^{-2}$, как

$$A_{p} \approx U_{\pi e h} \approx \rho \cdot \Delta Q,$$
 (2)

Рис. 1. Рентгеновские дифрактограммы с поверхностей: Образец №1, Сталь 40X, шлифование, Ra=0,233 мкм: а) Дифрактограмма полученная методом скользящего пучка на глубину 1,51 мкм

где А_р – удельная энергия разрушения (деформации); ΔQ – средняя энергия дислокаций на единицу длины, определяемая как

Вид обработки

1

$$\Delta O = \rho \cdot G \cdot e^2 / (3(1-\mu)), \tag{3}$$

2

где в - вектор Бюргерса; и- коэффициент Пуассона.

На основе выражений (2) и (3) получим расчетную формулу (4) накопленной энергии деформации $U_{\text{деф}}$ в зависимости от плотности дислокаций ρ деформированной структуры

$$U_{\text{ne}\Phi} = \rho \cdot G \cdot e^2 / (3(1-\mu)). \tag{4}$$

Результаты оценки связи экспериментальных значений удельной энергии деформации с расчетными по формуле (4), полученными при различных значениях рентгенографической плотности дислокаций р по глубине поверхностного слоя сплава ВТ9 дефор-

плотности дислокаций ρ (б), размеров блоков мозаик D (в), микроискажений $\frac{\Delta a}{a}$ (г), от видов обработки бронзы БрАЖ9-4: 1 – притирка; 2 – шлифование тонкое, глубина склерометрирования h≈3 мкм.

мированного при различных видах механической обработки, приведены в табл. 2, при следующих исходных параметрах сплава [6]: модуль упругости $E=1,1\cdot10^5$ H/мм²; модуль сдвига G=0,38·E=0,418·10⁵ H/мм²; коэффициент Пуассона µ=0,34; вектор Бюргерса ϵ =2,92·10⁻⁷ мм Δ Q=0,418·10⁵(2,92·10⁻)²//(3(1-0,34))=1,8·10⁻⁹ Дж/мм.

Анализ данных таблицы показывает, что экспериментальные значения $U_{\text{деф}}$ адекватно отражают уровень накопленных повреждений в материале. Экспериментальные значения изменяются в пределах от 16,6 до 59,5 Дж/мм³, расчётные от - 2,16 до $60,12 \text{ Дж/мм}^3$.

Таблица 2. Расчётные и экспериментальные значения удельной энергии деформации $U_{\text{деф}}$ сплава BT по глубине при различных видах механической обработки

отки	Глубина от поверх- ности h, мкм	.Tb - MM ⁻²	Значения $U_{\text{деф}}$, Дж/мм ³		
Вид обработки поверхности		Плотность дисло- каций р, мм ⁻²	рас- чёт- ные	экспери- менталь- ные при h=3 мкм	
Шлифо- вание	0,65	5,685·10 ⁹	10,23	29	
	1,55	$4,989 \cdot 10^9$	8,98		
ванис	2,86	$1,316\cdot10^9$	2,37		
Притир-	0,65	2,170·10 ⁹	3,906	59,5 (h=2 мкм)	
ка после	1,55	$1,881\cdot10^9$	3,384	25,2	
шлифо- вания	2,86	1,144·10 ¹⁰	20,592	16,6 (h=5 мкм)	
Притир-	0,65	$7,166\cdot10^9$	12,899		
ка по	1,55	1,204·10 ⁹	2,16	25	
точению	2,86	3,334·10 ¹⁰	60,12		

Некоторое превышение экспериментальных значений над расчетными связано, очевидно, с дополнительным ростом плотности дефектов структуры перед алмазным индентором в процессе склерометрирования, а также с тем, что $U_{\text{де}\varphi} \approx A_p$ зависит не только от величины (скаляра) плотности дислокаций ρ , но и от энергии их взаимодействия друг с

другом и с другими многочисленными дефектами деформированной структуры.

Выводы

Полученные методом склерометрии экспериментальные значения удельной энергии деформации поверхностных слоев образцов из разнородных конструкционных материалов после различных видов механической обработки адекватно отражают уровень и энергию накопленных повреждений тонкой структуры материала деформируемых поверхностей. Предложенное методическое решение оценки энергии активации пластической деформации пополнит арсенал методов испытаний рабочих поверхностей деталей машин и материалов в машиностроении.

СПИСОК ЛИТЕРАТУРЫ

- Журков С.Н. К вопросу о физической основе прочности.//Физика твердого тела. 1980. Т._22, вып.11, С. 3344-3349.
- 2. Регель В.Р., Слуцкер А.Б., Томашевский В.Д. Кинстическая теория прочности твёрдых тел. М.: Наука, 1974. 302 с.
- 3. Патент №216645 РФ./ Способ оценки энергии активации разрушения материала поверхностного слоя деформированного трением/Громаковский Д.Г., Беленьких Е.В., Ибатуллин И.Д., Ковшов А.Г. и др.; опубл.10.05.2001.
- 4. *Рыбакова Л.М, Куксенова Л.Й.* Структура и износостойкость металлов. М.: Машиностроение, 1982. –212 с.
- Иванова В.С. Разрушение металлов. М.:Металлургия, 1979.-168 с.
- 6. *Колачев Б.А.* Физическое материаловедение титана. М.: Металлургия, 1976. 184 с.

EXPERIMENTAL ESTIMATION OF COMMUNICATION OF ENERGY OF DEFORMATION WITH PARAMETERS STRUCTURAL CONDITION OF THE MATERIAL OF DEFORMABLE SURFACES

© 2011 D.G. Gromakovsky, A.A. Ermoshkin, A.G. Kovshov, M.V. Karpuhin

Samara state technical university

Results of an experimental estimation by a methods of sclerometry and the x-ray structural analysis of communication of specific energy of deformation of surfaces of metal samples after various kinds of machining with a level of damageability of thin structure of a material of superficial layers are resulted.

Key words: the sample, a surface, a material, a structure, sclerometry, roentgenography, energy, deformation, a dislocation

Gromakovsky Dmitry Grigorevich, Dr.Sci.Tech., the professor, the director of scientific and technological center "Reliability". E-mail: pnms3@mail.ru

Ermoshkin Andrey Aleksandrovich, the assistant to chair of metallurgical science, powder metallurgy. E-mail: mvm@samgtu.ru Kovshov Anatoly Gavrilovich, Cand.Tech.Sci., the senior lecturer of chair of technology of mechanical engineering, faculty MiAt. SamGTU. E-mail:tms@samgtu.ru

Karpuhin Michael Vasilevich, the post-graduate student, the engineer of scientific and technological center «Reliability