ВЛИЯНИЕ СТРУКТУРЫ И СВОЙСТВ НА ИЗНОС ПОКРЫТИЯ *Micro Melt NT-60* ПОСЛЕ ПЛАЗМЕННОЙ ПОРОШКОВОЙ НАПЛАВКИ

© 2011 А.А. Паркин, С.С. Жаткин, Е.А. Минаков

Самарский государственный технический университет

Поступила в редакцию 10.11.2011

В работе представлены результаты исследований на абразивный износ покрытия Micro Melt NT-60, сформированного плазменной порошковой наплавкой при токах дуги 70А, 85А и 100А. Определены некоторые закономерности износа в зависимости от формируемой структуры и свойств наплавленного материала, а также тока плазменной дуги. Установлены изменения элементного состава в наплавленном слое и показана его связь с износом материала.

Ключевые слова: плазменная наплавка, износостойкость, микроструктура, микротвердость, рентгеноспектральный микроанализ

Увеличение износостойкости буровых долот и других изделий различного целевого назначения является одной из главных производственных и научных задач. Одним из направлений решения данных задач является нанесение специальных износостойких покрытий различными методами, в том числе плазменно-порошковой наплавкой. К настоящему времени наиболее изучены методики нанесения и свойства различных твердосплавных покрытий, включая Stellite. В работах [1-6] представлены результаты исследований структуры и свойств (в том числе и испытания на абразивный износ) Stellite 6, Stellite 12 и Stellite 190W, полученных в различных режимах плазменной наплавки. В меньшей степени изучены плазменно-наплавленные покрытия на основе композиционных материалов. Теоретический анализ износостойкости многокомпонентных и композиционных наплавляемых материалов осложняется отсутствием данных по их физикомеханическим свойствам и, в частности, по их прочностным характеристикам.

В данной работе представлены результаты исследования по абразивному износу *Micro Melt NT-60* фирмы *CARPENTER*, наплавленного путем плазменно-порошковой наплавки при токах дуги 70А, 85А и 100А.

Основный состав исходного порошка – 60% WC и 40% Ni.

Методики испытаний и исследований. Плазменная наплавка *Micro Melt NT-60* проводилась на долотную сталь 19ХНЗМА на ручной плазменной установке ПМ-150М в защитном газе. После наплавки образцы подвергались шлифовке и полировке. Для наплавки применялся порошок с размером частиц 40 - 150 мкм.

Структура наплавленного материала исследовалась на оптическом микроскопе МИМ-8. Изучение микроструктуры и микроанализ зон наплавки проводились на аналитическом растровом электронном микроскопе JSM-6390А фирмы JEOL, измерение микротвердости осуществлялось по стандартной методике с использованием микротвердомера ПМТ-3. Испытания на линейный износ были проведены на установке Универсал-1А, собранной на базе сверлильного станка СС-13/350 [7,8]. Испытания проводились локально в четырех участках зоны наплавки (рис.1). Это связано с тем, что при плазменной наплавке величина тепловложения возрастала от начала к концу наплавки, что приводило к разогреву образца и к некоторому изменению условий формирования структуры и свойств наплавленного материала. Точка 1 (рис. 1) соответствует началу наплавки, а точка 4 - концу наплавки. Высота наплавленного слоя после шлифовки в зоне трения составила 0,4 мм. Контртело было изготовлено из стали 40X (закалка до HRC 46-48) в виде трубки внешним диаметром 6 мм.

Испытания проводились при нормальной нагрузке в 26 кгс, в течение 10 минут, с частотой вращения шпинделя 600 об/мин. При испытаниях использовалась алмазная паста марки АСМ-3/2-НОМГ.

Результаты испытаний на износ. В табл. 1 представлены результаты испытаний наплавленного материала в различных зонах (рис.1) при токах плазменной дуги 70А, 85А и 100А. Площадь трения составляла 1,57*10⁻⁵м². Схема расположения зон трения показана на рис. 1.

Наибольший износ наплавленного материала, сформированного при токе плазменной дуги 70А, происходит в начале наплавки (зона трения №1), к концу наплавки происходило уменьшение величины износа (зона трения №4). Величина износа существенно отличается по ширине наплавленной дорожки - она значительно больше на ее внутреннем крае, чем на внешнем. С ростом тока дуги происходит

Жаткин Сергей Сергеевич, кандидат технических наук, доцент кафедры «Литейные и высокоэффективные технологии» E-mail: laser@samgtu.ru, sergejat@mail.ru.

Паркин Анатолий Алексеевич, кандидат технических наук, профессор кафедры «Литейные и высокоэффективные технологии» E-mail: laser@samgtu.ru

Минаков Евгений Александрович, апирант кафедры «Литейные и высокоэффективные технологии»

E-mail: laser@samgtu.ru, goodspik@narod.ru.

увеличение величины износа, при этом снижается разброс его значений по внутреннему и внешнему краю наплавленной дорожки. Наблюдается корреляция между изменением величин износа и коэффициента трения для различных зон трения, но в рамках одного образца. На рис. 2 представлена структура зон трения. В наплавленном материале *Micro Melt NT*-60 при токе дуги 70A (рис.2, *a*) в зонах трения происходит увеличение плотности карбидов, что приводит к снижению величины износа (табл. 1). При токе дуги 85A (рис.2, *б*) произошло уменьшение плотности карбидов, что привело к увеличению величины износа.

Плотность карбидов и её изменение в зонах трения наплавленного *Micro Melt NT-60* при токе дуги 100А незначительно. Изменение размеров и плотности карбидов зависит от тока плазменной дуги и высоты зоны наплавки, что связано с их седиментацией.

Рис. 1. Расположение зон трения: 1 – начало наплавки; 4 – конец наплавки

На рис. 3 показано изменение микротвердости по высоте зоны наплавки. Микротвердость изменяется скачкообразно по высоте наплавки, что указывает на

неоднородность структуры, связанную с неравномерным распределением карбидной фазы. Наиболее равномерная структура формируется во внутренней зоне наплавки. Среднее значение микротвердости составляет $< H\mu = 350-400$ кг/мм²>.

Поверхность трения (пунктирная линия) наплавленного Micro Melt NT-60 при токе дуги 70А (рис.3, а) находится в области наибольшей плотности карбидной фазы, где микротвердость достигает 700 кгс/мм². В соотвествии с этим износ данной поверхности трения минимален (табл.1). При токах дуги 85А и 100А микротвердость поверхности трения в основном определяется твердостью никелевой связки, которая значительно ниже микротвердости зон с большим содержанием карбидной фазы. Соответственно износ данных повер-хностей существенно выше. То есть величина износа зависит также от плот-ности карбидов и твердости никелевой основы. На рис.4 и в табл.2 представлены результаты исследований изменения микроструктуры наплавленного Micro Melt NT-60 и микроэлементного состава по ширине, высоте наплавленного материала и непосредственно в зоне трения на высоте наплавленного материала, равным 0,4 мм.С увеличением тока плазменной дуги до 85А происходит измельчение карбид-ной фазы и увеличение ее плотности по объему. В тоже время при токе плазменной дуги 100А происходит рост карбидов и уменьшение их плотности. Это однозначно наблюдается на внешнем крае, но менее заметно на внутреннем крае наплавленной дорожки.

№ зоны трения	И ₁ , мкм	И ₂ , мкм	<И>, мкм	μ	$\Delta T^0 C$						
$I_{\rm II}=70{ m A}$											
1	58	29	43,5	0,11	10						
2	29	27	28	0,09	11						
3	15	33	24	0,09	7						
4	8	5	6,5	0,071	8						
			<25,5>								
$I_{II} = 85 \mathrm{A}$											
1	51	20	35,5	0,1	10						
2	50	22	36	0,1	11						
3	55	23	39	0,11	7						
4	58	25	41,5	0,1	8						
			<38>								
$I_{\Pi} = 100 \mathrm{A}$											
1	62	21	41,5	0,077	8						
2	65	15	40	0,069	6						
3	59	13	36	0,054	5						
4	56	12	34	0,046	8						
			<38>								

Таблица 1. Зависимость величины износа в различных зонах трения

Примечание: И₁ – величина износа внутреннего края наплавленной дорожки, И₂ – величина износа внешнего края наплавленной дорожки.

Рис. 2. Структура зон трения: $a - I\partial = 70A$; $\delta - I\partial = 85A$; $e - I\partial = 100A$; x105.

Рис. 4. Структура зоны наплавки по высоте: $a - I\partial = 70A$; $6 - I\partial = 85A$; $e - I\partial = 100A$.

№ зоны Микроанализа	C	Cr	Fe	Co	Ni	W	Total(Mass%), зона наплавки		
$I_{\rm II}=70{\rm A}$									
5	2,99	0,36	13,85	0,06	41,55	41,18	100 (внешний край)		
17	4,15	0,37	13,33	0,2	37,67	44,28	100 (внутренний край)		
$I_{II}=85A$									
2	3,19	0,38	20,94	0,06	33,6	41,83	100 (внешний край)		
27	3,07	0,45	23,02	0,11	37,15	36,2	100 (нутренний край)		
<i>I</i> _Д =100А									
13	3,41	0,53	36,22	0,3	38,4	21,14	100 (внешний край)		
22	2,55	0,47	30,36	0,27	31,47	34,88	100 (нутренний край)		

Таблица 2. Элементный спектральный анализ по зонам

Непосредственно на поверхности зоны трения плотность мелких карбидов более высокая при токах дуги 70A и 85A.

Наблюдается также седиментация карбидов, особенно при токе плазменной дуги 100А, что приводит к резкому уменьшению карбидов в зоне трения (рис.4, верхняя граница) и соответственно повышение их плотности от поверхности наплавленного материала ко дну ванны расплава. Данный экспериментальный факт может указывать на неравно-мерность величины износа наплавленного *Micro Melt NT-60* по высоте наплавки. Повышение тока плазменной дуги вызывает возрастание неравномерности распределения элементного состава по ширине и глубине наплавленного *Micro Melt NT-60* - концентрации железа с ростом высоты зоны и тока дуги плазменной наплавки и уменьшение концентрации карбидов вольфрама. В целом это приводит к неравномерности износа наплавленного материала по ширине и высоте зоны наплавки, что подтверждается экспериментально в данной работе.

На рис. 5 представлено изменение микроструктуры наплавленного *Micro Melt NT-60* в зоне трения в зависимости от токов плазменной дуги. При плазменной наплавке с ростом тока дуги происходит измельчение карбидов вольфрама в результате их распада и растворения в жидком связующем никеле. Данный процесс резко интенсифицируется при токах плазменной дуги выше 85А и более активно протекает на внутреннем крае наплавляемой дорожки.

Рентгеноспектральный микроанализ показывает, что наряду с карбидами вольфрама в зоне наплавки образуются карбиды железа (темные пластинчатые структуры), сложные карбиды или диффузионные области железа в карбиде вольфрама (темные области в карбидах вольфрама), растворы железо-никель, железо-никель – вольфрам (светлые вкрапления на темном фоне). Вольфрам в никеле растворяется в жидкой фазе в результате распада карбидов вольфрама.

Рис. 5. Структура зоны наплавки по высоте: $a - I\partial = 70A$; $b - I\partial = 85A$; $b - I\partial = 100A$.

То есть при плазменной наплавке в наплавленном *Micro Melt NT-60* происходит упрочнение никелевой связки за счет растворения в ней железа, вольфрама и мелких частиц карбида вольфрама, что соответственно приводит к увеличению ее твердости и уменьшению величины износа плазменнонаплавленного *Micro Melt NT-60*.

Выводы. На основе проведенных испытаний по локальному износу и комплексных экспериментальных исследований структуры, микротвердости, рентгеноспект-рального анализа можно сделать следующие выводы:

1. Величина износа существенным образом зависит от времени и тока дуги плазменной наплавки. С ростом тока плазменной дуги величина износа возрастает.

2. На величину износа сильное влияние оказывает структура наплавленного слоя. С ростом плотности карбидов в зоне трения величина износа уменьшается. 3. Степень износа наплавленного *Micro Melt NT-60* зависит от твердости связующего материала, свойства которого изменяются в результате легирования вольфрамом, карбидами вольфрама, растворения в ней железа и образованием более сложных карбидов, таких как (Fe, W)C.

СПИСОК ЛИТЕРАТУРЫ

- Паркин А.А., С. С. Жаткин, Минаков Е. А. Оптимизация технологии плазменной наплавки порошковых материалов. Металлургия машиностроения. – 2011. – № 1. – С.44-49.
- Жаткин С. С., Паркин А.А., Минаков Е. А., Семин А.Б., Сибикин А.В., Скворцов А.А. Влияние расхода порошка и толщины подложки на процесс плазменной порошковой наплавки Stellite 190W на стали. //Материалы 9 Международной практической конференции-выставки "Технология ремонта, восстановления и упрочнения деталей машин, механизмов...." Санкт-Петербург. 2010. – С.220-225.
- 3. Паркин А.А., Жаткин С. С., Макейкин И.В, Харымов А.А.,

Писарев Д.А. Определение оптимальных режимов плазменной наплавки Stellite 12. //Материалы международной научно-технической конференции "Актуальные проблемы трибологии". Самара. СамГТУ. 6 – 8 июня 2007 г. С. 121-124.

- 4. Ana Sofia C.M. D' Oliveira, Paulo Sergio C.P. da Silva, Rui M.C. Vilar. Microstructural features of consecutive layers of Stellite 6 deposited by laser cladding. // Surface and Coatings Technology 153 (2002) 203-209.
- 5. ZHU Yuan-zhi, YIN Zhi-min, TENG Hao. Plasma cladding of Stellite 6 powder on Ni76Crl9AlTi exhausting valve. // Trans. Nonferrous Met. Soc. China 17 (2007) 35-40.
- 6. Hazoor Singh Sidhu, Buta Singh Sidhu, S. Parkashc. Characteristic Parameters of HVOF sprayed NiCr and Stellite-6

coatings on the boiler steels using LPG as fuel gas. // International Journal of Engineering and Information Technology Copyright© 2010 waves publishers IJEIT 2010, 2(2), 133-139

- 7. Ибатуллин И.Д. Кинетика усталостной повреждаемости и разрушения поверхностных слоев//Монография/И.Д. Иба-туллин – Самара: Самар. гос. техн. ун-т, 2008. – 387 с.: ил. ISBN - 978-5-7964-1211-4.
- 8. Ибатуллин И.Д. Новые методы и приборы для экспрессной оценки энергетических параметров усталостной повреждаемости и разрушения поверхностных слоев. //Диссертация на соискание ученой степени д. т. н. Специальность: 01.04.01. Год: 2010.

INFLUENCE OF STRUCTURE AND PROPERTIES ON DETERIORATION OF COATING MICRO-MELTt NT-60 AFTER PLASMA POWDER CLADDING

© 2011 A.A. Parkin, S.S. Zhathin, E.A. Minakov

Samara State Technical University

The work presents the results of researches of abrasive deterioration of coating Micro-Melt NT-60 formed by plasma powder cladding at currents of an arc 70 A, 85 A and 100 A. Some laws of deterioration depending on the formed structure and properties of clad material as well as the current of a plasma arc, are defined. Changes of element structure in clad layer are established, and its communication with material deterioration is shown.

Key words: Plasma weld deposit, wear resistance, microstructure, microhardness, microanalysis.

Sergey Zhatkin, Candidate of technological sciences, associate professor at the department of founding and high-performance processes. E-mail: laser@samgtu.ru, sergejat@mail.ru.

Anatoly Parkin, Candidate of technological sciences, professor at the department of founding and high-performance processes. *E-mail: laser@samgtu.ru.*

Evgeny Minakov, postgraduate at the department of founding and high-performance processes.

E-mail: laser@samgtu.ru, goodspik@narod.ru.