УДК 621.4

ЭКСПЕРИМЕНТАЛЬНАЯ ВЕРИФИКАЦИЯ МОДЕЛЕЙ ДЕФОРМАЦИОННОГО ПОВЕДЕНИЯ И ВЫСОКОСКОРОСТНОГО РАЗРУШЕНИЯ ТИТАНОВОГО СПЛАВА ВТ6

© 2011 М.Ш. Нихамкин¹, Л.В. Воронов¹, О.Л. Любчик¹, И.Л. Гладкий²

¹ Пермский национальный исследовательский политехнический университет ² ОАО «Авиадвигатель», г. Пермь

Поступила в редакцию 17.11.2011

Изложены методика и результаты экспериментального исследования и численного моделирования процессов динамического деформирования и разрушения при высокоскоростном ударном нагружении титанового сплава ВТ6. При численном моделировании сравнивали две модели поведения материала: Купера-Саймондса и Джонсона-Кука. Для верификации математических моделей использованы данные специального эксперимента по пробиванию титановой пластины стальным шаром. Полученные результаты предполагается использовать при моделировании эксплуатационных повреждений полых лопаток вентилятора авиационного двигателя.

Ключевые слова: титановый сплав ВТ6, высокоскоростное повреждение, модель Купера-Саймондса, модель Джонсона-Кука, экспериментальная верификация

Для обеспечения стойкости лопаток вентилятора авиационного газотурбинного двигателя (ГТД) к эксплуатационным повреждениям проводится исследование процессов соударения лопатки с разнообразными посторонними предметами (льдом, птицами, твердыми предметами с взлетно-посадочной полосы). Математическое моделирование повреждения лопатки при соударении представляет собой решение нестационарной динамической контактной задачи механики деформируемого твердого тела. Необходимым условием моделирования является наличие верифицированной модели деформационного поведения и разрушения материалов лопатки и повреждающего предмета при высоких скоростях деформации.

Цель настоящего исследования: верификация и идентификация моделей деформационного поведения и высокоскоростного разрушения титанового сплава ВТ6 при скоростях деформации, соответствующих условиям эксплуатационного повреждения лопаток вентилятора ГТД.

В задачах высокоскоростного соударения модель материала должна описывать упругопластическую деформацию и разрушение при соответствующей условиям скорости дефор-мации – до 10⁶ с⁻¹ [1]. Для описания поведения материалов при высоких скоростях деформирования существует ряд математических моделей разной степени сложности, различающиеся как кругом учитываемых факторов, так и количеством подлежащих экспериментальному определению параметров [2]. В настоящей работе рассмотрены две наиболее часто используемые при описании процессов высокоскоростного соударения модели поведения материала: Купера-Саймондса (Cowper-Symonds) [2] и Джонсона-Кука (Johnson-Cook) [3]. Параметров этих моделей для исследуемого сплава ВТ6 в литературных источниках найти не удалось. В работе [4] необходимые параметры приведены для аналога материала ВТ6 - титанового сплава Ti-6Al-4V, имеющего имеют близкий химический состав и механические свойства [5-7].

Первым этапом исследования было проведение эксперимента по высокоскоростному повреждению в условиях, близких к реальному повреждению лопатки вентилятора посторонним предметом. Задачей данного этапа было получение результатов, пригодных для верификации и идентификации математических моделей поведения сплава ВТ6. В качестве модельной задачи, реализуемой в эксперименте, а затем в расчетах, выбрана задача о соударении стального шара с пластиной из исследуемого материала. Экспериментальный образец представляет

Нихамкин Михаил Шмерович, доктор технических наук, профессор, заместитель заведующего кафедрой «Авиационные двигатели». E-mail: nikhamkin@mail.ru Воронов Леонид Васильевич, кандидат технических наук, доцент кафедры «Авиационные двигатели». Email: leonid-v-voronov@yandex.ru

Любчик Ольга Леонидовна, младший научный сотрудник кафедры «Авиационные двигатели». E-mail: olga-l-voronova@yandex.ru

Иван Леонидович Гладкий, кандидат технических наук, начальник отдела. E-mail: gladky@avid.ru

собой плоскую прямоугольную пластину размером 75х200 мм и толщиной 1,01 мм из сплава BT6. Повреждающим предметом является стальной шар диаметром D=10 мм. В эксперименте исследуемый процесс соударения реализован в следующей постановке: пластинаобразец жестко закреплена на высоте 20 мм от основания (консольная часть 75х180 мм), повреждающий предмет (шар) движется со скоростью V=400 м/с в направлении средней линии пластины перпендикулярно к ее поверхности; вектор скорости шара проходит через его центр и среднюю линию пластины и расположен на высоте от места закрепления образца h=40 мм (рис. 1). Параметрами для идентификации и верификации математических моделей поведения материала являются геометрические характеристики полученного в эксперименте повреждения и величина предельной деформации образца в зоне разрушения.

Экспериментальное исследование проводились на специальной установке на базе газовой пушки (рис. 2). Установка состоит из газовой пушки (поз. 1), устройства крепления и позиционирования (поз. 4) исследуемого образца (поз. 3). Они смонтированы на жестком массивном основании (поз. 6). Для определения скорости повреждающего предмета используется электронный измеритель скорости ИБХ-716 (поз.2). Для регистрации параметров движения повреждающего предмета после соударения в зоне исследования устанавливается экрануловитель (поз. 5). Для определения остаточных деформаций на образец в месте предполагаемого повреждения с лицевой и тыльной сторон специальной краской нанесена сетка с шагом 1 мм (рис. 3). Остаточные деформации материала образца в зоне повреждения определялись по искажению ячеек сетки.

Рис. 2. Экспериментальная установка:

1 – газовая пушка; 2 – электронный измеритель скорости повреждающего предмета; 3 – исследуемый образец; 4 – устройство крепления и позиционирования; 5 – экран-уловитель; 6 – основание

Рис. 3. Пример образца, подготовленного к экспериментальным исследованиям: а – исследуемый образец; б – делительная сетка в зоне предполагаемого повреждения; в – увеличенный фрагмент делительной сетки

Замеренное в эксперименте значение скорости повреждающего предмета составило 399 м/с. В результате соударения на образце образовалось повреждение в виде сквозного отверстия диаметром 8,25 мм с отгибом в сторону движения шара и наружным диаметром отогнутой части с тыльной стороны 9,5 мм (рис. 4). Радиус сопряжения, образовавшегося при отгибе, 3 мм. Глубина образовавшейся лунки составила до 5,7 мм. На границе сквозного отверстия образовались множественные разрывы преимущественно радиального (по отношению к отверстию) направления. Кроме того, образовалось пять магистральных тещин преимущественно радиального направления длиной 6,1-10,25 мм. В результате разрушения произошло отделение крупного фрагмента («пробка»). Он имеет чашевидную форму с радиусом вогнутой сферической поверхности около 5 мм. Форма отделившегося фрагмента близка к кругу диаметром 6,8-7 мм. Поверхность разрушения – коническая с вершиной со стороны выпуклой поверхности «пробки». Вогнутая поверхность отделившегося фрагмента гладкая без видимых повреждений. На выпуклой поверхности имеются множественные разрывы преимущественно окружного направления. Векторы скорости повреждающего предмета и «пробки» после соударения совпадают по направлению с вектором скорости повреждающего предмета до момента соударения. Распределение интенсивности деформаций ε_i , определенной методом делительных сеток, симметрично относительно центра отверстия, Максимальная интенсивность деформации ε_i составила 0,4.

Рис. 4. Параметры повреждения экспериментального образца

Вторым этапом исследования было математическое моделирование реализованного в эксперименте процесса соударения пластиныобразца со стальным шаром с использованием упомянутых выше моделей деформационного поведения и разрушения титанового сплава ВТ6. Математическое моделирование проводилось методом конечных элементов в нестационарной динамической постановке в рамках лагранжевого подхода с явной интегрирования по времени, реализованной в пакете LS-DYNA. Конечно-элементные модели пластины-образца и повреждающего предмета (шара) приведены на рис. 5. Использовались тетраэдральные изопараметрические элементы с квадратичной аппроксимацией узловых неизвестных и тремя неизвестными узловыми перемещениями. Характерный размер элемента шараударника составил 0,33 мм. Сетка конечных элементов пластины имеет сгущение в области соударения: характерный размер элемента -0,33 мм, три слоя элементов по толщине. Размер элементов увеличивается по мере удаления

от зоны соударения. При моделировании динамического контактного взаимодействия применен метод пенальти. Поведение материала шара – стали ШХ15 – полагалось линейно упругим без разрушения, модуль упругости *E* 2[·]10⁵ МПа, плотность *ρ*=8000 кг/м³.

Рис. 5. Конечно-элементные модели пластины и повреждающего предмета

Модель Купера-Саймондса учитывает кинематическое упрочнение и позволяет описывать зависимость предела текучести от скорости деформации. Для учета влияния скорости деформации на предел текучести материала вводится масштабирующий коэффициент:

$$\sigma_T^{\partial u_H} = \sigma_T \beta; \beta = 1 + \left(\frac{\dot{\varepsilon}}{C}\right)^{\frac{1}{p}}, \qquad (1)$$

где $\dot{\mathcal{E}}$ - скорость деформации; σ_T – предел текучести, $\sigma_T^{\partial u_H}$ – динамический предел текучести, *С*, *P* – константы материала.

Критерием разрушения является достижение эффективной пластической деформацией \mathcal{E}_{eff}^{p} предельного значения ε_{B} :

$$\varepsilon_{eff}^{p} > \varepsilon_{B}; \varepsilon_{eff}^{p} = \int_{0}^{t} \left(\frac{2}{3}\dot{\varepsilon}_{ij}^{p}\dot{\varepsilon}_{ij}^{p}\right)^{\frac{1}{2}} dt , \qquad (2)$$

где $\dot{\mathcal{E}}_{ij}^{p}$ – компоненты тензора скоростей пластической деформации.

Механические характеристики и параметры модели Купера-Саймондса для сплава ВТ6 по данным [1, 5-7] приведены в таблице 1. Предельное значение эффективной пластической деформации ε_B для сплава ВТ6 по результатам эксперимента принято равным 0,4.

Таблица 1. Характеристики сплава ВТ6, принятые для модели Купера-Саймондса по данным [1, 5-7]

Плотность ρ ,	Модуль упру-	Коэффициент	Предел теку-	Предел проч-	С	Р
$\kappa\Gamma/M^3$	гости Е, МПа	Пуассона µ	чести σ_T , МПа	ности σ_B , МПа		
4,43·10 ³	122630	0,3	910	1000	20000	3

Результаты конечно-элементного моделирования с использованием модели Купера-Саймондса показали следующее. При соударении стального шара с пластиной в момент касания начинается процесс деформирования пластины и нарастание всех компонент напряжений и деформаций. Значения эффективной пластической деформации выше на тыльной стороне пластины. Зона эффективных пластических деформаций, близких к предельному значению ε_B , приобретает форму кольца. Разрушение начинается на 8-ой микросекунде с момента касания. За 3 микросекунды происходит разрушение 3-х слоев элементов пластины по толщине. Образуется отверстие и «пробка» чашевидной формы. В течение следующих 24х микросекунд происходит отгиб краев отверстия и образование трещин радиального направления. По окончании взаимодействия шар не меняет своего первоначального направления движения, «пробка» движется в одном направлении с шаром. Полученное в результате моделирования повреждение представляет собой сквозное отверстие диаметром 9 мм с отгибом в сторону движения шара и наружным диаметром отогнутой части с тыльной стороны 10,1 мм (рис. 6). Высота отгиба – 4,7 мм. Длина трещин – до 3 мм. Диаметр «пробки» – 5,7 мм, высота – 1,6 мм. Поверхность разрушения – коническая с вершиной со стороны вогнутой поверхности «пробки». Скорость шара после соударения составила 327 м/с, «пробки» – 390 м/с.

Альтернативный вариант моделирования процесса соударения шара с пластиной из сплава ВТ6 выполнялся с использованием более сложной модели материала Джонсона-Кука [3]. Согласно этой модели предел текучести зависит от эффективной пластической деформации \mathcal{E}_{eff}^{p} (2), скорости изменения эффективной пластической деформации $\dot{\mathcal{E}}_{eff}^{p}$ и температуры *T*

$$\sigma_T \left(\varepsilon_{eff}^p, \dot{\varepsilon}_{eff}^p, T \right) = \left[\sigma_{T_0} + A \left(\varepsilon_{eff}^p \right)^n \left[1 + C_1 \ln \left(\frac{\dot{\varepsilon}_{eff}^p}{\dot{\varepsilon}_0} \right) \right] \left[1 + \left(\frac{T - T_0}{T_{melt} - T_0} \right)^m \right].$$
(3)

 $\dot{\varepsilon}_0$ и T_0 – референтные скорость деформации и температура, T_{melt} – температура плавления металла, σ_{T_0} – предел текучести материала при комнатной температуре, A – чувствительность к деформации, C_1 – чувствительность к скорости деформации, n – параметр, отвечающий за влияние деформационного упрочнения, m – параметр, описывающий температурное разу-прочнение.

В качестве критерия разрушения используется сопряженная модель Джонсона-Кука на базе кумулятивного закона накопления поврежденности *d*:

$$d = \sum \frac{\Delta \varepsilon_{eff}^{p}}{\varepsilon_{f}^{p}},$$

$$\varepsilon_{f}^{p} = \left[d_{1} + d_{2} \exp(d_{3} \frac{p}{q}) \right] \left[1 + d_{4} \ln \left(\frac{\dot{\varepsilon}_{eff}^{p}}{\dot{\varepsilon}_{0}} \right) \right] \left(1 + d_{5} \frac{T - T_{0}}{T_{melt} - T_{0}} \right),$$
(4)

где \mathcal{E}_{f}^{p} – показатель текущего состояния элементарного объема материала – критическая интенсивность пластических деформаций, d_{i} i=1-5 – постоянные материала, p и q – первый и второй инварианты тензора напряжений.

Рис. 6. Размеры повреждения-отверстия и «пробки» при использовании модели материала Купера-Саймондса

Использовались характеристики материала по данным [4,8]. Референтные скорость деформации и температура $\dot{\varepsilon}_0 = 1,0$ с⁻¹ и *T*₀=298⁰ К. Разрушение начинается на 3-ей микросекунде с момента касания пластины и шара с тыльной стороны пластины. За следующие 3 микросекунды происходит образование отверстия и отделение «пробки». В течение последующих 21 мкс происходит отгиб краев отверстия, образование и рост трещин. Повреждение, как и в случае использования модели Купера-Саймондса, представляет собой сквозное отверстие с отгибом краев по направлению движения шара, присутствуют радиальные трещины. Диаметр отверстия составляет 9 мм, наружный диаметр отогнутой части с тыльной стороны 10,8 мм максимальная длина трещин – 4,4 мм, отгиб краев отверстия – 5,1 мм (рис. 7). Форма «пробки» чашевидная, габаритные размеры – 6,1х 2,4 мм. Поверхность разрушения – коническая с вершиной со стороны выпуклой поверхности «пробки». Остаточная скорость шара составила 360 м/с, скорость «пробки» – 390 м/с.

Рис. 7. Размеры повреждения-отверстия и «пробки» при использовании модели материала Джонсона-Кука

Геометрические характеристики поврежлений. полученные численным анализом по обеим исследованным моделям поведения материала согласуются между собой и с экспериментальным данными (таблица 3). Расхождение по геометрическим параметрам повреждения-отверстия лежит в пределах 9,1% для модели Купера-Саймондса и 15,4% для модели Джонсона-Кука. Размеры радиальных трещин в зоне повреждения в расчете с использованием модели Купера-Саймондса в 3 раза меньше, а при использовании модели Джонсона-Кука в 2 раза меньше чем в эксперименте. При анализе деформированного состояния «пробки» (рис. 8) несколько лучшее соответствие эксперименту получено в расчете по модели Джонсона-Кука, в частности форма поверхности разрушения согласуется с экспериментально полученной.

Порематр	Экспе- римент	Расчет по модели Купера-Саймондса		Расчет по модели Джонсона- Кука	
параметр		значе- ние	расхождение с	значе-	расхождение с
диаметр повреждения (отвер- стия) с лицевой стороны, мм	8,25	9,0	9,1	9,0	9,1
диаметр повреждения (отвер- стия) с тыльной стороны, мм	9,5	10,1	6,3	10,8	13,7
высота отгиба, мм	4,42	4,7	6,3	5,1	15,4
диаметр пробки, мм	6,8	5,7	16,2	6,1	10,3
высота пробки, мм	2,1	1,6	23,8	1,8	14,3
длина трещин, мм	10	3,0	70	4,4	56

Таблица 3. Геометрические параметры экспериментального и расчетных повреждений

Рис. 8. Габаритные размеры «пробки»: а) результат эксперимента, б) результат расчета по модели Купера-Саймондса, в) результат расчета по модели Джонсона-Кука

На рис. 9 представлены полученные в расчетах и эксперименте интенсивности пластической деформации на тыльной стороне пластины-образца в зависимости от расстояния до центра повреждения. Расчетные и экспериментальные распределения хорошо согласуются друг с другом. В расчете с использованием модели материала Купера-Саймондса максимальные значения интенсивности деформации совпадают с величиной предельной деформации до разрушения материала є_в=40%. При использовании модели Джонсона-Кука значение пластической интенсивности деформации вблизи краев отверстия получено несколько ниже, чем в эксперименте, 33%. При удалении от краев отверстия в эксперименте и расчетах пластические деформации уменьшаются.

Рис. 9. Зависимость пластической деформации от расстояния до центра повреждения:

Полученные в расчетах пластические деформации «пробки» показаны на рис. 10. В случае использования модели материала Купера-Саймондса величина пластических деформаций на лицевой поверхности пластины (на поверхности соударения) меньше (до 28%), чем на тыльной, где максимальные значения совпадают с заданным предельным значением $\varepsilon_{\rm B}$ =40%. При использовании модели Джонсона-Кука, наоборот, большие значения пластических деформаций наблюдаются на лицевой поверхности и достигают 48%, а на тыльной – до 28%.

Выводы: обе исследованные модели деформационного поведения и разрушения материала – Купера-Саймондса и Джонсона-Кука обеспечивают согласование расчетных данных о характере и параметрах повреждения с экспериментальными. Несколько более точное соответствие эксперименту по форме поверхности разрушения, размерам повреждения и трещин дает модель Джонсона-Кука, однако она включает в себя большее количество параметров, подлежащих экспериментальному определению.

СПИСОК ЛИТЕРАТУРЫ:

- Chen, X. Foreign object damage on the leading edge of a thin blade // Mechanics of Materials. 2005, N 37, P. 447-457.
- 2. Dietenberger, M. Development of a high strain-rate dependent vehicle model / M. Dietenberger, M.

Buyuk, C-D Kan. – LS-DYNA Anwenderforum, Bamberg, 2005, B-III-1-10.

- Johnson, G.R. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures / G.R. Johnson, W.H. Cook // Proceedings 7th International Symposium on Ballistics. – Hague, 1983. P. 541-547.
- Lesuer, D.R. Experimental Investigations of Material al Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum, U.S. – Department of Transportation Federal Aviation Administration, DOT/FAA/AR-00/25, 2000. 41 p.
- 5. Марочник стали и сплавов, http: //www.acrossteel.ru/directory/mat_start_1419.html

- 6. OOO «Компоненты двигателя», http:// www.titanium-valve.com
- Duó, P. Residual Stresses induced by Foreign Object Damage on Gas Turbine Blades: an Experimental Approach / P. Duó, A.M. Korsunsky, D. Nowell // 12th International Conference on Experimental Mechanics, ICEM12. – Politecnico di Bari, Italy Sep 2004.
- Gokhfeld, D.A. On the ultimate strain criterion for fracture prediction at normal and elevated temperatures / D.A. Gokhfeld, O.S. Sadakov, K.M. Kononov // Dynamic, Strength & Wear-resistance of Machines. 1977. Vol. 3, http://www.ebiblioteka. lt/resursai/Uzsienio%20leidiniai/Celiabinsk/dinamik a,procnost/1997/v3 02.pd

EXPERIMENTAL VERIFICATION OF MODELS OF DEFORMATION BEHAVIOUR AND HIGH-SPEED DESTRUCTION OF TITANIC ALLOY BT6

© 2011 M.Sh. Nihamkin¹, L.V. Voronov¹, O.L. Lyubchik¹, I.L. Gladkiy²

¹ Perm National Research Polytechnical University ² JSC "Aircraft engines", Perm

The technique and results of experimental research and numerical modeling of processes of dynamic deformation and destruction at high-speed impact loading the titanic alloy BT6b are stated. At numerical modeling two models of behaviour of a material compared: Cooper-Saymonds and Johnson-Cook. For verification the mathematical models the data of special experiment on punching the titanic plate by a steel sphere is used. The received results are supposed to be used at modeling the exploitation damages of hollow blades of aviation engine fan.

Key words: titanic alloy BT6, high-speed damage, Cooper-Saymonds model, Johnson-Cook's model, experimental verification

Mikhail Nikhamkin, Doctor of Technical Sciences, Professor, Deputy Head of the "Aircraft Engines" Department. E-mail: nikhamkin@mail.ru

Leonid Voronov, Candidate of Technical Sciences, Associate Professor at the "Aircraft Engines" Department. E-mail: leonid-v-voronov@vandex.ru

Department. E-mail: Olga-i-voronova@yanaex.ru

Ivan Gladkiy, Candidate of Technical Sciences, Chief of the Department. E-mail: gladky@avid.ru

Olga Lyubchik, Minor Research Fellow at the "Aircraft Engines" Department. E-mail: olga-l-voronova@yandex.ru