УДК 621.791.3:621.396.2

ИССЛЕДОВАНИЕ КАЧЕСТВА ПАЯНЫХ СОЕДИНЕНИЙ ЭЛЕКТРОРАДИО ИЗДЕЛИЙ С БЕССВИНЦОВЫМИ ПОКРЫТИЯМИ ВЫВОДОВ

© 2012 Д.В. Кунтушев

ФГУП ГНПРКЦ «ЦСКБ-Прогресс», г. Самара

Поступила в редакцию 22.03.2012

В данной статье описываются результаты исследования качества паяных соединений ЭРИ с бессвинцовыми покрытиями выводов.

Ключевые слова: *паяное соединение, надежность, комбинированная технология монтажа, объемное сопротивление*

Существующее многообразие материалов дает повод к размышлению разработчиков о возможности их применения. Отсутствие соответствующего опыта не гарантирует необходимый уровень надежности изделий с применением таких материалов. Так, применение современных припоев и паяльных паст для монтажа электрорадио изделий (ЭРИ), например, в бессвинцовом исполнении (в связи с принятыми в законодательном порядке директивами WEEE и RoHS [1]), на печатную плату требует детального изучения. Продуктом проведения монтажа ЭРИ на печатную плату являются паяные соединения. Паяное соединение обеспечивает механическое крепление и электрический контакт компонента с печатной платой. Соответственно, параметрами, характеризующими эти свойства, оценивается надежность паяных соединений. Отработанная технология традиционной пайки позволяет получить свинцовосодержащие паяные соединения высокого качества, и накопленные многолетним опытом применения статистические данные подтверждают их надежность.

Статистика качества и надежности бессвинцовых соединений мала и требует тщательного изучения с рассмотрением различных случаев и характеристик, но некоторая достоверная информация уже есть. М. Новоттник из Ростокского университета в своей работе [2] проводит анализ параметров припойных сплавов, основанный на сравнении их гомологической температуры и делает вывод, что для припоев типа SnAgCu (SAC) с температурой плавления порядка 490 K по сравнению с припоями типа SnPb с температурой плавления около 456 К будет наблюдаться более высокая усталостная прочность. Это значит, что для условий работы при высоких температурах у бессвинцовых припоев с точки зрения надежности имеются преимущества, а при низких

Кунтушев Данила Валентинович, начальник отдела. E-mail: dany_w_kunt@mail.ru температурах картина меняется. В работе И.П. Клеха [3] исследован процесс образования трещин в паяных соединениях в зависимости от циклического растяжения и сделан вывод, что при значительных деформациях свинцовосодержащие припои SnPb обладают лучшей надежностью. Принимая это во внимание, специалисты подвели итог: при монтаже компонентов типоразмера 0402 и менее с применением бессвинцовых припоев SAC достигается большая надежность, для более крупных компонентов (типоразмер 1206 и более) предпочтительным является припой SnPb.

В современных условиях при установленных требованиях производители особо надежной аппаратуры, вынужденные использовать компоненты импортного производства в бессвинцовом исполнении, нашли выход — комбинированная технология монтажа, то есть пайка ЭРИ свинцовосодержащим припоем независимо от типа покрытия выводов этих элементов. Данная технология подходит для отечественного производителя, а главное: есть уже определенные наработки, подтверждающие качество паяного соединения, полученного по такой технологии. В таблице 1 представлен перечень покрытий выводов и допустимость их применения в изделиях ракетно-космической техники (РКТ) [4].

По результатам проведенной работы на нашем предприятии по анализу паяных соединений, полученных по комбинированной технологии, можно уже делать выводы. Для исследования качества паяных соединений использовались следующие методы, которые в прямой или косвенной форме позволяют сделать соответствующий вывод о работоспособности изделий: визуальная оценка паяного соединения; рентгеноконтроль; микроскопическая оценка металлографических участков.

Визуальный контроль проводился с помощью оптической системы, имеющей достаточное

увеличение для просмотра каждого компонента в отдельности и эрзаскопа (для микросхем в корпусе BGA, монтаж таких микросхем проходил с полным оплавлением шариковых выводов, для

перемешивания свинцовосодержащей паяльной пастой с бессвинцовым выводом). Почти все паяные соединения удовлетворяют критериям качества [5] и [6].

Таблица 1. Аббревиатуры в наименовании компонентов применяемые в международной практике

U00- 3наче- ние	Материал, сплав	Допустимость применения в изделиях РКТ
E1	выводы покрыты сплавом олова, серебра и меди (SnAgCu) (Кроме перечисленных в категории E2)	допускается
E2	выводы покрыты сплавами олова (Sn), не содержащими висмут (Bi) и цинк (Zn) кроме сплава SnAgCu	допускается
E3	выводы покрыты оловом (Sn)	допускается
E4	выводы покрыты драгоценными металлами (серебром (Ag), золотом (Au), палладием и никелем (NiPd), палладием, никелем и золотом (NiPdAu)) (не содержат олова (Sn))	допускается
E5	выводы покрыты сплавами олова и цинка (SnZn, SnZnx) (не содержит висмута (Bi))	не допускается
E6	содержит висмут (Ві)	не допускается
E7	выводы покрыты низкотемпературным припоем (температура плавления менее 150°С) содержащими индий (не содержат висмута (Bi))	не допускается

Паяные соединения компонентов, кроме компонентов в BGA-корпусах, с бессвинцовыми покрытиями выводов - гладкие глянцевые или гладкие матовые. Припой смачивает нижнюю часть и торцевую сторону компонентов. Для компонентов в BGA-корпусах отмечается неоднородность паяных соединений, наличие раковин. Примеры паяных соединений, выполненных по комбинированной технологии монтажа, показаны на рис. 1. Другие дефекты были малочисленны и не зависели от типа покрытия выводов компонентов. Некоторые дефекты были связаны с неверными типоразмерами посадочных мест для компонентов. Типоразмер посадочного места компонента напрямую влияет на формирование паяного соединения, а, следовательно, и на его надежность, что придется принять во внимание при дальнейших испытаниях паяных соединений.

Рис. 1. Паяные соединения выполненные по комбинированной технологии монтажа

Расчет размеров контактных площадок должен исходить из физической адекватной дозировки припоя и формы паяного соединения. Форма определяется высотой и радиусом

кривизны галтели, величиной зазора. Наиболее удачным является форма на рис. 2б, где доминирует легкая выпуклость в наружном направлении без закрытия конструктивного компонента сверху. Слишком большое количество припоя (рис. 2a) увеличивает жесткость соединения и характеризуется склонностью к растрескиванию, как и в тонких местах (рис. 2в), что обусловлено недостаточным количеством припоя.

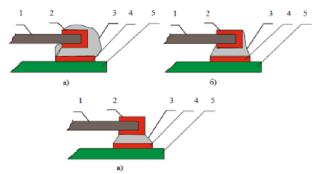
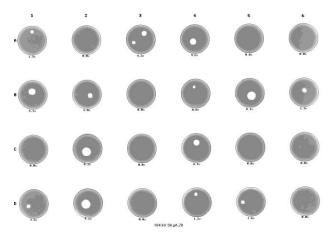


Рис. 2. Формы паяного соединения: 1 – корпус; 2 – вывод компонента; 3 – припой; 4 – контактная площадка; 5 – печатная плата

Форма паяного соединения определяется толщиной наносимого припоя и геометрическими размерами контактной площадки на печатной плате, а, следовательно, каждый профиль паяного соединения имеет жесткость, которая передает механические воздействия от платы к компоненту. Надежность паяного соединения можно спрогнозировать исходя из его формы. Метод расчета, приведенный в [7] и [8] показывает, что наибольшей надежностью обладает паяное соединение на рис. 2б.


Рентгеновская инспекция является одним из распространенных методов неразрушающего контроля. Основные задачи, которые позволяет решить рентгеновская инспекция, приведены в табл. 2. При проведении рентгеновской инспекции исследуемый объект помещался между источником излучения и детектором. Рентгеновское

излучение, проходя через объект, ослабляется им. Прошедшее излучение фиксируется детектором, и на экране компьютера выводится чернобелое изображение исследуемого объекта. Чем светлее изображение, тем меньше объект ослабляет луч, и наоборот.

Таблица 2. Задачи, которые позволяет решить рентгеновская инсг
--

Тип объекта		Подтип объекта	Дефект/недостаток, который можно обнаружить		
Паяные с	:o-	компоненты BGA	пустоты, смещение, перемычки, отсутствие смачивания, отсутствие соединения, отсутствие вывода, трещины, шарики припоя		
единения		компоненты, монтируемые в отверстия	заполнение припоем монтажных отверстий, пустоты, трещины		
		прочие компоненты	трещины, пустоты, шарики припоя		

Рентгеновскому контролю подвергались микросхемы в корпусах BGA. Были выявлены многочисленные пустоты (рис. 3).

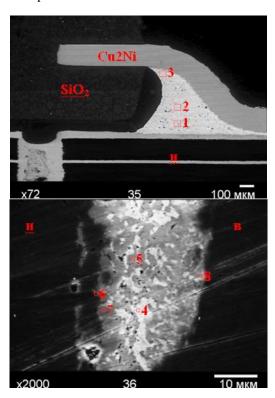


Рис. 3. Пустоты в шариковых выводах микросхем в корпусах BGA

Паяное соединение представляет собой гетерогенную систему, то есть макроскопическую неоднородную систему, состоящею из однородных частей (компонент), разграниченных поверхностями раздела. Исследования структуры паяных соединений проводят с помощью микрошлифов. Для электронно-микроскопического формирования изображения использовались сигналы вторичных и отражённых электронов, позволяющие получить соответственно морфологический и композиционный контраст изображения. Определение элементного состава образцов проводилось методом электронно-зондового микроанализа, который основан на сравнении характеристических рентгеновских спектров анализируемого образца и стандартов известного состава.

На микрошлифах паяных соединений компонента с типом выводов «крыло чайки» (рис. 4, таблица 3) видно, что основная масса припоя

собралась под «пяткой» вывода компонента вследствие чего получилось слишком жесткое паяное соединение, что может привести в процессе эксплуатации к развитию микротрещин, о чем говорилось выше.

Рис. 4. Микрошлиф паяного соединения компонента с типом вывода «крыло чайки»

Для формирования надежного паяного соединения необходимо уменьшить контактные площадки под выводами компонентов. Толщина интерметаллида Cu₃Sn составила от 3-10 мкм, в то время как допустимая толщина интерметаллида должна составлять не более 1,5 мкм.

Таблица 3. Данные по составу паяного соединения компонента с типом вывода «крыло чайки» (масс. %)

Уча- сток	Ni	Cu	Ag	Sn	Pb
1	-	1,5	1,5	68,3	28,6
2	-	0,9	2,0	67,7	29,3
3	0,4	2,2	1,6	71,5	24,3
5	-	-	-	95,9	4,0
6	-	70,0	-	29,5	-
7	0,4	34,5	-	62,1	3,0
8	71,5	10,0	-	18,5	-

При комбинированной технологии пайки BGA (пайка компонентов с бессвинцовым покрытием выводов оловянно-свинцовым припоем) свинец должен равномерно распределяться по всему объему шарикового вывода компонента BGA. Как видно из рис. 5, в шариковом выводе компонента недостаточное количество свинца, что приводит к некачественному паяному соединению. По данным таблицы 4 видно, что массовая доля свинца в шариковом выводе BGA составляет ~6%, а для качественного комбинированного паяного соединения необходимо не менее 30%.

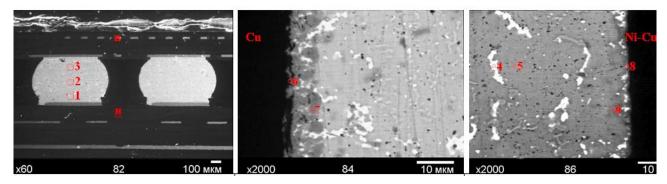
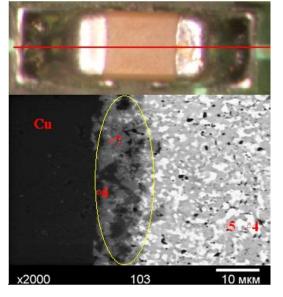


Рис. 5. Микрошлиф паяного соединения компонента в корпусе BGA


Таблица 4. Данные по составу паяного соединения компонента в корпусе BGA (масс.%)

Учас- ток	Fe	Ni	Cu	Ag	Sn	Pb
1	-	-	1,6	2,2	89,2	6,7
2	-	-	0,8	3,0	91,1	5,0
3	-	0,4	1,7	2,2	90,1	5,6
4	0,1	-	0,4	-	9,5	89,9
5	-	-	-	-	98,4	1,6
7	-	1,2	31,8	0,8	65,3	0,9
9	-	24,9	17,0	-	56,8	1,1

В структуре паяного соединения чип — конденсатор (рис. 6, таблица 5) наблюдается продолжительная зона роста интерметаллидов Ni_3Sn (до 12 мкм). Необходимо уменьшить время пайки при расплавленном состоянии припоя при монтаже компонентов.

Таблица 5. Данные по составу паяного соединения чип-компонента (масс.%)

Учас- ток	Fe	Ni	Cu	Ag	Sn	Pb
4	-	-	0,5	8,9	27,3	63,4
5	-	-	-	0,6	75,3	23,9
6	-	82,4	-	-	17,6	-
7	-	82,9	-	-	17,1	-
9	-	69,8	1,0	-	29,1	-

Рис. 6. Микрошлиф паяного соединения чип-компонента

Под воздействием термических или механических нагрузок возможны повреждения паяных соединений и образования трещин, поэтому необходимо проведение испытаний для подтверждения надежности исследуемой технологии монтажа. Структура зерна припоя, как правило, нестабильна во времени. Со временем зерно растет, что приводит к уменьшению внутренней энергии кристаллической структуры. Этот процесс ускоряется с увеличением температуры и при термоциклической нагрузке.

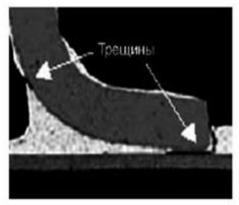


Рис. 7. Макротрещина в паяном соединении

Процесс роста зерна провоцирует накапливающуюся усталость и по мере роста увеличиваются межкристаллитные прослойки, в которых образуются всевозможные загрязнения припоя и пустоты. Из-за этих диффузионных процессов укрупнения кристаллов прочность припоя падает. После того, как образуется 25% вакантных микропустот, при соответствующих механических

нагрузках происходит разрушение паяного соединения по границам зерен. Далее микропустоты превращаются в микротрещины, если их объем достигает 40%. Микропустоты увеличиваются в объеме, микротрещины растут и соединяются в макротрещины, ведущие к полному разрушению паяного соединения (рис. 7).

Усталостные разрушения часто провоцируются термомеханическими нагрузками, вызванными значительными различиями в коэффициентах термического расширения материалов подложки и компонентов. Циклические напряжения сдвига, возникающие, например, при включении и выключении аппаратуры, вызывают укрупнение зерна припоя и его ослабление. Поскольку межкристаллитные прослойки и пустоты, образующие поры и микротрещины, формируются из посторонних для припоя элементов, надежность паяных соединений прямо связана с загрязнениями припоя: собственных и растворяющихся в припое покрытиях плат и компонентов (рис. 8) [9].

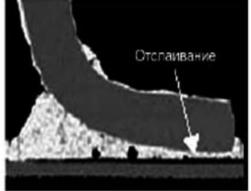


Рис. 8. Результат пайки загрязненным припоем

Во время испытаний определение надежности паяного соединения можно осуществлять с помощью измерения объемного сопротивления. Повышение этого сопротивления под воздействием термических или механических нагрузок свидетельствует о повреждении вследствие образования трещин. Из практических опытов установлено, что величина объемного сопротивления практически не зависит от повреждения паяного соединения. В случае механического повреждения сопротивление резко возрастает лишь непосредственно перед разрушением паяного соединения, хотя первые трещины появляются значительно раньше [3]. От покрытия выводов компонентов сопротивление паяных соединений не зависит. Это можно увидеть, проанализировав микрошлифы на рис. 4-6. Учитывая, что проводимость металлов группы А даже от больших добавок металла группы Б меняется мало, то можно представить рассмотренные паяные соединения как бинарную смесь Sn и Pb. Воспользуемся рекомендованной моделью для

сплавов – смесей имеющих структуру с взаимопроникающими компонентами (рис. 9).

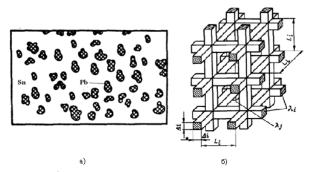


Рис. 9. Хаотическая и адекватная модели

Расчет данной модели сводится к формуле, полученной Г.Н. Дульнеевым (1965) для расчета удельного электрического сопротивления:

$$\rho = \rho_1 [C^2 + \rho_1 \rho_2^{-1} (1 - C)^2 + +2\rho_1 \rho_2^{-1} (1 - C)^2 (\rho_1 \rho_2^{-1} C + 1 - C)^{-1}]$$

Для записанной формулы наблюдается хорошее совпадение расчетных и измеренных значений во всем диапазоне измерений концентраций компонент [10].

Выводы: проведенные исследования показали возможность формирования качественного паяного соединения при комбинированной технологии монтажа, кроме микросхем в корпусах BGA. Паяные соединения шариковых выводов корпуса BGA из «бессвинцового» припоя после пайки оловянно-свинцовым припоем имеют структуру паяного соединения, отличающуюся от структуры классического паяного соединения BGA. В зависимости от количества нанесенной оловянно-свинцовой припойной пасты на контактные площадки ПП в процессе пайки образуются паяные соединения, сплавы которых имеют различные химические составы и, соответственно, различные температуры кристаллизации, различные микроструктуры и механические свойства. Надежность этих, действительно комбинированных паяных соединений сомнительна. В этом случае напрашивается проведение реболлинга, то есть замены на свинцовосодержащие шариковые выводы перед монтажом BGAмикросхем, проведя дополнительные проверки на их работоспособность[11]. Отсутствие отечественных стандартов по данной тематике и недостаточное количество статистических данных, подтверждающих надежность, заставляют набираться терпения и требуют проведения различных испытаний и исследований.

СПИСОК ЛИТЕРАТУРЫ:

1. Кунтушев, Д.В. Электронная компонентная база с бессвинцовыми покрытиями выводов и возможность ее применения в бортовой аппаратуре космических аппаратов // Материалы всероссийской научно-технической конференции «Актуальные проблемы ракетно-космической техники и ее роль в устойчивом социально-эконом-

- ческом развитии общества» посвященной 50-летию образования ЦСКБ и 90-летию со дня рождения Д.И. Козлова. Самара, Самарский на-учный центр РАН, 2009. С. 235-237.
- Новоттик, М. Надежность бессвинцовых электронных узлов // Технологии в электронной промышленности. 2007. №1. С. 54-57.
- 3. *Clech, J.P.* Lead-Free and Mixed Assembly Solder Joint Reliability Trends. APPEX SMEMA Council Designer Summit. 2004. P. 528-3-1 528-3-17.
- Кратько, А. Особенности применения электронных компонентов, не содержащих свинца (Pbfree) // Современная электроника. 2005. №5. С. 24-29.
- ОСТ 92-1042-98 Радиоэлектронная аппаратура и приборы. Технические требования и требования безопасности к типовым технологическим операциям сборки и монтажа блоков и узлов на печатных платах. 1998. 69 с.
- 6. IPC-610D, Acceptability of Electronic Assemblits. 2005. 306 p.
- 7. *Сускин, В.В.* Основы технологии поверхносного монтажа. Рязань, Из-во Узорочье, 2001.160 с.
- 8. *Парфенов, А.* Введение в теорию прочности паяных соединений // Технологии в электронной промышленности. 2008. №3. С. 46-52.
- Медведев, А. Технологическое обеспечение надежности электронной аппаратуры // Технологии в электронной промышленности. 2005. №5. С. 60-62.
- Дульнев, Г.Н. Теплопроводность смесей и композиционных материалов. Справочная книга / Г.Н. Дульнев, Ю.П. Заричняк. – Л., Энергия, 1974. 264 с.
- 11. *Кунтушев*, Д.В. Проблемы технологии монтажа микросхем в корпусах BGA для аппаратуры с требованиями к высокой надежности / Д.В. Кунтушев, Е.Р. Зиятдинова // Материалы научнотехнической конференции молодых специалистов «Разработка, производство, испытания и эксплуатация космических аппаратов и систем», посвященная 50-летию полета в космос Ю.А. Гагарина. Железногорск, ОАО «Информационные системы» им. акад. М.Ф. Решетнева», 2011. С. 107-108.

QUALITY RESEARCH OF SOLDERED JOINTS OF ELECTRORADIO PRODUCTS WITH LEED-FREE COVERINGS OF LEADS

© 2012 D.V. Kuntushev

State Scientific Production Rocket and Cosmos Center "TsSKB-Progress", Samara

In this article results of research the quality of soldered joints of electroradio products with leed-free coverings of leads are described.

Key words: soldered joints, reliability, combined technology of mounting, volume resistance

Danila Kuntushev, Chief of the Department. E-mail: dany_w_kunt@mail.ru