ЛАЗЕРНАЯ НАПЛАВКА НА ЛОПАТКИ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ

© 2012 Е.А. Морозов, А.В. Долговечный, А.М. Ханов

Пермский национальный исследовательский политехнический университет

Поступила в редакцию 13.03.2012

В статье рассмотрена возможность восстановления титановых лопаток газотурбинного двигателя методом лазерной наплавки. Изучен внешний вид восстановленных лопаток, проведен микроструктурный анализ, также измерена микротвердость по сечению наплавки.

Ключевые слова: лопатка, лазер, наплавка, микроструктура

В настоящее время восстановительный ремонт компонентов авиационных двигателей является перспективным наплавлением техники, достигается значительное снижение расходов за счет восстановления поврежденных и изношенных деталей [1]. Опробована возможность восстановления геометрических размеров компрессорных лопаток методом лазерной наплавки на установке LENS 850R фирмы ОРТОМЕС с максимальной мощностью лазера 1 кВт. Для наплавки использован порошок титанового сплава с гранулами сферической формы (фракция размерами 40-120 мкм). На лопатке №1 (общий вид показан на рис. 1) наплавка выполнена по торцу пера. На лопатках №2 (выполнена наплавка на две лопатки такого типа, общий вид показан на рис. 2.) – первоначально наплавлены входная и выходная кромки (на длине 15 мм для получения размера хорды), а затем торец пера.

Наплавка на необходимую толщину выполнена за несколько проходов. При наплавке послойно увеличивалась мощность лазера: первые 1-2 слоя – 150 Вт, следующие 1-2 слоя – 200-250 Вт, завершающие слои – 300-350 Вт. Внешний осмотр лопаток после наплавки показал:

<u>лопатка №1</u>

- наплавленный металл сформирован из многослойных валиков. На поверхности наблюдаются нерасплавленные частицы порошка. Высота наплавки – 1,5-2,2 мм;

Морозов Евгений Александрович, ассистент кафедры «Конструирование машин и технология обработки материалов». E-mail: john_m@list.ru

Долговечный Алексей Валерьевич, ассистент кафедры «Конструирование машин и технология обработки материалов». E-mail: eternal85@bk.com

Ханов Алмаз Муллаянович, доктор технических наук, профессор, декан

- видимых несплавлений с основой и между слоями валиков не наблюдается;

- в околошовной зоне присутствуют цвета побежалости от желтого до синего. Трещин, подрезов в околошовной зоне нет.

Рис. 1. Вид лопатки №1 после наплавки пера

лопатка №2

- наплавленный металл сформирован аналогично предыдущей лопатке с более выраженными слоями валиков. Высота наплавки по торцу составила 3,5 мм, по хорде входной кромке – 4,3 мм, по хорде выходной кромке – 4,0 мм;

Рис. 2. Вид лопатки №2 после наплавки торца и кромок

- по месту перекрытия наплавленных валиков торца пера и хорды выходной кромки наблюдаются наплывы металла в виде капель с усадочными углублениями (Ø 0,5 мм) и трещинами 1~0,7 и 0,5 мм со стороны корыта, 1~2,0 и 1,0 мм со стороны спинки;

- по месту перекрытия наплавленных валиков торца пера и хорды входной кромки несплавлений не наблюдается;

- со стороны корыта наплавленный металл выступает над плоскостью пера, а со стороны спинки наблюдается некоторая вогнутость наплавки относительно плоскости пера.

Внешний вид лопаток №1 и 2 после механической обработки и вид индикаций после люминесцентной дефектоскопии приведен на рис. 3, 4.

Для металлографического исследования из всех лопаток по характерным участкам были изготовлены поперечные микрошлифы (рис. 5, рис. 6).

Рис. 3. Внешний вид лопаток после механической обработки

Рис. 4. Вид индикаций при люминесцентной дефектоскопии

Рис. 5. Вид наплавки торца пера на лопатке №1 (шлиф нетравленый). Стрелками указаны трещины, несплавления и рыхлоты

Рис. 6. Вид наплавки на лопатке №1 с указанием значений микротвердости (шлиф травленый). Стрелкой указана трещина

Просмотр шлифов показал:

<u>лопатка №1</u>

- в наплавке на травленых шлифах хорошо просматривается многослойность формирования металла, при этом четко выделяются три зоны, обусловленные разницей тепловложения (рис. 6);

- зоны имеет выраженные границы и отличные по форме виды структурных составляющих:

- в первой зоне структура крупнокристаллического строения с мелко пластинчатой α-фазой;

- средняя зона отличаются слабо травящейся матрицей с округлыми выделениями α-фазы;

- наружные зона имеют достаточно крупные очерченные зерна первичной β-фазы с мелко пластинчатыми выделениями α-фазы;

- с поверхности наплавки наблюдается прерывистая тонкая не травящаяся полоса, к которой примыкают грубые иглы α-фазы;

- в наплавке имеются единичные поры (Ø 0,05 мм) и несплавление в виде треугольника со сторонами 0,1; 0,1; 0,12 мм, от углов которого отходят трещины, в том числе с выходом на поверхность. Кроме того, в центральной по толщине части наплавки присутствует рыхлота с описанным диаметром 0,08 мм, также с наличием трещины (рис. 5);

- на линии сплавления с основным материалом и в околошовной зоне дефектов нет. Ширина зоны термовлияния составляет 0,2-0,6 мм;

- на поверхности наплавки наблюдаются включения нерасплавленных частиц порошка.

На микротвердомере ПМТ-3М с нагрузкой 50 г выполнен замер микротвердости по выявленным зонам наплавки и вблизи поверхности наплавки, результаты сведены в таблицу.

Участок замера	Микротвердость, кгс/мм ²
основной материал	322, 346, 344, 318
первые слои на-	412, 448, 473, 464
плавки центральные слои	531, 599, 543, 705, y
	трещин – 625, 725
наружные слои	4/4, 456, 557, 503, час- тицы порошка у поверх- ности – 254, 288
у поверхности на-	546, 482, 522

Анализ замеров показал:

- микротвердость по зонам наплавки неоднородная, имеются участки с повышенными значениями;

- значения микротвердости наплавленного металла в целом превышают микротвердость основного материала,

Для сравнения: среднестатистические значения микротвердости наплавки, выполненной аргонодуговой сваркой – 246-278 кгс/мм²[2].

<u>лопатка №2</u>

- наплавка, аналогично предыдущей лопатке, многослойная. Ширина зоны термовлияния со стороны наплавки по торцу и по кромкам составляет 0,4-0,9 мм;

- по торцу металл наплавки плотный, несплавлений и пор не выявлено. Выраженных отличий в структуре по слоям наплавки не наблюдается – структура наплавки крупнозернистая с мелко пластинчатой α-фазой. Микротвердость, Нµ₅₀, кгс/мм², по высоте наплавки достаточно равномерна – 403, 420, 410, 463;

- в структуре имеются грубые выделения αфазы, характерные для перегрева. Микротвердость, Нµ₅₀, кгс/мм², данных участков составляет 741-870, что указывает на наличие газонасыщения;

- вид формирования слоев наплавки аналогичен предыдущей лопатке, с выраженной зональностью.

Выводы:

1. Проведено исследование компрессорных лопаток с лазерной наплавкой порошка титанового сплава на лазерной установке LENS 850R фирмы «ОРТОМЕС». На лопатке №1 выполнена наплавка торца пера, на лопатках №2 наплавлены входная и выходная кромки пера для получения размера хорды и торец пера.

2. На всех лопатках наплавленный металл сформирован из многослойных валиков, в наплавке выходной кромки четко выделяются три зоны, обусловленные различными структурными составляющими. В наплавке торца и входной кромки лопатки №2 зональность не выражена.

3. Микротвердость слоя, полученного лазерной наплавкой на лопатках, ($H\mu_{50}$ =412-557 кгс/мм²) в целом превышает значения твердости основного материала ($H\mu_{50}$ =322-346 кгс/мм²) и выше значений типичных для наплавки аргонодуговой сваркой ($H\mu_{50}$ =246-278 кгс/мм²). Причем на отдельных участках вблизи трещин и у поверхности значения микротвердости высокие – 625-870 кгс/мм², что характерно для газонасыщения.

4. Исходя из полученных результатов можно заключить, что восстановление лопаток газотурбинных двигателей методом лазерной наплавки является перспективным направлением в развитии авиадвигателестроения, и требуются дальнейшие исследования по этой теме.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Таскаев, П.В. Восстановление моноколес газотурбинных двигателей и агрегатов при повреждении рабочих кромок одной или нескольких лопаток [Электронный ресурс] // Наука и образование. 2010. №10. URL <u>http://technomag.edu.ru/</u> <u>doc/161561.html</u>
- 2. Сварка в машиностроении: Справочник. В 4-х т. / Ред-кол.: Г.А. Николаев (пред.) и др. М.: Машиностроение, 1978. т. 2 / Под ред. А.И. Акулова. 1978. С. 237.

LASER BUILD-UP WELDING ON

GAS TURBINE ENGINES BLADES

© 2012 E.A.Morozov, A.V. Dolgovechniy, A.M. Khanov

Perm National Research Polytechnical University

In article the possibility of restoration the titanic blades of gas turbine engine by method laser of build-up welding is considered. Appearance of the restored blades is studied, the microstructure analysis is spent, the microhardness on section of build-up welding also is measured.

Key words: blade, laser, build-up welding, microstructure

Evgeniy Morozov, Assistant at the Department of "Machines Design and Technology of Processing the Materials". E-mail: john_m@list.ru Aleksey Dolgovechniy, Assistant at the Department of "Machines Design and Technology of Processing the Materials" E-mail: eternal85@bk.com Almaz Khanov, Doctor of Technical Sciences, Professor, Dean