УДК 539.125

О СОЕДИНЕНИЯХ КЮРИЯ С РУТЕНИЕМ

© 2012 Е.М. Пичужкина^{1,2}, С.В. Томилин²

¹ Ульяновский государственный университет ² ОАО «ГНЦ НИИ атомных реакторов», г. Димитровград

Поступила в редакцию 20.11.2012

Рентгенографически охарактеризованы соединения трансплутониевого элемента кюрия-244 с платиноидом рутением – интерметаллиды Ru₂Cm с гексагональной решеткой типа Zn₂Mg и Ru₃Cm с кубической решеткой типа Cu₃Au. Для них определены значения межплоскостных расстояний, кристаллографическая плотность. Проведен их сравнительный анализ с ранее изученными соединениями кюрия. Ключевые слова: сплав, кюрий, рутений, дифрактограмма, кристаллическая структура, параметры кристаллической решетки.

введение

В предыдущей работе были приведены результаты рентгенографической идентификации новых соединений – интерметаллидов Ru₂Cm с гексагональной решеткой типа Zn₂Mg и Ru₃Cm с кубической решеткой типа Cu₃Au, полученных при изучении сплавообразования платиноида рутения с трансплутониевым элементом кюрием-244. В данной работе будет продолжен анализ полученных экспериментальных результатов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Таким образом, в сплаве рутения с кюрием-244, полученном методом высокотемпературной конденсации паров металлического кюрия на подложку из рутения, установлено образование двух интерметаллидов: Ru₂Cm структурного типа Zn_2Mg (параметры кристаллической решетки (ПКР) a = 5,279(1) Å, c = 8,812(3)Å) и Ru₃Cm структурного типа Cu₃Au (ПКР a = 4,151(2)Å).

Эти результаты согласуются с результатами, полученными ранее [1] при исследованиях изготовленных тем же методом сплавов кюрия-244 с платиной, иридием, родием, в которых установлено образование интерметаллидов того же стехиометрического состава (табл. 1): Pn₂Cm и Pn₃Cm (где Pn=Pt, Ir, Rh).

В табл. 2, 3 приведены индексы отражений hkl, экспериментальные и теоретические межплоскостные расстояния ($d_{_{3KC}}$, $d_{_{BЫЧ}}$), а также относительные интенсивности ($I_{_{OTH},_{3KC}}$ и $I_{_{OTH},_{BMY}}$) рефлексов, соответствующих соединениям Ru₂Cm и Ru₃Cm. Из рентгеновских данных определена их кристаллографическая плотность: для Ru₂Cm она составила 14,02 г/см³, для Ru₃Cm 12,77 г/см³.

Таблица 1. Интерметаллические соединения кюрия с платиновыми металлами

Интер- метал-	Структура	ПКР, Å	
лид	(тип)	а	
Pt ₃ Cm	Кубическая (Си ₃ Аи)	4,181-4,196	
Pt ₂ Cm	Кубическая (Cu ₂ Mg)	7,600-7,670	
Ir ₃ Cm	Кубическая (Си ₃ Аи)	4,1729(5)	
Ir ₂ Cm	Кубическая (Cu ₂ Mg)	7,5714(3)	
Rh ₃ Cm	Кубическая (Си ₃ Аи)	4,161(1)	
Rh ₂ Cm	Кубическая (Си ₂ Mg)	7,5187(2)	

Пичужкина Елена Михайловна, аспирант, научный сотрудник. E-mail: elena810@mail.ru

Томилин Сергей Васильевич, кандидат химических наук, ведущий научный сотрудник. E-mail: nanolabniti@gmail.com

Как было установлено, система Ru-Cm характеризуется отсутствием взаимной растворимости компонентов при комнатной температуре, чего и следовало ожидать, поскольку метал-

hkl	I _{отн экс}	d _{экс} , Å	$\mathbf{I}_{_{0TH B \mathbf{b} \mathbf{y}}}^{*}$	d _{выч} , Å
(110)	0,57	2,643	0,58	2,640
(103)	0,96	2,472	0,98	2,471
(112)	1,00	2,266	1,00	2,264
(201)	0,55	2,211	0,60	2,213
(213)	0,35	1,489	0,37	1,489
(302)	0,25	1,440	0,23	1,440
(205)	0,32	1,396	0,29	1,396
(220)	0,14	1,319	0,22	1,320
(313)	0,15	1,163	0,17	1,164

Таблица 2. Результаты расчета межплоскостных расстояний для фазы Ru₂Cm.

Примечание. Здесь и далее: * – $I_{\text{отн выч}} = I_{HKL} = \left(\frac{F_{HKL}}{V_{cell}}\right)^2 \cdot P_{HKL} \cdot \frac{1 + \gamma \cdot \cos^2 2\theta}{\sin^2 \theta \cdot \cos \theta} e^{-2M}$, где F_{HKL} – структурная

амплитуда, V_{cell} – объем ячейки, P_{HKL} – множитель повторяемости, γ =1 при съемке без монохроматора, 2M=(2 π /d_{HKL}) · < ξ^2 > - фактор Дебая-Валлера, < ξ^2 > – средний квадрат тепловых смещений атомов вдоль дифракционного вектора (по нормали к отражающим плоскостям), < ξ^2 >=0,07 Å

hkl	I _{отн экс}	d _{экс} , Å	I _{отн выч} *	d _{выч} , Å
(001)	0,07	4,154	0,15	4,151
(101)	0,09	2,931	0,13	2,935
(111)	1,00	2,399	1,00	2,397
(002)	0,61	2,077	0,48	2,076
(202)	0,38	1,467	0,30	1,468
(113)	0,40	1,251	0,34	1,252
(222)	0,15	1,198	0,10	1,198

Таблица 3. Результаты расчета межплоскостных расстояний для фазы Ru₃Cm.

лический радиус кюрия на ~30 % больше радиуса рутения.

Влияние альфа-распада ²⁴⁴Ст («самооблучения») на кристаллическую решётку интерметаллида Ru₃Ст исследовали в ходе выдержки отожженного образца сплава на воздухе при комнатной температуре. При этом было получено несколько его дифрактограмм - сразу после отжига, затем через 1 сут. и через 3 сут. В процессе выдержки наблюдалось резкое уменьшение интенсивности рефлексов кубической решётки интерметаллида Ru₃Cm, сопровождаемое их смещением в сторону малых углов (т.е. возрастанием параметра решётки (рис. 1, табл. 4)). На рен-

Рис. 1. Изменение интенсивности рефлекса (111) интерметаллида Ru₃Cm в зависимости от времени выдержки (t): a – t = 0,1 сут.; б - t = 1 сут.; в - t = 3 сут.

тгенограмме образца, полученной через 3 сут., не зафиксировано ни одного рефлекса данного соединения, наступила полная аморфизация его кристаллической решётки.

Следует заметить, что рентгеноаморфизация изоструктурных соединений Pn₃Cm (где Pn=Pt, Ir, Rh) произошла еще быстрее – менее чем за 22 ч [1]. Немного более устойчивыми оказались соединения вида Pn₂Cm – их рефлексы сохранялись на рентгенограммах до 5-7 сут. выдержки.

Таблица 4. Изменение ПКР интерметаллида Ru₃Cm во времени

n ₀	n	п Параметры решетки		t, сут.
		a, Å	V, Å ³	
6	4	4,151(2)	71,5(1)	0,1
4	4	4,161(2)	72,0(1)	1
-	-	-	-	3

Примечание. Здесь n₀ – число рефлексов интерметаллида на рентгенограмме, n – число рефлексов в расчетном наборе ПКР

Следует заметить также, что быстрая рентгеноаморфизация характерна именно для интерметаллических соединений, в то время как например оксидные фазы кюрия-244 весьма устойчивы к самооблучению, полной их аморфизации не наблюдается и через год выдержки, хотя интенсивность дифракционной картины заметно уменьшается. Примерами могут служить оксиды кюрия состава $CmO_{1,5}$ (гексагональная Аформа) и $CmO_{1,9}$ (гранецентрированная кубическая α -форма) [2].

ЗАКЛЮЧЕНИЕ

Для соединений Ru_2Cm и Ru_3Cm определены значения межплоскостных расстояний и относительной интенсивности рефлексов, рассчитана кристаллографическая плотность (для $Ru_2Cm - 14,02 \text{ г/см}^3$, для $Ru_3Cm - 12,77 \text{ г/см}^3$). Установлено, что во всех системах кюрия с платиновыми металлами (Ir, Rh, Pt, Ru) существуют интерметаллиды состава Pn_2Cm и Pn_3Cm , для которых характерна быстрая аморфизация под воздействием альфа-распада кюрия-244.

Работа выполнена при поддержке Министерства образования и науки Российской Федерации в рамках федеральных целевых программ «Научные и научно-педагогические кадры инновационной России на 2009 - 2013 годы» и «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы»

СПИСОК ЛИТЕРАТУРЫ

 Радченко В.М., Селезнев А.Г., Рябинин М.А. и др. Синтез и изучение бинарных соединений актиноидов и лантаноидов. XVII. Исследование сплавов ²⁴⁴Сm с платиной, иридием и родием, полученных конденсацией паров металлического кюрия // Радиохимия, 1994. Т. 36. Вып.4. С. 229–303. Судаков Л.В., Капшуков И.И., Баранов А.Ю., Шимбарев Е.В., Лялюшкин Н.В. Устойчивость окисей Ст²⁴⁴ при комнатной температуре // Радиохимия, 1977. Т.19. Вып.4. С. 490-496.

ON A COMBINATION OF CIRIUM WITH RUTHENIUM

© 2012 E.M. Pichuzhkina^{1,2}, S.V. Tomilin²

¹ Ulyanovsk State University

² Joint Stock Company "State Scientific Center Research Institute of Atomic Reactors", Dimitrovgrad

Radiographically characterized compounds transplutonium element curium-244 and PGE ruthenium - Ru_2Cm intermetallics with a hexagonal lattice of $Zn_2Mg Ru_3Cm$ and with a cubic lattice type Cu_3Au . For them, the values of the distance between planes, crystallographic density. Conducted a comparative analysis with the previously studied compounds curium.

Keywords: alloy, curium, ruthenium, diffraction, crystal structure, lattice parameters.

Elena Pichuzhkina, Postgraduate Student, Research Fellow. E-mail: elena810@mail.ru Sergey Tomilin, Candidate of Chemical Sciences, Leading Research Fellow. E-mail: nanolabniti@gmail.com