УДК 539.234

ВЛИЯНИЕ ФАЗОВОГО И ЭЛЕМЕНТНОГО СОСТАВА Ті Zr_{1-х} СИСТЕМЫ НА ЕЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА

© 2012 А.Л. Каменева

Пермский национальный исследовательский политехнический университет

Поступила в редакцию 21.03.2012

В данной статье получены зависимости, позволяющие прогнозировать физико-механические свойства $Ti_x Zr_{1-x}N$ систем по их фазовому и элементному составу, установлены закономерности между технологическими и температурными условиями подготовки подложки и осаждения слоев, фазовым и элементным составом $Ti_x Zr_{1-x}N$ систем и их физико-механическими свойствами. Ключевые слова: $Ti_x Zr_{1-x}N$ система, ионно-плазменные методы, фазовый и элементный состав, физико-механические свойства.

ВВЕДЕНИЕ

В последние годы эксплуатационные свойства ионно-плазменных поликристаллических пленок оценивают их физико-механическими свойствами (ФМС): микротвердостью (Н), модулем Юнга (Е), стойкостью к упругой деформации разрушения (Н/Е) [1, 2, 3], сопротивлением пластической деформации (H³/E^{*2}) [4, 5] и упругим восстановлением (We) [6]. Известно, что для повышения работоспособности режущего твердосплавного инструмента (РТИ) при воздействии высоких теплосиловых, ударных, истирающих и деформационных нагрузок пленка должна обладать комплексом ФМС: H=30...40 ГПа; E = 170...270 ГПа; We до 75%; H/E > 0,1; $H^3/E^2 = 0,15...1,52$ ГПа [1, 6], которые определяются не только строением материала пленки, а, в значительной степени технологическими и температурными условиями процесса ее осаждения [7-12]. в России и мире к настоящему времени остается не решенной проблема получения пленок с заданным комплексом стабильных ФМС.

Целью настоящей работы является изучение влияния фазового и элементного состава на физико-механические свойства пленки на основе ${\rm Ti}_{x}{\rm Zr}_{1-x}{\rm N}$ системы и их улучшение за счет оптимизации технологических и температурных параметров процесса ее формирования.

МЕТОДИКА ЭКСПЕРИМЕНТА

Поверхность всех тестовых образцов - пластинок из твердого сплава ВК8 (подложка) подвергали ионной очистке – нагреву одним электродуговым испарителем с титановым катодом. Для получения пленок на основе $Ti_x Zr_{1-x}N$ системы (в дальнейшем $Ti_x Zr_{1-x}N$ система) различного фазового и элементного состава увеличивали начальную температуру (Т_с) и скорость ее нагрева (V_{н.с.}) в процессе осаждения, либо изменяли материал и количество осаждаемых слоев. Температуру ($T_{_{II}}$), скорость ($V_{_{HII}}$) и степень равномерности нагрева подложки и, как следствие, начальную температуру Т, увеличивали без изменения времени ионной очистки за счет повышения величины высокого напряжения (U_{выс}) или проведения предварительной продолжительной низкотемпературной обработки подложки в тлеющем и/или магнетронном разрядах, либо за счет повышения продолжительности ионной очистки (t) с постепенным подъемом величины U_{выс} (табл. 1). Скорость нагрева (V_{н.с.}) поверхности Ti_xZr_{1-x}N системы в процессе ее осаждения увеличивали за счет повышения основных технологических параметров (ТехП): давления газовой смеси (Р), напряжения смещения на подложке ($U_{_{CM}}$) или содержания азота в газовой смеси (N₂) или понижения расстояния мишень-подложка (L) (случай осаждения системы магнетронным распылением (MP)), проведения ионной бомбардировки промежуточных слоев Ті_vZr_{1-v}N системы (случай осаждения системы электродуговым испарением (ЭДИ)), одновременного или попеременного использования нескольких различных типов источников плазмы (случай осаждения системы комбинированным методом (МР+ЭДИ)) (табл. 1). Температуру поверхности неподвижной подложки после ионной очистки, осаждения подслоя и Ti Zr, N системы определяли с использованием инфракрасного бесконтактного пирометра «Термикс».

Фазовый состав определяли по дифрактограммам, полученным с участков $Ti_x Zr_{1,x} N$ систем с использованием дифрактометра ДРОН-4 в Со К α излучении при напряжении 30 кВ, токе 20

Каменева Анна Львовна, кандидат технических наук, доцент, доцент кафедры технологии, конструирования и автоматизации в специальном машиностроении. E-mail: annkam789@mail.ru

Таблица 1. Фазовый и элементный состав Ti _x Zr _{1-x} N систем в зависимости	от ТехП и ТемП
(N – мощность магнетронного разряда, I _д – ток дуги)	

ТехП		ТемП		Материал слоев	61	Т	Объемные доли			Элементный состав, ат.%				
		Т _с , К	И _{н.с.} ,К/мин	Ti _x Zr _{1-x} N системы	Тип текстур		TiN	Zr_3N_4	TiZrN ₂	Zr	Ti	N	$\frac{C_{Zr}}{C_{Ti}}$	Ti-Zr-N система
Магнетронное распыление:														
общие TexII: $\bigcup_{\text{выс}} = 600$ эВ; t=5 мин; V _{н.п.} =90 К/мин; N=2,0 кВт; P=1,0 Па; $\bigcup_{cM} = 80B$; N ₂ =35%, (в числителе – $L_{Zr} = 100$ мм и $L_{Ti} = 100$ мм, в знаменателе $L_{Zr} = 270$ мм и $L_{Ti} = 100$ мм)														
Р, Па	0,8	605 615	0,2	Ti-Ti _x Zr _{1-x} N	1	0,69	53,2 71 2	5,1 5 3	41,7	36,67 45 42	13,14 4 25	50,19 50 33	0,36 0.09	$Ti_{0,74}Zr_{0,26}N$ $Ti_{0,01}Zr_{0,00}N$
	1,0	605 620	0,3	Ti-Ti _x Zr _{1-x} N	$\frac{1}{2}$	0,81	$\frac{52,6}{71,5}$	$\frac{5,1}{7,5}$	$\frac{42,3}{21,0}$	<u>38,05</u> 39,65	<u>13,23</u> 8 97	$\frac{48,72}{51,37}$	$\frac{0,35}{0,23}$	$\frac{\text{Ti}_{0.74}\text{Zr}_{0.26}\text{N}}{\text{Ti}_{0.74}\text{Zr}_{0.26}\text{N}}$
	1,2	605 (25	0,4	Ti-Ti _x Zr _{1-x} N	$\frac{1}{2}$	0,78	$\frac{53,4}{01,0}$	$\frac{6,3}{0,0}$	<u>40,3</u>	$\frac{37,24}{41,26}$	<u>13,08</u>	<u>49,68</u>	$\frac{0,25}{0,35}$	$\frac{\text{Ti}_{0,83}\text{Zr}_{0,18}\text{N}}{\text{Ti}_{0,74}\text{Zr}_{0,26}\text{N}}$
	40	625 605	0,1	Ti-Ti _x Zr _{1-x} N	1	0,70	91,0 58,6	9,0 6,6	34,8	41,26 36,97	9,09	49,65	0,22 0,32	$\frac{11_{0,82}Zr_{0,18}N}{Ti_{0,76}Zr_{0,24}N}$
		610			2		82,7	6,8	10,5	42,86	5,98	51,16	0,14	$Ti_{0,87}Zr_{0,13}N$
Uсм, В	60	605	0,2	Ti-Ti _x Zr _{1-x} N	$\frac{1}{2}$	0,81	<u>57,6</u>	<u>7,2</u>	$\frac{35,2}{25,7}$	35,76	12,48	<u>51,76</u>	0,35	$\frac{\mathrm{Ti}_{0.75}\mathrm{Zr}_{0.25}\mathrm{N}}{\mathrm{Ti}_{0.75}\mathrm{Zr}_{0.15}\mathrm{N}}$
		015					72,1	2,2	25,7	41,81	7,02	51,17	0,17	$11_{0,85}Zr_{0,15}N$
	30	605 615	0,2	Ti-Ti _x Zr _{1-x} N	$\frac{1}{3}$	0,39	<u>59,8</u> 76.9	$\frac{5,8}{2,9}$	$\frac{34,4}{20,2}$	<u>38,62</u> 47.18	<u>11,56</u>	<u>49,82</u> 46.13	$\frac{0.30}{0.14}$	$\frac{\text{Ti}_{0.77}\text{Zr}_{0.23}\text{N}}{\text{Ti}_{0.99}\text{Zr}_{0.23}\text{N}}$
N ₂ , %	40	605	0,4	Ti-Ti _x Zr _{1-x} N	1	0,58	55,1	7,2	37,7	36,14	12,70	51,34	0,14 0,35 0,22	$Ti_{0,74}Zr_{0,26}N$
V _{н.п.} ,	15	625 620	0,4	Ti-TiN-	<u>1</u>	0,92	<u> </u>	<u>7,9</u> <u>20,7</u>	<u>20,2</u> <u>76,0</u>	40,21 <u>19,74</u>	8,93 <u>29,83</u>	<u>50,86</u> <u>50,43</u>	0,22 <u>1,51</u>	$\frac{11_{0.83}Zr_{0.17}N}{Ti_{0.41}Zr_{0.59}N}$
К/мин		640		•Zr-ZrN• •Zr-Ti _x Zr _{1-x} N•	2		5,1	21,0	73,9	20,87	29,13	50,0	1,40	$Ti_{0,42}Zr_{0,58}N$
				Ti _x Zr _{1-x} N										
			ļ	3	лекі	проду	гово	e ucna	рение					
	15/	оби 650	цие] 15	$\frac{\Gamma ex \Pi: U_{Bbic} = 1000 \text{B};}{\text{T; } \text{Tr} \text{N}}$	U _{cm}	=200	B; N	$_2 = 100$	$\frac{1}{1} = 75$	A; $P=0$	<u>,8 Па;</u>	$U_{cM} = 20$	00 B	Ti Zr N
	10	695	1,5	$\mathbf{I} \mathbf{I}_{\mathbf{X}} \mathbf{\Sigma} \mathbf{I}_{1-\mathbf{X}} \mathbf{I} \mathbf{N}$	4	0,37	5,7	21,7	72,0	20,50	28,05	51,07	1,30	$11_{0,42} Z 1_{0,58} N$
	45/ 10	650 695	1,5	Ti,Zr - Ti Zr, N	4	0,58	4,3	22,3	73,4	20,27	29,13	50,06	1,44	Ti _{0,41} Zr _{0,59} N
	10	(50	1.5		4	0.(2	27	217	74.6	20.50	20.27	50.22	1.42	T: 7 N
V _{н.п.} , К/мин	45/ 10	650 695	1,5	•Ti _x Zr _{1-x} N-Ti,Zr•	4	0,62	3,/	21,7	/4,6	20,50	29,27	50,23	1,43	$11_{0,41}Zr_{0,59}N$
/t, мин	45/	650	3,7	$-T_{1_x}Zr_{1-x}N$ Ti,Zr-ИБ [*] -•Ti _x Zr ₁₋	4	0,93	-	22,0	78,0	19,56	30,67	49,77	1,57	Ti _{0,40} Zr _{0,60} N
	10	760		_x N-Ti,Zr-ИБ [*] •- Ti _y Zr _{1 v} N										
	20/	725	3,7	Ті,Zr-ИБ [*] -•Ti _x Zr ₁₋	4	0,89	-	21,6	78,4	19,65	30,80	49,55	1,57	Ti _{0,39} Zr _{0,61} N
	30	833		$\operatorname{Ti}_{x}\operatorname{Zr}_{1-x}\operatorname{N}$										
Комбинированный метод - $MP + \Im ДИ$: общие TexII: U _{выс} = 600 эВ; N=2,0 кВт; U _{см} =90 В; N ₂ =50 %; I _д =75 А; P=1 0 Па: материал катола – Э110 минени – BT-1-00														
	90/	605	1,2	Ti (MP)-	4	0,52	5,7	21,6	72,7	20,75	28,65	50,6	1,38	Ti _{0,42} Zr _{0,58} N
	5	640		$T_{1_x}Zr_{1-x}N_{KOME}$										
V _{н.п.} , К/мин /	15/ 30	620 650	1,0	Ті _{мР} - •TiN _{MP} -ZrNэли•	4	0,87	3,1	20,6	76,3	19,73	30,05	50,22	1,52	$Ti_{0,40}Zr_{0,60}N$
t, мин	1.5	(00)	1.2	Ti _x Zr _{1-x} N _{KOMB}		0.00	1.0	21.7		10.02	20.10	40.70	1.72	
	30	620 655	1,2	11эди-•11N _{MP} -11 _x Zr ₁₋ _x N _{комб} •- Ti _x Zr _{1-x} N	4	0,90	1,8	21,5	/6,5	19,82	50,40	49,78	1,53	$11_{0,40}Zr_{0,60}N$
				КОМБ										

*ИБ – промежуточная ионная бомбардировка - промежуточный нагрев слоя Ti,Zr. • TiN_{MP}-(Ti,Zr)_{КОМБ}• - повторяющиеся слои в пленке, _{комБ} – комбинированный метод. Тип текстуры: 1- (111)TiN+(111)TiZrN₂, 2- (111)TiN, 3- (111)+(200)TiN, 4- (111)TiZrN₂ мА, угловом интервале съемки 2 θ = 30-130°, шаге 0,1° и экспозиции в точке 4 с. Фазовые изменения в сформированных Ti_xZr_{1-x}N системах оценивали объемными долями входящих фаз: кубических TiZrN $_2$, TiN (в дальнейшем V $_{\rm TiZrN2},$ V $_{\rm TiN},$ c-TiZrN $_2$ и c-TiN) и орторомбической Zr $_3N_4$ (в дальнейшем V_{Zr3N4} , Zr_3N_4), направлениями преимущественной кристаллографической ориентации и степенью текстурированности $T = maxI_{111}$ $/ I_v Ti_x Zr_{1-x} N$ системы. Для определения концентрации титана, циркония и азота в Ti_vZr_{1-v}N системе проводили локальный химический анализ с использованием растрового электронного микроскопа BS 300 с приставкой для микроанализа EDAX Genesis 200 и количественный микрорентгеноспектральный анализ - микрорентгеновского анализатора типа МАР-3 при ускоряющем напряжении 20кВ, токе зонда 20 нА и размере зонда 5мкм.

Физико-механические свойства Ti_Zr,_N систем: микротвердость (Н); пластическую твердость, учитывающую только пластическую деформацию (HUp1); модуль Юнга (E); приведенный модуль Юнга ($E^* = EIT/(1 - v^2)$, где v – коэффициент Пуассона), стойкость к упругой деформации разрушения (Н/Е), стойкость к пластической деформации HUp1³/E^{*2} (в дальнейшем H³/E²) и величину упругого восстановления (W) определяли в соответствии со стандартом DIN EN ISO 14577-1 методом наноиндентации с использованием измерительной системы FISCHERSCOPE H100С и математической обработки серии полученных экспериментальных кривых нагрузки/разгрузки тестового образца с Ті Zr, N системой. Адгезию пленки оценивали при нагрузке на алмазный конус Роквелла 150 кгс по величине SRC, равную отношению площади скола пленки (S_{скола}) к площади отпечатка в плоскости пленки (S_{отпечатка}) (методика разработана в Харьковском физико-техническом институте). Съемку отпечатка алмазного конуса Роквелла производили на универсальном металлографическом микроскопе Альтами МЕТ5, оснащенном системой микроанализа и программным обеспечением.

В качестве материала мишеней и катодов использовали титан марки ВТ-1-00 и циркониевый сплав Э110.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На основании результатов рентгеноструктурного фазового и химического анализов установлено совместное влияние метода осаждения, ТехП и температурных параметров (ТемП) обработки подложки и осаждения Ti_vZr_{tv}N системы на ее фазовый и элементный состав (табл. 1, puc. 1, 2).

Магнетронным распылением после кратковременной термической обработки подложки (V_{ил}=90 К/мин) при одинаковом минимальном расположении двух магнетронных распылителей с Ті и Zr мишенями (L=100 мм) формируется трехфазная Ti_xZr_{1-x}N система, состоящая из двух основных кубических: c-TiN (пространственная группа Fm3m (225), параметр кристаллической решетки a=0,4244 нм), с-TiZrN₂ (Fm3m (225), а=0,4441 нм) и дополнительной орторомбической фазы Zr₃N₄ (Pnam (62), а=0,97294 нм, в=1,08176 нм, с=0,3281 нм) с x=0,23...0,26 (рис. 1, а). Содержание элементов в Ti_vZr_{1-v}N системе соответствует следующим интервалам: Zr = 11,56...13,23 at.%, Ti=35,76...38,62 at.%, N₂= 48,72...51,76 ат.%. В случае удаления Zr-мишени относительно подложки до 270 мм в Ti₂Zr₁N системе на 20...25 % повышается объемная доля с-TiN и до x=0,09...0,18 уменьшается содержание Zr в Ti_vZr_{1-v}N системе. Тип текстуры Ti_vZr_{1-v}N системы в первом случае - (111)TiN+(111)TiZrN₂, во втором - (111) TiN. Перераспределение металлических элементов в $Ti_x Zr_{1-x} N$ системе в пользу циркония (x=0,59) происходит только в Ti_vZr_{1.v}N системе, полученной после продолжительного равномерного прогрева подложки с V_{н.п.}=15 К/ мин при $T_{e}=620$ К и $V_{H,c}=0,4$ К/мин. Состав данной $Ti_{x}Zr_{1-x}^{c}$ N системы близок к стехиометрическому, степень ее текстурированности максимальна. Механическим испытаниям подвергали тестовые образцы с пленками на основе Ti_zZr₁_vN систем, сформированных магнетронным распылением равноудаленных мишеней.

В условиях протекания процесса осаждения электродуговым испарением и комбинированием его с МР формируется трехфазная Ti_xZr_{1-x}N система (х=0,58...0,61), состоящая из двух основных: c-TiZrN₂, Zr₂N₄ и дополнительной c-TiN фаз, с в два раза большим содержанием циркония по сравнению $Ti_x Zr_{1-x} N$ системами, сформированными магнетронным распылением: Zr = 28,03...30,80 ат.% при Ti=19,56...20,75 ат.%, N₂= 49,55...51,67 ат.% (рис. 1, б). Перераспределение металлических элементов в Ti_xZr_{1-x}N системе и двукратное повышение объемной доли в ней тройной фазы с-TiZrN₂ при незначительном изменении объемной доли Zr₃N₄ 20,6...22,3 % вызвано улучшением ТемП осаждения Ti_xZr_{1-x}N системы: $T_c = 650 \text{ K} \text{ и/или V}_{HC} = 1,5 \text{ K/мин}$. Подтверждением служит соответствие максимальной объемной доли с-TiZrN₂ (78,4 %) и содержания циркония в Ti_vZr_{1.v}N системе (x=0,61) максимальным температурным параметрам процесса ее осаждения: $T_{\rm c}{=}725~{\rm K}$ и $V_{\rm \tiny H.C.}{=}3,7~{\rm K}/{\rm мин}.$ В интервале $T_{\rm c}{=}~650...725~{\rm K}$ и $V_{\rm \tiny H.C.}{=}~1,5...3,7~{\rm K}/{\rm мин}$

🗏 Zr, ат.% 🔳 Ti, ат.% 🗂 N, ат.%

Рис. 1. Схематичные диаграммы зависимости элементного состава Ti_xZr_{1-x}N систем, осажденных методами MP (а) и ЭДИ, ЭДИ+MP (б), от входящих в нее фаз

формируются ${\rm Ti}_{_{x}}{\rm Zr}_{_{1-x}}{\rm N}$ системы близкого к стехиометрическому состава.

Все физико-механические свойства и адгезионная прочность сформированных $Ti_x Zr_{1-x} N$ систем вне зависимости от метода подготовки подложки и ее осаждения улучшаются с повышением объемной доли с- $TiZrN_2$ и содержания в них циркония. Однако, хорошими ФМС и адгезионной прочность обладает $Ti_x Zr_{1-x} N$ система, сформированная ЭДИ и комбинированным методом на равномерно прогретой подложке при оптимальных TexП и TeмП, с x=0,58...0,61. Оптимальным комплексом ФМС: H=36 ГПа; E = 239 ГПа; We = 78%; H/E = 0,18; H³/E² = 1,1 ГПа и высокой адгезионной прочностью SRC=0,44'"10⁵ мкм² обладает $Ti_x Zr_{1-x} N$ система, сформированная ЭДИ на равномерно прогретой подложке со стабильной структурой при оптимальных ТехП и T_c = 725 К и V_{н.c} = 3,7 К/мин.

ЗАКЛЮЧЕНИЕ

На основании проведенных рентгеноструктурных фазовых исследований, анализа элементного состава, механических и адгезионных испытаний тестовых образцов с сформированными Ti_xZr_{1-x}N системами показано, что для уменьшения влияния отрицательных последствий изготовления РТИ на процесс формирования систем, снятия напряжений и стабилизации структуры для каждой пары: Ti_xZr_{1-x}N система - подложка существует своя температура

Рис. 2. Фазовый и элементный состав, физико-механические свойства $Ti_x Zr_{1-x} N$ системы: a – взаимосвязь фазового и элементного состава $Ti Zr N_2$; б – влияние содержание циркония в $Ti_x Zr_{1-x} N$ системе на ее физико-механические свойства

нагрева, скорость ее изменения в процессе осаждения, при которой происходит формирование $Ti_x Zr_{1-x} N$ системы с улучшенным комплексом физико-механических и адгезионных свойств. Изменяя конструкцию, материал, способ подготовки подложки, метод и температурные параметры осаждения слоев можно управлять ФМС свойствами $Ti_x Zr_{1-x} N$ системы.

Определено, что применение ИБ в процессе осаждения $Ti_x Zr_{1-x} N$ систем для максимального повышения скорости ее нагрева в процессе осаждения ускоряет плазмохимические реакции, концентрации химических элементов реакционного газа и создает оптимальные ТемП для формирования $Ti_x Zr_{1-x} N$ системы с максимальной объемной долей с-TiZrN₂ и содержанием в ней циркония. Повышение циркония в исследуемом интервале 11,56...30,8 ат. % способствует не только улучшению физико-механических, но и адгезионных свойств $Ti_x Zr_{1-x} N$ системы.

Установлены закономерности изменения физико-механических свойств $Ti_x Zr_{t-x} N$ системы под влиянием ее фазовым и элементным составом, позволяющие прогнозировать свойства упрочненного РТИ.

Выявлено, что получение $Ti_x Zr_{1-x}N$ систем с градиентом фазового и элементного состава и требуемым комплексом физико-механических и адгезионных свойств возможно за счет оптимизации технологических и температурных параметров процесса их формирования.

Работа выполнена при финансовой поддержке Минобрнауки РФ (договор № 13.G25.31.0093) в рамках реализации Постановления Правительства РФ № 218 «О мерах государственной поддержки развития кооперации российских высших учебных заведений и организаций, реализующих комплексные проекты по созданию высокотехнологичного производства».

СПИСОКЛИТЕРАТУРЫ

- Шулаев В.М., Андреев А.А., Горбань В.Ф., Столбовой В.А. Сопоставление характеристик вакуумно-дуговых наноструктурных ТiN покрытий, осаждаемых при подаче на подложку высоковольтных импульсов // ФИП, 2007. Т. 5. № 1-2. С. 94-97.
- Мильман Ю.В. Новые методики микромеханических испытаний материалов методом локального нагружения жестким индентором // Сучасне матеріалознавство XXI сторіччя. К.: Наукова думка, 1998. 637 с.
 Yang-Tse Cheng and Che-Min Cheng. Relationships
- Yang-Tse Cheng and Che-Min Cheng. Relationships between hardness, elastic modulus and the work of indentation // Applied Physics Letters, 1998. Vol. 73, № 5. pp. 614-618.
- Mayrhofer P.H., Mitterer C., Musil J. Structure property relationships in single- and dual-phase nanocrystalline hard coatings // Surface and Coatings Technology, 2003. Vol. 174-175. pp. 725-731.
- Musil J. Hard and superhard nanocomposite coatings// Surface and Coatings Technology, 2000. Vol. 125. pp. 322-330.
- Штанский Д.В., Кулинич С.А., Левашов Е.А., Мооге Ј.J. Особенности структуры и физикомеханических свойств наноструктурных тонких пленок // Физика твердого тела, 2003. Том 45. Вып. 6. С. 1122-1129.
- Овидько И.А., Скиба Н.В., Шейнерман А.Г. Релаксация напряжений несоответствия путем зернограничной диффузии в нанокристаллических пленках// J. Materials Physics and Mechanics, 2009. № 8. С. 149-154.
- Береснев В.М., Погребняк А.Д., Азаренков Н.А., Фареник В.И., Кирик Г.В. Нанокристаллические и нанокомпозитные покрытия, структура, свойства // ФИП, 2007. № 5. № 1-2. С. 4-27.
 Углов В.В., Злоцкий С.В. Структура и свойства много-
- Углов В.В., Злоцкий С.В. Структура и свойства многокомпонентных покрытий на инструментальных материалах // Матер. Межд. науч.-прак. конф., 2011. Санкт-Петербург: СПбГПУ. 14-15 июня 2011. С. 375-384.
- Дробышевская А.А., Сердюк Г.А., Фурсова Е.В., Береснев В.М. Нанокомпозитные покрытия на основе нитридов переходных металлов // ФИП, 2008, Т. 6. № 1-2. С. 81-88.
- Анищик В.М., Углов В.В., Злоцкий С.В., Емельянов В.А., Пономарь В.Н., Ухов В.А. Многослойные наноструктурированные покрытия TiN/ZrN: структура и механические свойства // Перспективные материалы, 2003. № 4. С. 75-78.
- Наумов В.В., Бочкарев В.Ф., Трушин О.С., Горячев А.А., Хасанов Э.Г., Лебедев А.А., Куницын А.С. Исследование влияния низкоэнергетической ионной стимуляции на плотность и кристаллическую структуру тонких пленок // Журнал технической физики. 2001. Т. 71. Вып. 8. С. 92-97.

EFFECT OF PHASE AND ELEMENTAL COMPOSITION Ti_xZr_{1-x}N SYSTEM AT ITS PHYSICAL AND MECHANICAL PROPERTIES

© 2012 A.L. Kameneva

Perm National Research Polytechnic University

The dependences allowing to predict physicomechanical properties of $Ti_x Zr_{1-x} N$ systems on their phase and element composition have been received in given article, laws between technological and temperature conditions of preparation of a substrate and sedimentation of layers, phase both element structure of $Ti_x Zr_{1-x} N$ systems and their physicomechanical properties have been established.

Key words: $Ti_x Zr_{1-x} N$ system, the ion-plasma methods, phase and elemental composition, physico-mechanical properties.

Anna Kameneva, Candidate of Technics, Associate Professor at the Technology, Engineering and Automation in Special Machine Construction Department. E-mail: annkam789@mail.ru