УДК 621.316.98: 22.193

ВОЗМОЖНЫЙ ПОДХОД ДЛЯ ОЦЕНКИ СИСТЕМ МОЛНИЕЗАЩИТ РАКЕТ-НОСИТЕЛЕЙ НА КОСМОДРОМАХ

© 2012 А.Н. Потапенко¹, В. Курей², Т.А. Потапенко¹

¹ Белгородский государственный технологический университет им. В.Г. Шухова ²Уппсальский университет, Уппсала, Швеция

Поступила в редакцию 07.12.2012

Представлены особенности численного решения задач для исследования распределённых систем молниезащит на стартовых площадках с возможностью определения исследуемого поля на основе потенциала и электрической функции потока. Выполнены численные расчёты с представлением основных результатов для исследуемых объектов.

Ключевые слова: система молниезащиты, математическая модель, численные расчёты, электростатические поля

В работе [1] предложена классификация математических моделей для исследования разряда молнии. За основу классификации приняты виды исходных уравнений: 1) газодинамические (гидродинамические) модели для исследования начального развивающегося канала, приводящего к появлению ударной волны; 2) электродинамические модели на основе уравнений Максвелла для исследования основных эффектов при разряде молнии; 3) математические модели, представляющие разряд молнии в виде переходного процесса в линии передачи с распределёнными электрическими параметрами R, L, C на единицу длины; 4) инженерные математические модели на основе, например, уравнений, связывающих ток в молниевом канале относительно высоты и времени с током в начале канала. За исключением газодинамической модели последние три типа математических моделей для исследования разряда молнии подробно представлены в обзорной работе [2]. Следует отметить математические модели, использующие цепи с распределёнными параметрами для исследования особенностей обратного разряда молнии [3], а также развитие этих моделей на основе модифицированного телеграфного уравнения [4] с учётом распределённых источников тока для исследования тонких эффектов в разрядном канале молнии.

Пример особенностей математического моделирования развития канала при мощном электрическом разряде в жидкости, находящейся в полузамкнутой цилиндрической камере с полусферической верхней частью, представлен в [5]. В этой работе исследовано: 1) появление ударной волны при расширении разрядного канала; 2) гидродинамические эффекты взаимодействия созданных прямых и отражённых ударных волн с учётом стенок камеры. Результаты численных расчётов в 3-х мерном пространстве позволили объяснить известные экспериментальные данные о концентрации ударных волн, образующихся при мощном электрическом разряде в жидкости [6], причём они принципиально отличны от [7], трактующей процессы на основе эмпирических зависимостей. В дальнейшем эти процессы дополнительно исследовались в [8] с применением метода инверсии для полубесконечных областей (МИПО).

Для определения электромагнитных полей молнии в [2] показаны существующие основные подходы: 1) на основе численных решений точных уравнений с помощью специализированных алгоритмов; 2) численных решений уравнений Максвелла на базе, например, метода конечных разностей во временной области (finite-difference time-domain method – FDTD); 3) с использованием упрощённых уравнений. Отмечается, что если ранее FDTD использовался для анализа перенапряжений, индуцированных в линиях передач разрядом молнии, то в настоящее время применяется для анализа электромагнитных полей молнии.

В целом представленные в обзоре [2] математические модели – это в настоящее время основные модели для исследования разряда молнии и её различных физических проявлений, однако для оценки и сравнительного анализа существующих важных технических решений, например, в виде систем молниезащит ракет-носителей на космодромах [9], необходимы разработки дополнительных математических моделей.

Постановка задачи. Схема расположения типичной системы молниезащиты из 4-х молниеприёмников (рис. 1) для ракет-носителей с космическими аппаратами характерна для стран США (космодром на мысе Канаверал, Флорида), Франции, Индии и др. [9]. Для упрощения исследований представим систему молниезащиты ракетыносителя в виде башен с металлическими стержнями на их вершинах (например, не учитываются тросы, расположенные на вершинах стержней молниезащиты по контуру, особенности этих стержней, их материал и др.). Устройство 5 (рис.

Потапенко Анатолий Николаевич, кандидат технических наук, профессор кафедры электротехники и автоматики. E-mail: potapenko@intbel.ru

Курей Вернон, профессор Уппсальского университета, Уппсала, Швеция

E-mail: Vernon.Cooray@angstrom uu.se

Потапенко Татьяна Анатольевна, аспирантка. E-mail: ttwiggy@rambler.ru

1), связанное с ракетой-носителем на старте, представляется в виде металлической фермы, например, как на стартовой площадке №40 космодрома на мысе Канаверал для ракет-носителей типа «Falcon 9» для запуска космических аппаратов SpaceX Dragon.

Рис. 1. Схема типичной системы молниезащиты на космодроме: 1 – 4 – башни с цилиндрическими стержнями; 5 – ферма

При математическом моделировании системы молниезащиты на стартовой площадке применяется схема, показанная на рис. 2. Для учёта влияния дистанции l_1 от металлической фермы 5 до башни со стержнем 1 исследования проводятся в вертикальной диагональной плоскости от 1-ой до 4-ой башни. Границы области B(x,y) следующие: G_1 – плоскость в виде поверхности земли F(x,y); G_2 – нижняя граница облака V(x,y) в виде плоскости относительно поверхности F(x,y); G_3 , G_4 – границы для искусственного ограничения расчетной области путём введения в постановку задачи граничного условия типа $\partial \psi/\partial n = 0$, так как в этой задаче не учитывается краевой эффект от V(x,y).

Рис. 2. Схема моделирования области *B*(*x*,*y*) системы молниезащиты на космодроме (цифровые обозначения как на рис. 1)

В [10, 11] было проведено сравнение результатов расчета внешней краевой задачи с учётом краевого эффекта от облака и заземлённого стержня на основе МИПО с данными [12] в вертикальной плоскости по распределению поля ψ . В [12] решалась задача определения поля потенциала ψ , и также были введены облако и стержень, но внешняя краевая задача была сведена к внутренней на основе условия $\partial \psi / \partial n=0$. Погрешность была незначительная для исследуемой части области, при этом в [11] были показаны особенности исследуемого краевого эффекта. В связи с этим исходные данные для расчёта следующие: 1) расстояние от металлической фермы 5 до границы G₃ считается l_2

= 1000 м; 2) высота от F(x,y) до нижней границы V(x,y) принимается $H_1 = 1000$ м; 3) высота башней со стержнями считается $H_2 = 100$ м; 4) высота металлической фермы принимается $H_3 = 50$ м; 5) дистанция $l_1 = var$.

Для представления особенностей плоского или плоскопараллельного электростатического необходимо определить эквипотенциальные поверхности с шагом $\Delta \psi = const$ и поверхности электрической функции потока μ с шагом $\Delta \mu = const$ [13]. Как и потенциал ψ функция μ является относительной характеристикой поля, причём физический смысл имеет только разность её значений например, в точках р, d и не зависит от формы кривой и определяется в виде:

$$\mu_p - \mu_d = \int_d^p Endl \ . \tag{1}$$

Здесь *E_n* – проекция напряженности поля по нормали к кривой.

Следует заметить, что вектор напряженности поля *E* направлен по касательной к силовой линии (поверхности), поэтому линейный поток напряженности поля через любой отрезок силовой линии равен нулю. В связи с этим точки силовой линии характеризуются одним значением функции потока, причём каждая силовая линия в плоскопараллельном поле – это линия (поверхность) функции потока µ с уравнением вида

$$\mu_i = const. \tag{2}$$

Приращение потенциала *d ψ* на длине *dn* связано зависимостью

$$d\psi = -E_k \, dn. \tag{3}$$

Здесь знак «--» означает, что падение ψ происходит в направлении силовой линии. По определению функции потока её приращение $d\mu$ на длине dl равно

$$d\mu = E_k dl. \tag{4}$$

С учётом зависимостей (3), (4) величина *Е* может определяется в виде

$$E_k = -d\psi / dn$$
и $E_k = d\mu / dl.$ (5)

Следовательно, напряженность поля равна падению потенциала на единицу длины в направлении силовой линии или увеличению функции потока на единицу длины в направлении эквипотенциальной линии. Эти соотношения необходимы при решении задачи о распределении µ. Для оценки и сравнительного анализа существующих технических решений систем молниезащит ракетносителей на стартовых пло-щадках предлагается решение задачи в два этапа.

Первый этап. Определяется поле распределения потенциала ψ на основе решения уравнения Лапласа в виде

$$\Box \partial^2 \psi / \partial x^2 + \partial^2 \psi / \partial y^2; (x, y) \in B(x, y).$$
(6)

Граничные условия задачи с учётом рис. 2 следующие:

• на границе G₁:

$$\psi(x,y)=0, (x,y) \in G_1;$$
 (7)

• на границах башен со стержнями 1 (G_{11}), 4 (G_{14}) и на металлической ферме 5 (G_{15}) заземлённых относительно *F*(*x*,*y*):

 $\psi(x,y)=0, (x,y) \in G_{11}, G_{14}, G_{15};$ (8)

• на границах G₃, G₄:

$$\partial \psi / \partial n = 0, (x, y) \in \mathbf{G}_3, \mathbf{G}_4;$$
 (9)

• на границе G₂:

$$\psi(x,y) = \psi_0, (x,y) \in G_2;$$
 (10)

где B(x,y) – исследуемая область, ограниченная G_1 – G_4 , G_{11} , G_{14} , G_{15} .

Считаем, что на G_2 потенциал равен ψ_0 при возникновении электрических полей в атмосфере. При этом исследуется электростатическое поле при условии, что внешнее поле, прикладываемое к объектам 1-5, существенно мало, т.е. подразумевается отсутствие объёмных электрических зарядов в атмосфере исследуемой области B(x,y). При решении задачи определяются поле у и эквипотенциальные поверхности $\psi_i = const$ с некоторым шагом $\Delta \psi$ =*const*. Затем относи-тельно высоты H_1 на основе расчётов этого этапа выделяется некоторая область D(x,y) до уровня H_4 относительно поверхности F(x,y) с учётом симметрии в области B(x,y) относительно 5.

Рис. 3. Схема моделирования области *D*(*x*,*y*) системы молниезащиты (цифровые обозначения как на рис. 1)

Особенность выбора D(x,y) следующая: 1) на уровне H_4 поверхность ψ_k =const должна быть параллельна границе G_2 , чтобы было исключено влияние системы молниезащиты на распределение напряженности поля на этом уровне; 2) H_4 должна превышать тах высоту H_2 объектов 1 – 4 системы молниезащиты.

Второй этап. Схема моделирования области D(x,y) системы молниезащиты на космодроме, показана на рис. 3. Границы исследуемой области D(x,y) следующие: G_{21} – граница в виде части G_1 ; G_{22} – граница на уровне H_4 в виде некоторой поверхность $\psi_k = const$; G_{31} – граница в виде части G_3 ; G_{41} – граница в виде части симметрии области B(x,y), проходящая через объект 5; G_{11} , G_{15} – границы соответствующие области B(x,y).

Исходные данные для расчёта следующие: 1) расстояние от металлической фермы 5 до границы G_{31} считается $l_3 = 200$ м; 2) высота от F(x,y) до поверхности ψ_k =const равна H_4 (будет определена после расчетов первого этапа); 3) высота башни со стержнем H_2 =100 м; 4) высота металлической фермы H_3 =50 м; 5) дистанция l_1 =var. Поле распределения электрической функции потока μ определяется из эллиптического уравнения аналогичному уравнению Лапласа:

$$\Box \partial^2 \mu / \partial x^2 + \partial^2 \mu / \partial y^2; (x, y) \in D(x, y).$$
(11)

Граничные условия задачи с учётом рис. 3 следующие:

• на границе G₂₁:

$$\partial \mu / \partial n = 0, (x, y) \in G_{21};$$
 (12)

• на границах башни со стержнем 1 (G₁₁) и на металлической ферме 5 (G₁₅):

$$\partial \mu / \partial n = 0, (x, y) \in G_{11}, G_{15};$$
 (13)

• на границе G₃₁:

$$\mu(x,y) = \mu_0, (x,y) \in G_{31}; \tag{14}$$

• на границе G₄₁:

 $\mu(x,y)=0, (x,y) \in G_{41}; \tag{15}$

• на границе G₂₂:

$$\mu(x,y)=0, (x,y) \in G_{22}; \tag{16}$$

где D(x,y) – исследуемая область, ограниченная $G_{21}, G_{31}, G_{41}, G_{22}, G_{11}, G_{15}$.

Для оценки и сравнительного анализа системы молниезащиты на космодроме считаем, что появление молнии возможно, например, со стороны границы G_{22} , а именно, её левого края. Тогда на этой части границы G_{22} , а именно, на границе G_{23} выполняется условие:

$$\partial \mu / \partial n = 0, (x, y) \in \mathbf{G}_{23}.$$
 (17)

Особенности дискретных математических моделей каждого этапа расчёта заключаются в том, что исходные области B(x,y) и D(x,y) представляются дискретными с регулярной прямоугольной

сеткой ($\Delta_x = \Delta_y$) по аналогии, например, [10]. При расчетах не учитываются размеры в горизонтальных сечениях элементов систем молниезащит 1-4 и металлической фермы 5, так как они пренебрежимо малы по сравнению с шагом Δ сетки по координатам *x*, *y* (по поверхности *F*(*x*,*y*) между G₃ и G₄ расстояние 2000 м, а *H*₁=1000 м, при этом считаем, что в горизонтальном сечении металлическая ферма имеет размеры 4,0 х 3,0 м²).

Для каждой из областей B(x,y) и D(x,y) во внутренних узлах сетки выполняется условие сходимости итерационного метода Гаусса-Зейделя. В этих узлах дискретных областей потенциал $\psi_{i,j}$ рассчитывается с помощью числен-ного метода, например, ускоренного метода Либмана с учётом уравнения Лапласа в конечно-разностных аппроксимациях как в [10]. На границах G_i областей B(x,y) и D(x,y) потенциалы $\psi_{i,j}$ рассчитываются с учетом конечно-раз-ностных аппроксимаций на основе условий: 1) для области B(x,y) используются граничные условия (7)-(10); 2) для области D(x,y) соответственно граничные условия (12)-(17).

Результаты численных расчетов. При исследованиях на первом этапе существующих технических решений систем молниезащит ракетносителей на космодромах в области B(x,y) определяются поля распределения потенциала ψ и эквипотенциальные поверхности в виде уравнений $\psi_i=const$. Расчёты ведутся в безразмерном виде, а именно, потенциалы $\psi_i^*=\psi_i/\psi_0$; где ψ_0 – базовое значения потенциала в исследуемой области. Аналогично записываются безразмерные параметры и для других величин. Результаты численного расчета согласно уравнениям (6)-(10) для схемы моделирования области B(x,y) системы молниезащиты, показаны на рис. 4 в виде распределения эквипотенциальных поверхностей $\psi_i^*=const$ с $\Delta \psi^*=const$.

Рис. 4. Распределение эквипотенциальных поверхностей для исследуемой области B(x,y) в виде $\psi_i^* = const$ с $\Delta \psi^* = const$

Последующая схема для математического моделирования области D(x,y) с учётом системы молниезащиты на космодроме, показана на рис. 3. На основе полученных результатов величина H_4 выбирается равной 500 м.

А1. Для оценки и сравнительного анализа технического решения системы молниезащиты ракеты-носителя на космодроме (см. рис. 1) принимается дистанция l_1 от металлической фермы 5 до башни со стержнем 1 равной 200 м, т.е. элемент молниезащиты находится на границе G_{31} области

D(x,y). Для исследования предлагаемого подхода на основе 2-х этапов считаем, что появление молнии возможно, например, со стороны границы G₂₂, а именно, её левого края границы G₂₃. Результаты численного расчета согласно уравнениям (11)-(17) для схемы моделирования области D(x,y), показаны на рис. 5 в виде распределения поверхностей электрической функции потока $\mu_i^* = const$ с шагом $\Delta \mu = const$. При этом на рис. 5а показаны 30 функций потока μ_i^* ; рис. 56 соответственно 100 функций потока μ_i .

Рис. 5. Распределение поверхности электричес-кой функции потока $\mu_i^* = const$ с шагом $\Delta \mu^* = const$ при $l_1 = 200$ м

Из результатов, представленных на рис. 56, следует: 1) в объект 5 входят 19 функций потока μ_i и одна частично в объект 5 и в поверхность F(x,y); 2) в поверхность F(x,y) входят 38 функций потока μ_i ; 3) в элемент молниезащиты 1 входят 41 функция потока μ_i и одна частично в элемент 1 и в F(x,y).

А2. Принимается дистанция l_1 от металлической фермы 5 до башни со стержнем 1 равной 100 м, т.е. элемент молниезащиты находится по средине между границей G_{31} и объектом 5 области D(x,y). Результаты численного расчета для этой схемы моделирования области D(x,y) с учётом $l_1=100$ м, показаны на рис. 6 в виде распределения поверхностей электрической функции потока $\mu_i^* = const$ с шагом $\Delta \mu = const$. При этом на рис. 6а показаны 30 функций потока μ_i^* ; рис. 6б соответственно 100 функций потока μ_i .

Из результатов, представленных на рис. 66, следует: 1) в объект 5 входят 11 функций потока μ_i и одна частично в объект 5 и в поверхность F(x,y); 2) в поверхность F(x,y) входят 5 функций потока μ_i^* ; 3) в элемент молниезащиты 1 входят 71 функция потока μ_i^* и 2 частично в элемент 1 и в поверхность *F*(*x*,*y*), т.е. справа и слева от элемента 1.

Рис. 6. Распределение поверхности электричес-кой функции потока $\mu_i = const$ с шагом $\Delta \mu = const$ при $l_1 = 100$ м

Рис. 7. Распределение поверхности электричес-кой функции потока $\mu_i^* = const$ с шагом $\Delta \mu^* = const$ при $l_1 = 50$ м

А3. Принимается дистанция l_1 от металлической фермы 5 до башни со стержнем 1 равной 50 м. Результаты численного расчета для схемы моделирования области D(x,y) с учётом $l_1=50$ м, показаны на рис. 7 в виде распределения поверхностей электрической функции потока $\mu_i^* = const$ с шагом $\Delta \mu^* = const$. При этом на рис. 7а показаны 30 функций потока μ_i^* ; рис. 7б соответственно 100 функций потока μ_i^* .

Из результатов, представленных на рис. 76, следует: 1) в объект 5 входят 3 функций потока μ_i^* и одна частично в объект 5, в поверхность F(x,y) и в элемент молниезащиты 1; 2) в поверхность F(x,y)перед объектом 5 входит одна функция потока μ_i^* частично в объект 5, в поверхность F(x,y) и в элемент молниезащиты 1 и 25 после элемента молниезащиты 1; 3) в элемент молниезащиты 1 входят 69 функция потока μ_i^* и 1 частично в элемент 1 и в поверхность F(x,y).

Сравнительный анализ технического решения системы молниезащиты на космодроме (см. рис. 1) показывает следующее: 1) при дистанции *l*₁=200 м в объект 5 в целом входят 19 функций потока µі и одна частично, тогда относительная величина входа функций потока μ_i^* в объект 5 в процентах равна 20%; 2) при l₁=100 м в объект 5 входят 11 функций потока μ_i и одна частично, тогда относительная величина входа функций потока μ_i в объект 5 в процентах равна 12%; 3) при $l_1 = 50$ м в объект 5 входят 3 функций потока µ_i и одна частично, тогда относительная величина входа функций потока μ_i^* в объект 5 в процентах равна 4%. В заключение отметим, что для типичной системы из 4-х элементов молниезащиты ракетыносителя с космическим аппаратом согласно распределению электрической функции потока µ_i^{*} при уменьшении дистанции l_1 с 200 до 50 м относительная величина входа функций µ_i^{*} в объект 5 уменьшается с 20 до 4%.

Выводы:

1. Анализ полученных результатов расчёта на основе предложенного подхода показал, что имеется возможность оценивать и выявлять особенности системы из 4-х элементов молниезащиты на космодроме. Например, установлено, что согласно распределению электрической функции потока μ_i^* при уменьшении дистанции l_1 в 4 раза, относительная величина входа функций μ_i^* в объект 5 уменьшается в 5 раз. Полученные результаты и выводы определяются соотношениями размеров исследуемой системы молниезащиты и соответствующими допущениями при расчётах.

2. Показаны особенности предложенного подхода для численного моделирования исследуемой системы молниезащиты на космодроме в два этапа. На первом этапе решения задачи определяются поле распределения потенциала ψ и эквипотенциальные поверхности $\psi_i^* = const$ с $\Delta \psi^* = const$. Затем относительно высоты H_1 на основе расчётов этого этапа выделяется некоторая область D(x,y) до уровня H_4 относительно поверхности земли F(x,y). На втором этапе определяется распределение поверхностей электрической функции потока $\mu_i^* = const$ с шагом $\Delta \mu^* = const$ при изменении, например, дистанции l_1 от металлической фермы 5 до башни со стержнем 1.

3. Представлены особенности выбора области D(x,y) в следующем виде: 1) на уровне H_4 выделенная поверхность ψ_k =const должна быть параллельна границе G₂, чтобы было исключено влияние системы молниезащиты на распределение напряженности поля на этом уровне; 2) H_4 должна превышать тах высоту H_2 объектов 1-4 системы молниезащиты.

СПИСОК ЛИТЕРАТУРЫ:

- Rakov, V.A. Review and evaluation of lightning return stroke models including some aspects of their application / V.A. Rakov, M.A. Uman // IEEE Transactions Electromagnetic Compatibility. 1988. Vol. 40. P. 403-426.
- Раков, В.А. Обзор недавних исследований молнии и молниезащиты / В.А. Раков, Ф. Рашиди // Научнотехнические ведомости СПбГПУ. 2010. №1. С. 24-47.
- 3. *Theethayi*, *N*. On the representation of the lightning return stroke process as a current pulse propagating along a transmission line / *N. Theethayi*, *V. Cooray* // IEEE Transactions on Power Delivery. 2005. Vol. 20. P. 823-837.
- 4. *Cooray*, *V*. Pulse propagation along transmission lines in the presence of corona and their implication to lightning return strokes / *V*. *Cooray*, *N*. *Theethayi* // IEEE Transactions on Antennas and Propagation. 2008. Vol. 56. P. 1948-1959.
- Chtifanov, A.I. Features of Controlling the Concentration of Electrical Discharge Energy in a Liquid for Compacting Powders / A.I. Chtifanov, A.N. Potapenko, M.I. Knyasev // In a book: Powder Compaction; Sintering; Post-sintering; Hot Isostatic Pressing; Microsturcture. Granada, Spain. 1998. Vol. 2. P. 193-199.

- 6. Чебанов, Ю.И. Формирование поля давления на заготовке при штамповке на электрогидравлических установках / Ю.И. Чебанов, В.К. Борисевич, М.К. Князев // Кузнечно-штамповочное производство. 1996. №4. С. 15-18.
- 7. *Борисевич, В.К.* Построение расчётных моделей полей нагружения установки ЭГШ на основе эмпирических аппроксимаций / *В.К. Борисевич* и др. // Кузнечноштамповочное производство. 1997. №9. С. 20-23.
- Потапенко, А.Н. Математическое моделирование поля давлений в многоэлектродных разрядных блоках / А.Н. Потапенко, М.И. Дыльков, А.И. Штифанов // Известия высших учебных заведений. Проблемы энергетики. 2003. №9-10. С. 120-124.
- Kumar, U. Lightning protection of satellite launch pads / U. Kumar // In a book: Lightning Protection. Series: IET Power and Energy Series, 58. Edited by V. Cooray. – London: Institution of Engineering and Technology. 2010. P. 789-819.
- Потапенко, А.Н. Особенности метода инверсии для численного решения внешних краевых задач, связанных с электрическими полями в атмосфере / А.Н. Потапенко, Е.А. Канунникова, Т.А. Потапенко // Научнотехнические ведомости СПб ГПУ. 2012. №1. С. 84-88.
- 11. Potapenko, T.A. Research of 3-D Exterior Boundary Problems Related to Electric Fields in Atmosphere by Inversion Method / T.A. Potapenko, E.A. Kanunnikova, A.N. Potapenko // 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria. 2012.
- 12. *Резинкина, М.М.* Расчет трехмерных электрических полей в системах, содержащих тонкие проволоки / *М.М. Резинкина* // Электричество. 2005. № 1. С. 44-49.
- Смайт, В.Р. Электростатика и электродинамика / В.Р. Смайт. – М.: Изд-во иностранной литературы, 1954. 606 с.

A POSSIBLE APPROACH FOR ESTIMATION THE LIGHTNING PROTECTION SYSTEMS OF CARRIER ROCKETS AT SPACE-LAUNCHING SITES

© 2012 A.N. Potapenko¹, V. Cooray², T.A. Potapenko¹

¹Belgorod State Technological University named after V.G. Shukhov ²Uppsala University, Uppsala, Sweden

A features of numerical decision of a problem for study the distributed lightning protection system at a launch site with possibility of determine the investigated field on a base of potential and electric flow function are presented. Numerical calculations are executed, representing general results of investigated objects.

Key words: lightning protection system, mathematical models, numerical calculations, electrostatic fields

Anatoliy Potapenko, Candidate of Technical Sciences, Professor at the Department of Electrical Engineering and Automatics. E-mail: potapenko@intbel.ru

Vernon Coorey, Professor. E-mail: Vernon.Cooray@angstrom uu.se Tatiana Potapenko, Post-graduate Student. E-mail: ttwiggy@rambler.ru