УДК 535.42

ГЕОМЕТРООПТИЧЕСКИЙ АНАЛИЗ ОБОБЩЁННОЙ РЕФРАКЦИОННОЙ ЛИНЗЫ

© 2012 А.В. Устинов^{1,2} С.Н. Хонина^{1,2}

¹ Федеральное научное бюджетное учреждение Институт систем обработки изображений Российской академии наук, г. Самара ² Самарский государственный аэрокосмический университет имени академика С.П. Королева

Поступила в редакцию 27.02.2012

В данной работе в рамках геометрической оптики рассматриваются фокусирующие свойства обобщённой рефракционной линзы, форму поверхности которой можно описать в виде степенной зависимости от радиуса. Также проведено сравнение полученных выра-жений с рефракционной сферической линзой и линзой, профиль которой описывается уравнением эллипса.

Ключевые слова: геометрическая оптика, обобщенная рефракционная линза, фрак-сикон, полное внутреннее отражение

введение

В работе [1] с использованием метода стационарной фазы исследовались параметры фокального пятна и глубина поля, формируемого составным оптическим элементом "линза + аксикон". Такой составной оптический элемент можно аппроксимировать отдельным фазовым ДОЭ – фраксиконом – имеющим дробную степень зависимости от радиальной координаты.

В зависимости от значения дробной степени фраксикон позволяет формировать как масштабно уменьшающие бесселевые пучки – аналог линзакона [2], так и масштабно увеличивающиеся с соответствующим удлинением глубины поля, что близко по свойствам к логарифмическому аксикону [3]. Однако, в отличие от логарифмической функции, степенная функция не имеет особенностей в центральной области, следовательно, не потребуется дополнительного экранирования для этой части при физической реализации [4].

Оптические элементы, отличающиеся от классических элементов, таких, как линзы и аксиконы, используются для компенсации аберраций [5], для улучшения продольного и поперечного разрешения [6-9], увеличения протяжённости фокуса изображающей системы [10-13] или его смещения [14], для оптической связи в свободном пространстве [15], а также при оптическом манипулировании [16-20].

В данной работе в рамках геометрической оптики мы рассматриваем фокусирующие свой-

Устинов Андрей Владимирович, ведущий программист, acnupaнт СГАУ. E-mail: andr@smr.ru;

Хонина Светлана Николаевна, ведущий научный сотрудник, доктор физико-математических наук, профессор СГАУ E-mail: khonina@smr.ru ства обобщённой рефракционной линзы, форму поверхности которой можно описать в виде степенной зависимости от радиуса. Также проведено сравнение полученных выражений с рефракционной сферической линзой и линзой, профиль которой описывается уравнением эллипса.

1. ОБОБЩЁННАЯ ПАРАБОЛИЧЕСКАЯ ЛИНЗА

Рассмотрим обобщённый фокусирующий осесимметричный рефракционный оптический элемент с показателем преломления n, поверхность которого описывается уравнением обобщённой параболы:

$$h(r) = z_0 - ar^{\gamma}. \tag{1}$$

На рис. 1 показаны радиальные сечения поверхностей вида (1) при a = 1 и различных значениях γ .

Исходя из уравнения (1), имеем следующие соотношения:

$$r(h) = \left(\frac{z_0 - h}{a}\right)^{1/\gamma},$$
$$r'(h) = -\frac{\left(z_0 - h\right)^{\frac{1 - \gamma}{\gamma}}}{\gamma a^{1/\gamma}}.$$

Также из чертежа на рис. 2 (мы рассматриваем только верхнюю ветвь кривой в силу её симметрии) получаем связь:

$$tg\beta = tg(90^{\circ} - \alpha_i) = -r'(h), \qquad (2)$$

из которой следует выражение для угла падения:

$$\operatorname{tg}(\alpha_{i}) = \gamma a^{1/\gamma} \left(z_{0} - h \right)^{\frac{\gamma-1}{\gamma}} = \gamma a \left(r(h) \right)^{\gamma-1}.$$
(3)

Рис. 1. Радиальные сечения поверхностей вида (1) при a = 1 и $\gamma = 0,5$ (штрихпунктирная линия), $\gamma = 1$ (пунктирная линия), $\gamma = 2$ (сплошная линия), $\gamma = 3$ (точечная линия)

Рис. 2. Ход лучей через обобщённую линзу

Используя формулу $\sin x = tg x / \sqrt{1 + tg^2 x}$, находим синус угла падения

$$\sin\left(\alpha_{i}\right) = \frac{\gamma a r^{\gamma-1}}{\sqrt{1+\gamma^{2} a^{2} r^{2\gamma-2}}},$$
(4)

В соответствии с законом преломления находим синус угла преломления

$$\sin\left(\alpha_{t}\right) = n\,\sin\left(\alpha_{i}\right),\tag{5}$$

где *n* – показатель преломления материала, из которого изготовлен оптический элемент.

Величина слева в выражении (4) должна быть не больше единицы, чтобы лучи выходили из оптического элемента. Решая полученное неравенство, находим предельные значения размеров обобщённой линзы:

$$r \le r_{\rm lim} = \left(\gamma a \sqrt{n^2 - 1}\right)^{1/(1-\gamma)},\tag{6}$$

a)

0,8

0.7

Таким образом, поперечный размер обобщённой линзы ограничивается условием полного внутреннего отражения лучей:

$$\begin{cases} r \le r_{\rm lim}, \, \gamma > 1, \\ r \ge r_{\rm lim}, \, 0 < \gamma < 1. \end{cases}$$
(8)

При $\gamma = 1$ мы имеем особый случай, когда выражение (4) не зависит от радиуса оптического элемента, и условие полного внутреннего отражение связано только с параметром *a* и показателем преломления:

$$a \le \frac{1}{\sqrt{n^2 - 1}}.\tag{9}$$

На рис. З приведены зависимости предельного радиуса (8) от параметра γ в различных диапазонах при a = 0,5 и n = 1,5. Заметим, что зависимости имеют экстремальные значения, связанные с параметрами a и n.

При стремлении $\gamma \to 1$ в обоих случаях теряется зависимость от радиуса: при $\gamma > 1$ $r_{\rm lim} \to \infty$, а при $0 < \gamma < 1$ $r_{\rm lim} \to 0$, т.е. условие (8) выполняется всегда с учётом (9).

Найдём точку пересечения преломлённого луча с горизонтальной осью – точку С (рис. 2). В треугольнике АВС мы знаем сторону AB = r и угол $ACB = \alpha_t - \alpha_i$. Используя формулу для тангенса разности, находим

$$BC = \frac{r}{\operatorname{tg}(ACB)} = r \frac{1 + \operatorname{tg}(\alpha_{t}) \operatorname{tg}(\alpha_{i})}{\operatorname{tg}(\alpha_{t}) - \operatorname{tg}(\alpha_{i})}. (10)$$

Рис. 3. Зависимость предельного радиуса (7) от параметра g при $\gamma > 1$ (а) и $0 < \gamma < 1$ (б)

γ

Тангенс угла падения даёт формула (3), а тангенс угла преломления получим, используя формулы (4) и (5). Подставив эти величины в (10), получим

$$|BC| = \frac{1}{a \gamma r^{\gamma - 2}} \cdot \frac{n \sqrt{1 + a^2 \gamma^2 r^{2\gamma - 2} (1 - n^2) + 1}}{(n^2 - 1)} . (11)$$

Таким образом, расстояние, на котором луч, проходящий на линзе через радиус *r*, пересекает оптическую ось, описывается выражением:

$$z(r) = z_0 - ar^{\gamma} + \frac{n\sqrt{1 - a^2\gamma^2 r^{2\gamma-2}(n^2 - 1)} + 1}{a\gamma r^{\gamma-2}(n^2 - 1)}.$$
(12)

Это выражение связано с фокусом обобщённой линзы (1).

Рассмотрим конкретные значения ү:

1. При γ = 2 получаем *обычную параболи*ческую линзу, формула (4) примет вид

$$z(r) = z_0 - ar^2 + \frac{n\sqrt{1 + 4a^2r^2(1 - n^2)} + 1}{2a(n^2 - 1)}, (13)$$

а крайние значения:

$$z(0) = z_0 + \frac{n+1}{2a(n^2 - 1)},$$

$$z(r_{\rm lim}) = z_0 + \frac{1}{4a(n^2 - 1)},$$
 (14)

причём $z(r_{lim}) < z(0)$.

В параксиальном приближении:

$$z(r) \approx z_0 - ar^2(n+1) + \frac{1}{2a(n-1)}$$
. (15)

2. При γ > 2 крайние значения:

$$z(0) = \infty, \ z(r_{\rm lim}) = z_0 + \frac{\gamma - 1}{a^{\frac{1}{\gamma - 1}} \left(\gamma \sqrt{n^2 - 1}\right)^{\frac{\gamma}{\gamma - 1}}}, \ (16)$$

также $z(r_{\rm lim}) < z(0)$.

В параксиальном приближении:

$$z(r) \approx z_0 - ar^{\gamma} \left(\frac{n\gamma}{2} + 1\right) + \frac{1}{a\gamma(n-1)r^{\gamma-2}}.$$
 (17)

Т.о. при γ≥2 центральная часть линзы фокусирует на более дальние расстояния от элемента, чем периферийная.

3. При 1 < γ < 2 крайние значения:

$$z(0) = z_0, \ z(r_{\rm lim}) = z_0 + \frac{\gamma - 1}{a^{\frac{1}{\gamma - 1}} (\gamma \sqrt{n^2 - 1})^{\frac{\gamma}{\gamma - 1}}}$$
(18)

имеют соотношение $z(r_{\text{lim}}) > z(0)$.

Таким образом, на оптической оси фокус находится непосредственно в вершине линзы.

В параксиальном приближении:

$$z(r) \approx z_0 - ar^{\gamma} \left(\frac{n\gamma}{2} + 1\right) + \frac{r^{2-\gamma}}{a\gamma(n-1)}.$$
 (19)

На рис. 4 показаны зависимости расстояний от вершины линзы z_0 до точки пересечения оптической оси (12) от радиуса оптического элемента при a = 0,1 и n = 1,5 для различных значений $\gamma > 1$.

Как видно из графиков, при 1 < γ < 2 лучи, проходящие через центральную часть оптического элемента, фокусируются сразу за поверхностью элемента. Периферийные лучи фокусируются ближе к поверхности элемента, чем "средние" лучи. Заметим, что средняя часть такой линзы работает без аберраций, т.е. так же как центральная часть параболической линзы.

При γ = 2 периферийные лучи пересекают оптическую ось ближе, чем центральные.

При $\gamma > 2$ периферийные лучи также фокусируются достаточно близко от поверхности оптического элемента, в то время как центральные лучи пересекаются с оптической осью на значительном расстоянии. С увеличением γ точка пересечения будет уходить в бесконечность.

4. При $0 < \gamma < 1$ область полного отражения находится не на периферии, а в центре линзы. Поэтому в отличие от предыдущих случаев *часть лучей всегда* будет отражаться. А если размер линзы будет меньше $r_{\rm lim}$, то отразятся все лучи.

Рис. 4. Зависимости расстояний пересечения оптической оси (4) от радиуса оптического элемента при a = 0,1 и n = 1,5 для $\gamma = 2,1$ (пунктирная линия), $\gamma = 1,9$ (точечная линия), $\gamma = 2$ (сплошная линия)

Т.к. в центральной части происходит отражение лучей, выражение (12) удобнее переписать в виде:

$$z(r) = z_0 - ar^{\gamma} + r^{2-\gamma} \frac{n\sqrt{1 - a^2\gamma^2(n^2 - 1)/r^{2-2\gamma}} + 1}{a\gamma(n^2 - 1)}.$$
 (20)

Крайние значения:

$$z(r_{\rm lim}) = z_0 - (1 - \gamma) a^{\frac{1}{1 - \gamma}} \left(\gamma \sqrt{n^2 - 1}\right)^{\frac{\gamma}{1 - \gamma}},$$

$$z(\infty) = \infty.$$
 (21)

Точка фокуса для лучей, проходящих вблизи внутреннего радиуса элемента $r_{\rm lim}$, оказывается *внутри* линзы, что затруднит её использование в рефракционном виде (будет необходимо отрезать острие), но вполне возможно в дифракционном варианте.

Строго говоря, формула (12) для $0 < \gamma < 1$ верна именно для линзы без острия, так как при её выводе предполагалось, что после преломления на правой границе линзы луч повторно в линзу не входит.

Интересно выяснить значение r_0 , при котором фокус совпадёт с z_0 и перестанет находиться внутри оптического элемента. Если ввести обозначение $w = r^{2\gamma-2}$, то имеем квадратное уравнение:

 $a^{4}\gamma^{2}w^{2}(n^{2}-1)+a^{2}\gamma w(\gamma n^{2}-1)-1=0$.

Можно доказать, что его дискриминант $a^4\gamma^2n^2(\gamma^2n^2-4\gamma+4)$ положителен. Отбрасывая отрицательный корень уравнения и возвращаясь к переменной r, получим:

$$r_{0} = (w_{0})^{\frac{1}{(2\gamma-2)}} = a^{\frac{1}{(1-\gamma)}} \left(\frac{2 - n^{2}\gamma + n\sqrt{n^{2}\gamma^{2} - 4\gamma + 4}}{2\gamma(n^{2} - 1)}\right)^{\frac{1}{(2\gamma-2)}}.$$
 (22)

Заметим, что отношение:

$$\frac{r_0}{r_{\rm lim}} = \left(\frac{\gamma}{2}\left(2 - n^2\gamma + n\sqrt{n^2\gamma^2 - 4\gamma + 4}\right)\right)^{\frac{1}{(2\gamma - 2)}}$$

не зависит от *а* и его значение больше единицы, что легко видеть геометрически.

Параксиальное приближение отсутствует, но имеет место асимптотика для больших радиусов, которое совпадает с выражением (19).

На рис. 5 показаны зависимости расстояний

Рис. 5. Зависимости расстояний пересечения оптической оси (4) от радиуса оптического элемента при a = 0,1 и n = 1,5 для $\gamma = 0,1$ (пунктирная линия), $\gamma = 0,5$ (точечная линия), $\gamma = 0,9$ (сплошная линия)

пересечения оптической оси (20) от радиуса оптического элемента при a = 0,1 и n = 1,5 для различных значений $\gamma < 1$.

Как видно из рис. 5, центральная часть оптического элемента не пропускает лучи из-за полного внутреннего отражения. При уменьшении параметра γ периферийные лучи будут пересекать оптическую ось на всё большем удалении от оптического элемента.

2. РАСПРЕДЕЛЕНИЕ ИНТЕНСИВНОСТИ НА ОПТИЧЕСКОЙ ОСИ

Закон сохранения энергии для лучевых трубок (кольцо отображается на отрезок оптической оси):

$$2\pi r \,\mathrm{d}r = I(z) \,\mathrm{d}z \tag{23}$$

позволяет определить распределение интенсивности, формируемое обобщённой линзой (1) на оптической оси:

$$I(z) = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}z}.$$
 (24)

Знак "минус" у производной будет означать, что с увеличением r фокус приближается к началу координат.

Зависимость фокусного расстояния от радиуса z(r) дана формулой (12), но, чтобы использовать формулу (24), нам нужна обратная зависимость r(z), для нахождения которой требуется решить относительно r уравнение, выраженное формулой (12).

Это уравнение достаточно сложно для решения, поэтому сначала рассмотрим его упрощённые варианты, получаемые при определённом приближении: параксиальном при $\gamma > 1$ или большого радиуса при $0 < \gamma < 1$.

2.1. Приближённое решение
1. Параксиальная область при γ = 2. Из формулы (15) следует:

$$r^{2} = \frac{1 - (z - z_{0})2a(n-1)}{2a^{2}(n^{2} - 1)},$$

$$2r\frac{\mathrm{d}r}{\mathrm{d}z} = \frac{\mathrm{d}(r^2)}{\mathrm{d}z} = -\frac{1}{a(n+1)}$$

откуда получаем

$$I(z) = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}z} = -\frac{\pi}{a(n+1)} = const. (25)$$

Таким образом, для стандартной параболической линзы интенсивность *не меняется* вдоль оптической оси.

2. Параксиальная область при γ > 2

Здесь в формуле (17) придётся отбросить второе слагаемое, так как иначе уравнение неразрешимо. Вблизи оси оно мало, а последнее слагаемое неограниченно растёт, так как в данном диапазоне $\gamma > 0$ и $\gamma - 2 > 0$. Однако необходима осторожность при $\gamma \rightarrow 2$, так как не гарантирована сшивка решения с $\gamma = 2$. Таким образом получаем:

$$z = z_0 + \frac{1}{\gamma a(n-1)r^{\gamma-2}},$$

$$r = [(z-z_0)\gamma a(n-1)]^{\frac{1}{2-\gamma}},$$

$$\frac{dr}{dz} = \frac{\gamma a(n-1)}{2-\gamma} [(z-z_0)\gamma a(n-1)]^{\frac{\gamma-1}{2-\gamma}},$$

откуда в результате:

$$I(z) = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}z} = \frac{2\pi\gamma a(n-1)}{2-\gamma} \times \\ \times [(z-z_0)\gamma a(n-1)]^{\frac{\gamma}{2-\gamma}}.$$
(26)

В формуле (26) показатель степени отрицателен, поэтому интенсивность убывает при удалении от начала координат.

3. Параксиальная область при $1 < \gamma < 2$.

В этом случае в формуле (19) также придётся отбросить второе слагаемое, так как иначе уравнение неразрешимо. Это слагаемое имеет более высокий порядок малости, так как в данном диапазоне $2-\gamma < \gamma$. Осторожность необходима при $\gamma \rightarrow 1$, так как тогда порядки обоих слагаемых близки, а также при $\gamma \rightarrow 2$, так как не гарантирована сшивка решения с $\gamma = 2$. Таким образом получаем:

$$z = z_0 + \frac{r^{2-\gamma}}{\gamma a(n-1)},$$

$$r = \left[(z - z_0) \gamma a(n-1) \right]^{\frac{1}{2-\gamma}},$$

$$\frac{\mathrm{d}r}{\mathrm{d}z} = \frac{\gamma a (n-1)}{2-\gamma} [(z-z_0)\gamma a (n-1)]^{\frac{\gamma-1}{2-\gamma}},$$

откуда в результате:

$$I(z) = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}z} = \frac{2\pi\gamma a (n-1)}{2-\gamma} \times [(z-z_0)\gamma a (n-1)]^{\frac{\gamma}{2-\gamma}}.$$
(27)

Формально выражение (27) такое же, как и (26), однако показатель степени в (27) положителен, поэтому интенсивность возрастает при удалении от начала координат.

4. Область большого радиуса при $0 < \gamma < 1$.

В этом случае в формуле (19) оставляем только последнее слагаемое, так как оно (учитывая) имеет более высокий порядок роста. При γ→1 требуется осторожность, так как тогда порядки обоих слагаемых близки. Таким образом получаем:

$$z = \frac{r^{2-\gamma}}{\gamma a (n-1)},$$

$$r = [z\gamma a (n-1)]^{\frac{1}{2-\gamma}},$$

$$\frac{dr}{dz} = \frac{\gamma a (n-1)}{2-\gamma} [z\gamma a (n-1)]^{\frac{\gamma-1}{2-\gamma}},$$

откуда в результате:

$$I(z) = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}z} =$$
$$= \frac{2\pi\gamma a (n-1)}{2-\gamma} [z\gamma a (n-1)]^{\frac{\gamma}{2-\gamma}}.$$
(28)

Так как показатель степени в (28) положителен, интенсивность возрастает при удалении от начала координат.

2.2. Частные точные решения

Рассмотрим общее уравнение (12) для некоторых значений γ.

1. Аксикон: **ү** = **1**.

Хотя многие приведённые выше формулы нельзя напрямую использовать для $\gamma = 1$ (по крайней мере без раскрытия неопределённостей), формула для фокусного расстояния является в этом смысле исключением. Поэтому подставим в (12) $\gamma = 1$:

$$z = z_0 - ar + \frac{1}{ar^{-1}} \cdot \frac{n\sqrt{1 + (1 - n^2)a^2 + 1}}{n^2 - 1} =$$

= $z_0 + r \left[\frac{1}{a} \cdot \frac{n\sqrt{1 + (1 - n^2)a^2 + 1}}{n^2 - 1} - a \right] =$ (29)
= $z_0 + \beta r$.

Разумеется, здесь предполагается, что выполнено неравенство, выражающее отсутствие внутреннего отражения $a < 1/\sqrt{n^2 - 1}$. В этом случае обеспечивается $\beta > 0$.

Из (29) получаем

$$r = \frac{z - z_0}{\beta}; \quad \frac{\mathrm{d}r}{\mathrm{d}z} = 1/\beta,$$

и, следовательно,

$$I(z) = 2\pi r \frac{dr}{dz} = \frac{2\pi}{\beta^2} (z - z_0).$$
(30)

T.o. интенсивность линейно возрастает при удалении от начала координат.

2. Параболическая линза: $\gamma = 2$. Подстановка в (12) $\gamma = 2$ даёт:

$$z = z_0 - ar^2 + \frac{1}{2a} \cdot \frac{n\sqrt{1 + (1 - n^2)4a^2r^2} + 1}{n^2 - 1}.$$
 (31)

Из этого уравнения можно выразить r^2 :

$$r^{2} = \frac{n\sqrt{n^{2} + 2u + 1} - (u + n^{2})}{2a^{2}(n^{2} - 1)};$$

$$u = (z - z_{0})2a(n^{2} - 1) - 1,$$

откуда

$$\frac{\mathrm{d}(r^2)}{\mathrm{d}z} = \frac{\mathrm{d}(r^2)}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}z} = \frac{1}{2a^2(n^2 - 1)} \times \left\{ n \cdot \frac{1}{2\sqrt{n^2 + 2u + 1}} \cdot 2 - 1 \right\} \cdot 2a(n^2 - 1) = \frac{1}{a} \cdot \left\{ \frac{n}{\sqrt{n^2 + 2u + 1}} - 1 \right\}.$$

Поэтому интенсивность равна

$$I(z) = 2\pi r \frac{dr}{dz} = \pi \frac{d(r^2)}{dz} = \frac{1}{a} \cdot \left\{ \frac{n}{\sqrt{n^2 + 2u + 1}} - 1 \right\}.$$
 (32)

Эта величина убывает по величине от

$$-\frac{\pi}{a(n+1)}$$
 при $z = z_0 + \frac{1}{2a(n-1)}$ (знак "минус"

соответствует приближению фокуса к началу координат с увеличением радиуса) до нуля при

$$z = z_0 + \frac{1}{4a(n^2 - 1)}$$
. Или, другими словами, при

возрастании *z* интенсивность возрастает от нуля в точке крайнего (граничного) фокуса до

 $\frac{\pi}{a(n+1)}$ в точке параксиального фокуса.

Можно доказать, что скорость возрастания интенсивности уменьшается при приближении к параксиальному фокусу, но не становится равной нулю. Отсюда следует, что, во-первых, максимум интенсивности в параксиальном фокусе не есть максимум в смысле стационарной точки; и, во-вторых, параксиальное приближение (25) имеет первый порядок погрешности.

3. Произвольные значения ?.

В общем случае уравнение (12) не имеет аналитического решения и, более того, не является даже алгебраическим. Если γ – рациональное число, то уравнение можно привести к алгебраическому, однако оно будет выше четвёртой степени и всё равно потребует численного решения.

Выше мы рассмотрели аналитическое вычисление распределения интенсивности в приближении и для немногих частных случаев. Далее выполним реализацию формулы (22) численным дифференцированием. Возьмём равномерную дискретизацию по радиусу:

$$\mathrm{d}r = r_{i+1} - r_i = h \; ,$$

тогда радиальным координатам будут соответствовать осевые координаты из выражения (4):

$$\mathrm{d}z = z\left(r_{i+1}\right) - z\left(r_{i}\right),$$

а распределение интенсивности будет строиться в средних точках интервалов:

$$I\left(z\left(\frac{r_{i+1}+r_{i}}{2}\right)\right) = \frac{\pi(r_{i+1}+r_{i})(r_{i+1}-r_{i})}{z(r_{i+1})-z(r_{i})}.$$
 (33)

На рис. 6 показаны распределения интенсивности (33) в зависимости от расстояния от оптического элемента при a = 0,1 и n = 1,5 для различных значений $\gamma > 2$. Левый край графиков с резким обрывом (граница тени) соответствует достижению на оптическом элементе радиуса r_{lim} , который определяет границу наступления полного внутреннего отражения.

Рис. 6. Распределение интенсивности (33) в зависимости от расстояния от оптического элемента при a = 0,1 и n = 1,5 для $\gamma = 2,2$

(пунктирная линия), $\gamma = 2,5$ (точечная линия),

 $\gamma = 3$ (сплошная линия),

 $\gamma = 5$ (штрихпунктирная линия)

Периферийные лучи с ростом γ пересекаются всё ближе к плоскости оптического элемента (минимальное расстояние определяется максимальным радиусом, при котором наступает полное внутреннее отражение), а центральные лучи распространяются практически параллельно оптической оси. Причём с ростом γ центральная часть оптического элемента становится всё более плоской и большее число лучей уходит в бесконечность.

Заметим, что максимум интенсивности при фиксированном γ не совпадает с левой границей (т.е. краем оптического элемента), что связано с уменьшением площади соответствующего кольца (в формуле (24) рост *r* не компенсирует уменьшение dr/dz).

На рис. 7 показаны распределения интенсивности (33) в зависимости от расстояния от оптического элемента при a = 0,1 и n = 1,5 для различных значений $1 < \gamma < 2$.

При (сверху) зависимость интенсивности от расстояния *z* имеет монотонный характер вплоть до границы полного внутреннего отраже-

ния (рис. 7а), которая наступает на всё большем удалении от оптического элемента.

При $2 > \gamma > \gamma_0 > 1$ две разные части элемента преломляют лучи в одну и ту же точку на оптической оси (см. немонотонную кривую на рис. 4 для $\gamma = 1,9$). Поэтому на рис. 76, в показаны две ветви. Физически их вклады просто складываются. Точка появления второй ветви (скачок на рис. 76) соответствует полному внутреннему отражению на элементе. А правая точка смыкания двух ветвей соответствует на элементе радиусу наибольшего фокусного расстояния. Так как

это точка гладкого экстремума функции z(r) при

r ≠ 0, то, согласно формуле (24), здесь получается бесконечное значение интенсивности (резкий рост интенсивности в правой части графиков).

При $\gamma \to 2$ снизу непрерывного перехода к $\gamma = 2$ не будет. На рис. 8 показаны распределения интенсив-

ности (33) в зависимости от расстояния от оптического элемента при a = 0,1 и n = 1,5 для различных значений $\gamma < 1$.

При $\gamma \to 0$ (снизу) элемент начинает работать близко к аксикону и зависимость интенсивности при больших стремится к линейной.

Если же (фактически рельеф присутствует только в центральной точке), то зависимость интенсивности будет приближаться к постоянному значению, близкому нулю. Обрыв на графиках связан с конечностью размера элемента.

3. СРАВНЕНИЕ СО СФЕРИЧЕСКОЙ ЛИНЗОЙ

Аналогичные формулы можно вывести и для сферической линзы. Из уравнения сечения:

$$h(r) = \sqrt{R^2 - r^2} \tag{34}$$

получаем

Рис. 7. Распределение интенсивности (33) в зависимости от расстояния от оптического элемента при *a* = 0,1 и *n* = 1,5 для γ = 1,2 (a), γ = 1,5 (б), γ = 1,9 (в)

Рис. 8. Распределение интенсивности (33) в зависимости от расстояния от оптического элемента при a = 0,1 и n = 1,5 для $\gamma = 0,4$ (пунктирная линия), $\gamma = 0,5$ (точечная линия), $\gamma = 0,6$ (сплошная линия)

$$\sin(\alpha_i) = \frac{r}{R}, \ \sin(\alpha_i) = \frac{nr}{R}$$

Из условия, что синус угла преломления должен быть не больше единицы, находим предельные значения размеров линзы:

$$r \le r_{\rm lim} = \frac{R}{n} \,, \tag{35}$$

$$h(r) \ge h_{\text{lim}} = R \sqrt{1 - \frac{1}{n^2}}$$
. (36)

По аналогии с выводом формулы (12) получаем координаты пересечения лучей с оптической осью (фокальной точки):

$$z(r) = \sqrt{R^2 - r^2} + \frac{\sqrt{R^2 - r^2} \cdot \sqrt{R^2 - n^2 r^2} + nr^2}{n\sqrt{R^2 - r^2} - \sqrt{R^2 - n^2 r^2}} . (37)$$

Крайние значения:

$$z(0) = R + \frac{R}{n-1}, \ z(r_{\text{lim}}) = \frac{nR}{\sqrt{n^2 - 1}}$$

определяют глубину фокуса:

$$\Delta z = nR \left(\frac{1}{n-1} - \frac{1}{\sqrt{n^2 - 1}} \right).$$
(38)

В параксиальном приближении выражение (37) упрощается:

$$z(r) \approx R + \frac{R}{n-1} - \frac{n^2 r^2}{2R(n-1)}$$
 (39)

В параксиальной области можно произвести сравнение сферической линзы с параболической линзой. Если учесть, что в вершине параболы радиус кривизны R = 1/(2a), то формулу (15) можно переписать в виде

$$z(r) \approx z_0 + \frac{R}{n-1} - \frac{r^2(n+1)}{2R}.$$
 (40)

Сравнивая (39) и (40), можно заметить, что фокус параболической линзы при любом показателе преломления отклоняется от своего параксиального значения меньше чем фокус сфери-

ческой линзы, так как $n+1 < \frac{n^2}{n-1}$.

4. ЭЛЛИПТИЧЕСКАЯ ЛИНЗА

По аналогии со сферической линзой рассмотрим осесимметричную линзу, профиль которой описывается уравнением эллипса (рис. 9):

$$\frac{h^2}{R_1^2} + \frac{r^2}{R_2^2} = 1,$$
 (41)

$$h(r) = R_1 \sqrt{1 - r^2 / R_2^2} , \qquad (42)$$

$$r(h) = R_2 \sqrt{1 - h^2 / R_1^2} .$$
 (43)

Рис. 9. Геометрия эллиптической линзы

Вычисляя так же, как при выводе формул (3) и (4), получим

$$\operatorname{tg} \alpha_{i} = \frac{R_{1}}{R_{2}} \cdot \frac{\sqrt{R_{1}^{2} - h^{2}}}{h} = \frac{R_{1}}{R_{2}} \cdot \frac{r}{\sqrt{R_{2}^{2} - r^{2}}}, \quad (44)$$

$$\sin \alpha_{i} = n \sin \alpha_{i},$$

$$\sin \alpha_{i} = \frac{R_{1}r}{\sqrt{R_{2}^{4} + (R_{1}^{2} - R_{2}^{2})r^{2}}}.$$
 (45)

Синус угла преломления должен быть не больше единицы. Отсюда находим предельные значения размеров линзы:

$$r < r_{\rm lim} = \frac{R_2^2}{\sqrt{(n^2 - 1)R_1^2 + R_2^2}},$$
 (46)

$$h > h_{\text{lim}} = \frac{R_1^2 \sqrt{n^2 - 1}}{\sqrt{(n^2 - 1)R_1^2 + R_2^2}}.$$
 (47)

Если радиус линзы превысит *r*_{lim}, то периферийные лучи будут претерпевать внутреннее отражение.

Аналогично выводу формул (6)-(8), получим точное значение фокуса

$$z(r) = R_{1}\sqrt{1 - \frac{r^{2}}{R_{2}^{2}}} + \frac{1}{R_{1}} \cdot \frac{\sqrt{R_{2}^{4} + \left[(1 - n^{2})R_{1}^{2} - R_{2}^{2}\right]r^{2} \cdot R_{2} \cdot \sqrt{R_{2}^{2} - r^{2}} + nR_{1}^{2}r^{2}}}{nR_{2}\sqrt{R_{2}^{2} - r^{2}} - \sqrt{R_{2}^{4} + \left[(1 - n^{2})R_{1}^{2} - R_{2}^{2}\right]r^{2}}}.$$
(48)

Крайние значения:

$$z(r=0) = R_1 + \frac{1}{R_1} \cdot \frac{R_2^2}{n-1},$$

$$z(r=r_{\rm lim}) = \frac{R_1^2}{h_{\rm lim}} = \frac{\sqrt{(n^2-1)R_1^2 + R_2^2}}{\sqrt{n^2-1}}.$$
 (49)

Параксиальное приближение:

$$z(r) \approx R_1 + \frac{R_2^2}{R_1(n-1)} - \frac{r^2}{2(n-1)R_1R_2^2} \{ (n^2 - 1)R_1^2 + R_2^2 \}.$$
 (50)

Эллиптическая линза близка к обобщённой параболической при $\gamma > 1$ за исключением области центральной части, т.к. на оптической оси у эллиптической линзы есть принципиальное отличие (за исключением $\gamma = 2$) – её радиус кривизны есть конечное число, не равное нулю.

ЗАКЛЮЧЕНИЕ

На основе геометрооптического анализа обобщённой рефракционной линзы (форма поверхности которой описывается в виде степенной функции от радиуса) получены выражения для:

 предельных значений радиусов, соответствующих полному внутреннему отражению;

 – расстояний от вершины линзы до точки пересечения оптической оси лучами, проходящими через область оптического элемента с заданным радиусом;

 – распределения интенсивности на оптической оси.

Анализ полученных выражений позволяет сделать следующие выводы в соответствии с параметром степени γ :

– при $\gamma \ge 2$ (параболическая линза второй и выше степени) лучи, проходящие через центральную часть линзы фокусируется на более дальнем расстоянии от элемента, чем периферийные. С ростом g периферийные лучи пересекают оптическую ось ближе к плоскости оптического элемента, а центральные лучи распространяются практически параллельно оптической оси. Причём с ростом g центральная часть оптического элемента становится всё более плоской и большее число лучей уходят в бесконечность.

 при 1<γ<2 (промежуточный элемент между аксиконом и параболической линзой) лучи, проходящие через центральную часть линзы фокусируется непосредственно в вершине линзы. Периферийные лучи фокусируются ближе к поверхности элемента, чем "средние" лучи.
 Заметим также, что средняя часть такой линзы работает без аберраций, т.е. также как центральная часть параболической линзы. При этом средняя часть оптического элемента принимает участие в формировании наиболее интенсивной точки фокуса.

 при 0 < γ < 1 (элемент имеет вогнутый профиль) центральная часть оптического элемента не пропускает лучи из-за полного внутреннего отражения. При уменьшении параметра g периферийные лучи будут пересекать оптическую ось на всё большем удалении от оптического элемента.

Также проведено сравнение полученных выражений с рефракционной сферической линзой и линзой, профиль которой описывается уравнением эллипса.

Сравнение со сферической линзой позволяет сделать вывод о том, что фокус параболической линзы при любом показателе преломления отклоняется от своего параксиального значения меньше, чем фокус сферической линзы.

Эллиптическая линза, хотя и близка к обобщённой параболической при $\gamma > 1$, но имеет принципиальное отличие в центральной части, её радиус кривизны есть конечное число, не равное нулю.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке грантов РФФИ 10-07-00109-а, 10-07-00438-а и гранта Президента РФ поддержки ведущих научных школ НШ-4128.2012.9, а также государственных контрактов 07.514.11.4060, 07.514.11.4055 и 07.514.11.4105.

СПИСОК ЛИТЕРАТУРЫ

- Хонина С.Н., Волотовский С.Г. Фраксикон дифракционный оптический элемент с конической фокальной областью // Компьютерная оптика. 2009. Т. 33, №4. С. 401-411.
- Lensacon / V.P. Koronkevich, I.A. Mikhaltsova, E.G. Churin and Yu.I. Yurlov // Appl. Opt. 1993. Vol. 34(25). P. 5761-5772.
- Annular-aperture logarithmic axicon / J. Sochacki, Z. Jaroszewicz, L.R. Staroiski, A. Kolodziejczyk // J. Opt. Soc. Am. A. 1993. Vol. 10. N 8. P. 1765-1768.
- Хонина С.Н., Балалаев С.А. Сравнительный анализ распределений интенсивности, формируемых дифракционным аксиконом и дифракционным логарифмическим аксиконом // Компьютерная оптика. 2009. Т. 33. № 2. С. 162-174.
- Mezouari S., Harvey A.R. Phase pupil functions for reduction of defocus and spherical aberrations // Opt. Lett. 2003. Vol. 28, N 10. P. 771-773.
- Holographic axilens: high resolution and long focal depth / N. Davidson, A.A. Friesem and E. Hasman // Opt. Lett. 1991. V. 16(7). P. 523-525.
- 7. *Pereira S., van de Nes A.S.* Superresolution by means of polarisation, phase and amplitude pupil masks // Opt.

Commun. 2004. V. 234. P. 119-124.

- Apodized superresolution concept and simulations / P.N. Gundu, E. Hack, P. Rastogi // Opt. Commun. 2005. V. 249. P. 101-107.
- 9. Анализ влияния волновых аберраций на уменьшение размеров фокального пятна в высокоапертурных фокусирующих системах // С.Н. Хонина, А.В. Устинов, Е.А. Пелевина // Компьютерная оптика. 2011. Т. 35, № 2. С. 203-219.
- Дифракционный расчёт фокусаторов в продольный отрезок / В.В. Котляр, В.А. Сойфер, С.Н. Хонина // Письма в ЖЭТФ. 1991. № 17(24). С. 63-66.
- Dowski E.R. Jr., Cathey W.T. Extended depth of ?eld through wave-front coding // Applied Optics. 1995. Vol. 34. N 11. P. 859-1866.
- Broadband behavior of an optical-digital focusinvariant system / J. van der Gracht, E. Dowski, M. Taylor, D. Deaver // Opt. Lett. 1996. Vol. 21(13). P. 919-921.
- Imaging with extended focal depth by means of lenses with radial and angular modulation / *G. Mikuia*, *Z. Jaroszewicz*, *A. Kolodziejczyk*, *K. Petelczyc and M. Sypek* // Opt. Express. 2007. Vol. 15(15). P. 9184-9193.
- 14. Focal shift and focusing properties generation by radial

cosine phase masks / *J. Li, X. Gao, S. Zhuang, C. Huang* // Optik. 2010. Vol. 121. P. 821-825.

- 15. Superresolution technology for reduction of the far-?eld diffraction spot size in the laser free-space communication system / *J. Jia, C. Zhou, L. Liu //* Opt. Commun. 2003. Vol. 228. P. 271-278.
- Gradient force pattern of truncated hyperbolic-cosine-Gaussian beam through phase plate focusing system, / J. Li, S. Zhuang, Y. Xie, C. Huang // Opt. Eng. 2007. Vol. 46(12). P. 124201.
- 17. *Molloy J.E., Padgett M.J.* Lights, action: optical tweezers // Cont. Phys. 2002. Vol. 43. P. 241-258.
- Controlled rotation of optical trapped microscopic particles / L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, K. Dholakia // Science. 2001. Vol. 292. P. 912-914.
- Galajda P., Ormos P. Complex micromachings produced and driven by light // Appl. Phys. Lett. 2001. Vol. 78. P. 249-251.
- Некоторые типы гипергеометрических лазерных пучков для оптического микроманипулирования / В.В. Котляр, А.А. Ковалёв, Р.В. Скиданов, С.Н. Хонина // Компьютерная оптика. 2008. Т. 32. № 2. С. 180-186.

GEOMETROOPTIC ANALYSIS OF GENERALIZED REFRACTIVE LENSES

© 2012 A.V. Ustinov^{1,2}, S.N. Khonina^{1,2}

¹ Federal Budgetary Research Institution Image Processing Systems Institute of the Russian Academy of Sciences, Samara

² Samara State Aerospace University named after S.P. Korolyov

In the paper focusing properties of generalized refractive lenses which profile can be de-scribed in the form of power dependence on radius are considered within the limits of geometric-al optics. Comparison of the received expressions with a spherical refractive lens and a lens which profile is described by the ellipse equation is realized also.

Keywords: geometrical optics, generalized refractive lens, fracxicon, total internal reflection

Andrey Ustinov, Leading Programmer, Postgraduate Student SSAU. E-mail: andr@smr.ru Svetlana Khonina, Leading Researcher, Doctor of Physics and Mathematics, Professor. E-mail: khonina@smr.ru