УДК 629.735.33

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ В КОНСТРУКЦИИ ПЛАНЕРА САМОЛЕТОВ СЕМЕЙСТВА МС-21

© 2012 С.П. Савин

Филиал ОАО «Корпорация «Иркут» в г. Ульяновске

Поступила в редакцию 10.10.2012

В работе приведен обзор общих вопросов внедрения полимерных композиционных материалов в конструкцию планера самолетов семейства МС-21. Рассмотрены задачи и текущие результаты опытно-конструкторских работ по композитным агрегатам - крылу и хвостовому оперению. Ключевые слова: полимерные композиционные материалы, углепластики, крыло, хвостовое оперение, опытно-конструкторские работы.

1. ВВЕДЕНИЕ

1.1. Общие сведения о полимерных композиционных материалах (ПКМ) и их применяемости в конструкции самолета

Снижение массы конструкции, как инструмент повышения экономической эффективности летательных аппаратов, является одной из приоритетных задач развития современной авиационной техники. В контексте решения данной проблемы при создании новых самолетов все более широкое применение находят полимерные композиционные материалы (ПКМ). За рубежом объем использования ПКМ в конструкции планера современных самолетов достигает 50% по весу, например Boeing 787 (США) – 50%, Airbus A380 (Европа) – 30%, Airbus A350 (Европа) – 50%.

Расчетные данные, подтвержденные результатами экспериментальных исследований и летных испытаний, показывают, что использование композиционных материалов позволяет снизить вес планера летательного аппарата на 30-40% по сравнению с весом планера из традиционных металлических материалов. Все это обеспечивает получение резерва веса, который может быть использован для увеличения дальности полета или полезной нагрузки. Использование композиционных материалов в авиационной промышленности значительно снижает материалоемкость конструкций, увеличивает до 90% коэффициент использования материала, уменьшает количество оснастки и резко снижает трудоемкость изготовления конструкций за счет уменьшения в несколько раз количества входящих в них деталей.

Композиты представляют собой металлические и неметаллические матрицы (основы) с заданным распределением в них упрочнителей (волокон, дисперсных частиц и др.); при этом композиционные материалы позволяют эффективно использовать индивидуальные свойства составляющих композиции. Комбинируя объем-

Савин Сергей Павлович, инженер-конструктор 3 категории. E-mail: Sergey.Savin@ufki.irkut.com ное содержание компонентов, можно, в зависимости от назначения, получать композитные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости. Композиты обладают комплексом конструкционных и специальных свойств, практически недостижимых в традиционных материалах на металлической, полимерной, керамической, углеродной и других основах. Сравнительные свойства различных конструкционных материалов представлены в табл. 1.

В качестве наполнителей для композитов могут использоваться ткани, цельнотканые чехлы, ленты, жгуты, нити на основе многофазных и поликристаллических непрерывных волокон и нитевидных монокристаллов стекла, углерода, бора, бериллия, органических волокон, имеющих высокие прочность и модуль упругости.

В качестве связующих при изготовлении деталей и изделий из керамических материалов наибольшее распространение получили эпоксидные, фенолформальдегидные, кремнийорганические и полиамидные смолы. Материал матрицы определяет, как правило, уровень рабочих температур нагрева композиционных материалов, характер изменения их свойств при воздействии температуры, атмосферных газов и других факторов, а также режимы получения и переработки материалов.

Наиболее широкое применение в современном самолетостроении нашли композиты на основе углеродных и стеклянных волокон.

Особенностью углепластиков является их высокая усталостная прочность, большая, чем у боро- и стекловолокнитов, и находящаяся на уровне усталостной прочности титана и легированных конструкционных сталей. Углепластики существенно превосходят металлы и сплавы по вибропрочности, так как обладают высокой демпфирующей способностью. Углепластики характеризуются высокой радиационной, водо-, аэрои бензостойкостью. Чаще всего, применяются для изготовления сильно- и средненагруженных конструкций.

Материал	Плотность, р, кг/м3	Прочность, ов, МПа	Модуль упругости, Е, ГПа
Углепластик	1500	1200	170
Боропластик	2000	1200	270
Органопластик	1300	2000	95
Стеклопластик	2000	2000	70
Алюминиевые сплавы	2700	600	70
Титановые сплавы	4500	1100	110
Стали	7800	2100	200

Таблица 1. Сравнительные свойства различных конструкционных материалов

Полимерные стекловолокниты отличаются от других композиционных материалов конструкционного назначения сочетанием высокой прочности, сравнительно низкой плотности, теплопроводности, радиопрозрачности, хороших электроизоляционных свойств, доступности и низкой стоимости упрочняющего наполнителя. Обычно, используются в срененагруженных сотовых и малонагруженных конструкциях [1].

1.2. Общие сведения о самолетах семейства МС-21

В 2008 г. Научно-производственная корпорация «Иркут» (ОАО «Корпорация «Иркут») успешно защитила аванпроект и приступила к эскизному проектированию семейства ближне-среднемагистральных самолетов нового по-

коления МС-21. Программа МС-21 предусматривает создание гражданских авиалайнеров трех основных модификаций: МС-21-200, МС-21-300 и МС-21-400 (рис. 1) пассажировместимостью до 150, 180 и 210 мест, соответственно (при одноклассной компоновке с шагом кресел 32''). Базовой моделью семейства является самолет МС-21-300.

2. ОБЩИЕ ВОПРОСЫ РЕАЛИЗАЦИИ ПРОГРАММЫ МС-21

Воплощение в жизнь концепции современного самолета требует от разработчика уже на ранних стадиях проектирования ясного видения основных принципов будущего производства, поскольку, именно производственная идеология, во многом, определяет итоговую стоимость и эксплуатационные характеристики изделия, а

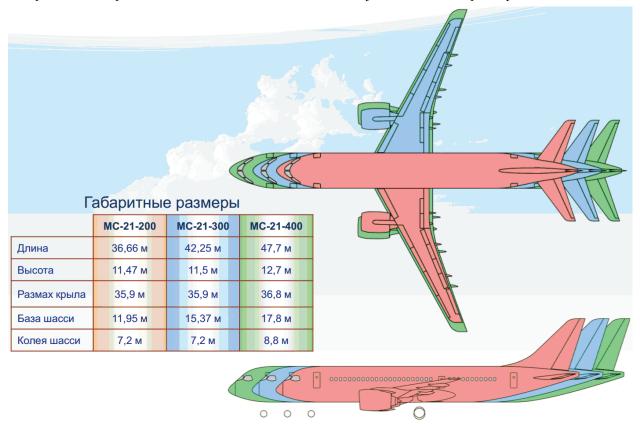


Рис. 1. Общий вид самолетов семейства МС-21

значит и его конкурентоспособность и востребованность на рынке.

Идеология производства формируется, как сумма решений по комплексу взаимосвязанных вопросов технического, экономического и организационного характера, таких как:

- выбор марок применяемых материалов и их поставщиков;
- определение требований к проектированию агрегатов самолета;
- разработка схемы производственной кооперации;
- выбор и отработка производственных технологий;
- технологическое оснащение производства и т.д. Ниже рассмотрены некоторые примеры отработки и практической реализации решений по указанным направлениям в контексте внедрения ПКМ в конструкцию планера самолетов семейства МС-21.

3. ВЫБОР МАТЕРИАЛОВ

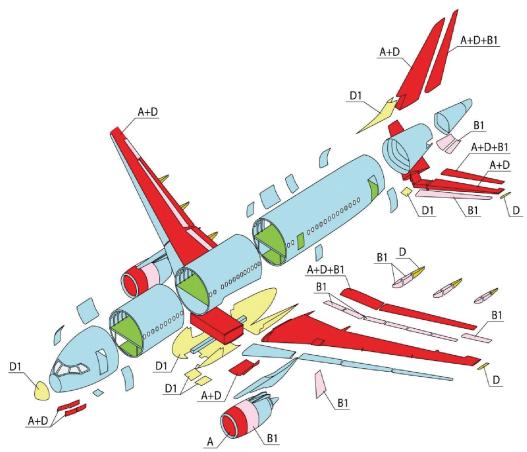
На этапе эскизного проектирования самолетов семейства МС-21, специалистами Корпорации «Иркут» проведен тщательный всесторонний анализ опыта применения композиционных материалов, накопленного ведущими мировыми и отечественными самолетостроительными предприятиями. Результаты этого исследования и данные приближенных прочностных расчетов основных частей самолета, позволивших определить требования к свойствам конструкционных материалов, показали целесообразность использования ПКМ, не только в традиционно композитных вторичных конструкциях планера (таких как носовой обтекатель РЛС, зализ «крыло-фюзеляж», створки шасси), но и в силовых конструкциях: кессонах крыла, киля и стабилизатора, центроплане (рис. 2).

В связи с этим, руководством корпорации принято решение о внедрении на самолетах семейства МС-21 композитного исполнения конструкций крыла и хвостового оперения (ХО).

Выбор марок и поставщиков композиционных материалов осуществлялся исходя из критериев:

- полноты информации по рекомендуемым производителями материалам;
- соответствия материалов требуемому уровню свойств;
- оптимального соотношения массовых и прочностных характеристик материалов;
 - минимизации номенклатуры материалов;
- широкого применения материалов в аналогичных ресурсных конструкциях зарубежных самолетов;
- согласия компаний производителей материалов на проведение совместных работ по изготовлению образцов для проекта МС-21.

Результаты проработки информации, предоставленной российскими и зарубежными производителями композитов и авиационных конструкций из ПКМ, а также профильными научноисследовательскими организациями, показали, что отечественные материалы, в большинстве своем, не отвечают заданным параметрам качества и оптимальным решением является использование импортных КМ.


Основными материалами для изготовления сильнонагруженных деталей конструкционного назначения (панелей, лонжеронов и нервюр центроплана, панелей и лонжеронов консолей крыла, обшивок и лонжеронов стабилизатора и киля, нервюр консоли крыла, центроплана, стабилиатора и киля) выбраны препреги компании HEXCEL (США) марок HexPly M21/34%/ UD194/IMA и HexPly M21/40%/285T2, вырабатываемые из углеродного волокна марки ІМА и углеродной ткани 285Т2 на эпоксидном связующем марки М21. Материалом покрывного слоя для угепластиковых конструкций служит препрег на основе стеклоткани марки 120, пропитанной эпоксидным связующим марки М21 – HexPly M21-45%-120 (HEXCEL).

Отечественные материалы также нашли применение в некоторых средненагруженных сотовых и слабонагруженных конструкциях: например, законцовки консолей стабилизатора, форкиль рекомендуется изготавливать с применением отечественного клеевого препрета КМКС-2м.120.Т60 (стеклоткань Т-60/2(ВМП)-78 на клеевой композиции). В качестве основного сотового заполнителя рекомендован полимерсотопласт марки ПСП-1К-2,5-48.

Конструкторским бюро инженерного центра (КБ ИЦ) ОАО «Корпорация «Иркут» выпущен Стандарт инженерного центра 741.140-092-2010 «Полимерные композиционные материалы, применяемые в конструкции самолетов семейства МС-21. Ограничитель». Документ ограничивает номенклатуру и определяет технические характеристики, технологические свойства, области применения неметаллических композиционных материалов (углепластиков, стеклопластиков, клеевых композитов, органитов, сотовых и полимерных заполнителей различных марок). Следует отметить, что номенкатура и примеяемость материалов продолжают уточняться в процессе комплексной проработки конструктивных и технологических вопросов на этапе рабочего проектирования. Так, в конструкцию крыла, наряду с материалами марок HexPly фирмы HEXCEL, внедрены углепластики компании СҮТЕС (США).

4. ОБЩИЕ ВОПРОСЫ ПРОЕКТИРОВАНИЯ КМ-КОНСТРУКЦИЙ ПЛАНЕРА САМОЛЕТОВ МС-21

Выбранный курс на широкое использование композиционных материалов в конструкции планера самолетов МС-21 определил необходимость внедрения специфических подходов к конструированию. Они могут быть сформулированы в виде следующих тезисов:

- А Высокопрочная углеродная лента для первичных конструкций
- В 1 Углеродная ткань для вторичных конструкций в сочетании с углеродной тканью для соединения общивки с сотовым заполнителем (для сотовых конструкций)
- D Стеклоткань для вторичных конструкций
- D1 Стеклоткань для вторичных конструкций в сочетании со стеклотканью для формирования соединения обшивки с сотовым заполнителем (для сотовых конструкций)
- Полимерные композиционные панели пола
- Металлы

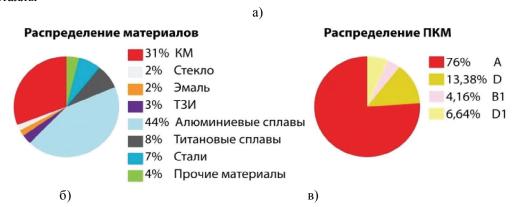


Рис. 2. Предварительная схема распределения материалов в конструкции планера

- конструкцию необходимо проектировать таким образом, чтобы ее можно было изготовить реализуемыми и доступными технологиями. Необходимо изначально закладывать идеологию изготовления и проектировать с учетом требований заложенной технологии изготовления;
- необходимо стремиться к снижению количества деталей (технологических разъемов) и крепежа за счет внедрения интегральных конструкций. Это также позволит уменьшить коли-
- чество технологических операций, снизить вес конструкции и сократить число концентраторов напряжений;
- необходимо согласование конструктивносиловой схемы агрегата со свойствами применяемых материалов и технологиями изготовления. Технологии, которые выбраны для изготовления наиболее приоритетных агрегатов (например, панели крыла, лонжероны, нервюры и т.п.), являются основными и конструкция других агре-

гатов должна проектироваться с учетом использования именно этих технологий;

- следует минимизировать количество уникальных деталей и агрегатов, проектировать типовые узлы для различных агрегатов;
- количество применяемых марок и сортаментов материалов должны быть ограничены;
- следует максимально автоматизировать процессы изготовления изделий из ПКМ;
- при проектировании следует учитывать контролепригодность изделий в производстве и в процессе эксплуатации. Необходимо избегать создания неконтролируемых «глухих» зон;
- при проектировании конструкций из ПКМ необходимо обеспечить подходы для сборки, герметизации, эксплуатационного обслуживания.

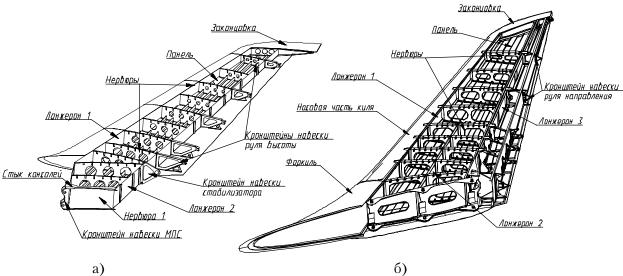
Практическая реализация данных принципов на этапе рабочего проектирования может быть проиллюстрирована, в частности, на примере конструкции силовых элементов кессонов стабилизатора (рис. 3,а) и киля (рис. 3,б): лонжеронов, нервюр и панелей, спроектированных по аналогии с силовым набором и оболочками приоритетного агрегата – крыла (рис. 4):

- Лонжероны киля и стабилизатора представляют собой балки швеллерного сечения с полками внутрь кессона и приформованными стойками, изготовленные из углепластикового препрега марки HexPly M21/34%/UD194/IMA. В стенках лонжеронов выполнены отверстия для доступа внутрь кессонов.
- Панели киля и стабилизатора представляют собой обшивки, подкрепленные стрингерами. Каждая панель кессона состоит из обшивки и стрингеров, отформованных совместно с обшивками из углепластикового препрега марки HexPly M21/34%/UD194/IMA. Толщина обшивок и стрингеров переменная.
- Поперечный силовой набор кессона киля и консолей кессона стабилизатора состоит из нервюр, имеющих швеллерное сечение. Большая

часть нервюр изготовлена из углепластикового препрега марки HexPly M21/40%/285T2. В стенках нервюр выполнены отверстия, имеющие утолщение по кромке.

5. ОБЗОР ОПЫТНО-КОНСТРУКТОРСКИХ РАБОТ (ОКР) ПО КОМПОЗИТНЫМ АГРЕГАТАМ ПЛАНЕРА САМОЛЕТОВ МС-21

5.1. Задачи, этапы и исполнители ОКР


Разработка такого технически сложного изделия, как самолет не может ограничиваться только теоретическими изысканиями и требует проведения на этапе рабочего проектирования комплекса экспериментальных работ, общей целью которых, является обеспечение прочности, ресурса и живучести самолета в процессе эксплуатации.

Применительно к композитным конструкциям самолета, весь объем опытно-конструкторских работ укрупненно может быть разделен на два этапа:

1. Отработка технологий изготовления и сборка композитных частей самолета на примере экспериментальных образцов.

В зависимости от решаемых задач и поставленных целей, а также, в зависимости от уровня имитации реальной конструкции, экспериментальные образцы подразделяются на группы:

- стандартные и элементарные образцы, в том числе, образцы для испытания на молниестойкость (например, образцы с типовыми концентраторами);
- конструктивно-подобные образцы (например, образцы типовых соединений, регулярных зон);
- натурные образцы (например, образцы зоны стыка панелей стабилизатора);
- натурные конструкции (кессоны крыла, киля, стабилизатора).
- 2. Проведение испытаний экспериментальных образцов.

Рис. 3. Силовые конструкции хвостового оперения: а - кессон консоли стабилизатора; б - кессон киля.

Рис. 4. Композитные элементы консоли крыла: а – лонжерон 1; б – панель нижняя

Испытания экспериментальных образцов проводятся с целью:

- оценки и оптимизации характеристик, выбираемых материалов;
 - выбора типовых конструктивных решений;
- подтверждения уровней расчетных напряжений из условий статической прочности, живучести и ресурса;
 - отработки и апробации методик расчета;
- определения фактической прочности, выносливости и живучести регулярных зон конструкции;
- оценки возможности обеспечения требуемого ресурса и живучести;
 - отработки типовых ремонтов;
- отработки технологии, методов контроля и т.д.

Опытно-конструкторские работы развернуты на базе предприятий, отвечающих за изготовление и сборку композитных агрегатов планера самолетов МС-21 на этапах опытного и серийного производства, согласно схеме производственной кооперации:

- ОКР в части изготовления композитного крыла проводит предприятие ЗАО "АэроКомпозит", г. Москва.
- ОКР в части изготовления металлических деталей и общей сборки композитного хвостового оперения проводит предприятие ЗАО "Авиастар-СП", г. Ульяновск. Поставщиком композитных элементов экспериментальных образцов и силовых конструкций оперения выступает ОАО «ОНПП «Технология», г. Обнинск.

Прочностные испытания образцов осуществляет Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского - крупнейший государственный научный центр авиационной и ракетно-космической отрасли РФ, осуществляющий государственную экспертизу всех летательных аппаратов, разрабатываемых в российских КБ.

Испытания образцов по направлению защиты самолета от молнии и статического электричества проводятся на базе ОАО «ЛИИ им. М.М. Громова» - головной организации авиационной отрасли по летным исследованиям и испытаниям летательных аппаратов на всех этапах их жизненного цикла.

5.2. Главные проблемы ОКР

Особенности конструкции крыла и хвостового оперения самолетов МС-21 поставили перед исполнителями ОКР ряд технических проблем, методы решения которых в условиях российского авиапрома не освоены или нуждаются в пересмотре, ввиду очевидного несоответствия требованиям современного производства:

1. Изготовление высокоточных крупногабаритных деталей из ПКМ.

Проблема особенно актуальна для панелей и лонжеронов крыла, поскольку их изготовление по вакуум-автоклавной технологии, технически не оптимально и не выгодно с экономической точки зрения.

- 2. Сверление отверстий в композиционных материалах (КМ) и смешанных пакетах. Проблема имеет несколько аспектов:
- в подавляющем большинстве случаев, усталостные разрушения планера происходят в зоне соединений, вследствие концентрации напряжений на кромках отверстий под крепеж. Волокнистая структура КМ обуславливает их более высокую, по сравнению с металлическими материалами, чувствительность к концентраторам напряжений, что предъявляет особые требования к качеству обработанных отверстий.
- особенности агрегатно-сборочного производства авиационных конструкций, в том числе, из КМ исключают возможность использования для обработки отверстий под крепеж традиционного стационарного механообрабатывающего оборудования, смазочно-охлаждающих жидкостей, ряда других технологических методов и средств, широко применяемых в механообрабатывающем производстве.
- отверстия с требуемыми геометрическими, точностными и качественными параметрами должны быть выполнены в конструкциях, содержащих разнородные материалы: относительно "мягкие" алюминиевые сплавы и труднообрабатвываемые материалы титановые сплавы, высокомодульные углепластики, режимы раздельной обработки которых кардинально различны. Примерами таких смешанных пакетов могут служить: места соединений трехслойных сотовых панелей носовой части

стабилизатора, имеющих углепластиковые обшивки с диафрагмами из алюминиевого сплава 1163Т; зона стыка панелей стабилизатора, где углепластиковые панели крепятся к поясам нервюры 1, изготовленным из титанового сплава ВТ22.

3. Выполнение соединений импортным дюймовым крепежом.

Использование импортного крепежа обусловлено необходимостью обеспечения требований заказчиков по эксплуатационной технологичности. В зависимости от характера нагружения соединения, к использованию в композитных конструкциях специалистами КБ ИЦ «Корпорации «Иркут» рекомендованы различные крепежные системы американской фирмы «ALCOA»:

- RXL, XPL, LGP болт-заклепочные соединения:
 - RXB болтовое соединение;
- Ti-Matic соединение односторонними заклепками с запирающимся сердечником.

5.3. Текущее состояние ОКР по композитному XO самолетов МС-21

ЗАО «Авиастар-СП», совместно с Филиалом ОАО «Корпорация «Иркут» в г. Ульяновске («УФКИ») выполняет составную часть опытно-конструкторской работы по теме: «Изготовление металлических деталей. Отработка технологии сборки. Сборка конструктивно-подобных и натурных образцов соединений, ограниченных и натурных отсеков элементов конструкции хвостового оперения. Разработка проектов НД по технологии сборки».

В общей сложности, сборке на ЗАО «Авиастар-СП» подлежат 1123 образца, из них:

- стандартные и элементарные 486 шт.;
- элементарные образцы для испытания на молниестойкость 36 шт.;
 - конструктивно-подобные образцы 587 шт.;
 - натурные образцы 11 шт.;
- натурные конструкции -3 шт. (кессон стабилизатора -2 шт., кессон киля -1 шт.).

Работы по изготовлению образцов хвостового оперения разделены на 4 этапа:

- 1. Отработка технологии образования отверстий и выполнения соединений в конструкциях, содержащих высокопрочные ПКМ, в том числе смешанные пакеты. Разработка нормативной документации на выполнение соединений.
- 2. Изготовление деталей и сборка конструктивно-подобных образцов. Разработка технологии сборки сложных конструктивно-подобных образцов. Разработка технологии сборки сложных конструктивно-подобных и натурных образцов, элементарных образцов для испытания элементов конструкции хвостового оперения на молниестойкость. Проектирование и изготовление технологической оснастки. Разработка НД по технологии сборки.
 - 3. Сборка сложных крупногабаритных кон-

структивно-подобных и натурных образцов. Сборка элементарных образцов для испытания элементов конструкции хвостового оперения на молниестойкость. Изготовление металлических деталей натурных конструкций. Проектирование и изготовление технологической оснастки для сборки натурных конструкций.

4. Сборка натурных конструкций.

К работам первого этапа был привлечен «Украинский научно-исследовательский институт авиационной технологии» (АО «УкрНИИАТ»), который, по заказу ЗАО «Авиастар-СП», провел экспериментальные исследования в области отработки технологии образования крепежных отверстий в типовых пакетах и выдал рекомендации по выбору последовательности и режимов обработки, режущего и механизированного инструмента, технологической оснастки. Данные исследований АО «УкрНИИАТ» выявили необходимость оснащения подразделений агрегатносборочного производства (АСП) ЗАО «Авиастар-СП» современным импортным механизированным и режущим инструментом. В связи с этим, руководством Проекта МС-21 на предприятии, было принято решение о проведении серии испытаний сверлильных машин и режущего инструмента различных типов с привлечением потенциальных поставщиков.

Для решения задач выбора инструмента и отработки технологии вскрытия отверстий, а также апробации технологий выполнения соединений различными видами дюймового крепежа, специалистами «УФКИ» разработана конструкторская документация на специальные технологические образцы, имитирующие пакеты типовых толщин и сочетаний материалов (КМ, КМ/Al, КМ/Ti, Ti/KM/Ti). Образцы изготовлены ЗАО "Авиастар-СП" и использованы в процессе испытаний.

В период с января по июль 2012 года испытан ручной механизированный инструмент компаний: Atlas Copco (Швеция), Desoutter (Англия-Франция), Dotco&Cleco (США), Lubbering (Германия) и режущий инструмент компаний: Klenk, Mapal (Германия), Recoules (Cooper, США), Sandvik-Coromant, Sandvik-Precorp (Швеция), Sumitomo Electric (Япония); высочайшие технологические качества показали сверлильные машины с автоматической импульсной подачей (СМАП) Desoutter и Lubbering (рис.5, а), оснащенные твердосплавным режущим инструментом. Помимо этого, на практике отработана технология постановки дюймового крепежа фирмы ALCOA с использованием специального ручного пневматического и гидравлического инструмента той же компании (рис. 5, б). По результатам испытаний инженерами ЗАО «Авиастар-СП» и «УФКИ» разработана нормативно-техническая документация, регламентирующая изготовление экспериментальных образцов хвостового оперения, прорабатывается комплекс решений по инструментальному «перевооружению» АСП в рамках программы МС-21.

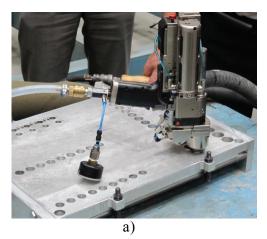


Рис. 5

К сентябрю 2012 года ЗАО «Авиастар-СП» завершен второй этап ОКР. Собранные стандартные и элементарные, конструктивно-подобные образцы переданы в ЦАГИ. Начата сборка сложных конструктивно-подобных образцов (рис. 5, в). Ведется подготовка к изготовлению натурных образцов.

5.4. Текущее состояние ОКР по композитному крылу самолетов MC-21

Успешная отработка проблем и задач начальных этапов ОКР, позволила ЗАО «АэроКомпозит» в 2011 году завершить изготовление двух прототипов кессона крыла.

Натурные конструкции выполнены из материалов компаний СҮТЕС и НЕХСЕL по вакууминфузионной технологии с применением размерно-стабильной инваровой оснастки (технология вакуумной инфузии предусматривает использование в качестве заготовок сухих преформ, их пропитку и формование под вакуумом без применения автоклава для создания избыточного давления). В конце декабря 2011 г. в ЦАГИ завершен комплекс прочностных испытаний одного из прототипов кессона крыла. Конструкция проходила статические, частотные и жесткостные испытания. Результаты исследований подтвердили соответствие фактических прочностных характеристик расчетным, заложенным на этапе проектирования. В настоящее время в ЦАГИ проходят прочностные испытания второго кессона и ведется подготовка ресурсных испытаний третьего экземпляра прототипа кессона крыла.

6. ЗАКЛЮЧЕНИЕ

Подавляющее превосходство западной авиационной индустрии в технологиях, технической оснащенности, уровне свойств применяемых конструкционных материалов, эффективности подходов к организации процессов проектирования и производства обеспечивает американским и европейским гражданским самолетам конкурентные качества, которые на сегодняшний день не могут быть реализованы в изделиях отечественного авиапрома. Изменить сложившуюся ситуацию должны такие перспективные проекты, как МС-21, призванные стать "локомотивами" комплексной модернизации гражданского самолетостроения России. Уже в процессе проведения опытных работ на этапе рабочего проектирования участниками Программы МС-21 создается задел для формирования современного производства, ориентированного на передовые технологии.

СПИСОК ЛИТЕРАТУРЫ

 Технологичность авиационных конструкций, пути повышения. Часть1: Учебное пособие / И.М. Колганов, П.В. Дубровский, А.Н. Архипов. Ульяновск: УлГТУ, 2003.

APPLICATION OF MODERN POLYMERIC COMPOSITE MATERIALS IN THE DESIGN OF MS-21 AIRPLANE FAMILY

© 2012 S.P. Savin

Branch of the IRKUT Corporation in Ulyanovsk

This work contains an overview of the general implementation issues of polymeric composites in airframe structure of MS-21 airplane family. Here is a review of tasks and the current results of developmental works on composite units - wing and tail.

Key words: composite, carbon, wing, tail, developmental work.

Sergey Savin, Design Engineer of 3 Category. E-mail: Sergey.Savin@ufki.irkut.com