УДК 621.383.5

АКТИВНЫЙ КООРДИНАТНО-ЧУВСТВИТЕЛЬНЫЙ ФОТОПРИЕМНИК

© 2012 С. Г. Новиков, Н. Т. Гурин, В. А. Родионов, А. С. Пронин, А. А. Штанько

Ульяновский государственный университет

Поступила в редакцию 20.11.2012

В работе рассмотрены активные кремниевые координатно-чувствительные фотоприемники с продольным фотоэффектом. Предложен метод повышения уровня фото-ЭДС таких фотоприемников. В исследуемых координатно-чувствительных фотоприемниках наблюдается повышение значения комбинированной фото-ЭДС по сравнению с величиной продольной фото-ЭДС в той же структуре. Исследуемые фотоприемники обладают линейной зависимостью выходного сигнала от координаты светового зонда. Ключевые слова: фотоприемник, продольный фотоэффект, координатная чувствительность.

При создании эффективных систем измерения координат, углов поворота, геометрических размеров и положения объектов широко используются датчики и преобразователи на базе координатно-чувствительных фотоприемников.

В таких датчиках и преобразователях физических величин используют как дискретные координатно-чувствительные приборы, например ПЗС матрицы [1], интегральные линейки фотодиодов [2], так и аналоговые приборы с протяженной фоточувствительной поверхностью. К последним можно отнести позиционно-чувствительные линейные и дуговые фотоприемники [3], фоторезисторы [4], полупроводниковые сканисторы [5], а также полупроводниковые фотодиоды с продольным фотоэффектом [6, 7]. Для многих приложений применение аналоговых фотоприемников предпочтительно с точки зрения высокой разрешающей способности, быстродействия, простой технологии изготовления.

Среди аналоговых координатно-чувствительных фотоприемников наиболее интересными являются полупроводниковые приборы с *p*-*n*-переходами, использующие продольный фотоэффект [6, 7]. Такие фотоприемники представляют собой плоский протяженный *p*-*n*-переход, образованный двумя областями с различными типами и Новиков Сергей Геннадьевич, кандидат технических наук, доцент кафедры радиофизики и электроники. *E-mail: novikovsg@ulsu.ru* величинами проводимости. Выходом фотоприемников с продольной фото-ЭДС являются контакты, расположенные по краям области с низкой проводимостью. При этом контакт от области с высокой проводимостью не используется. Условием наблюдения продольной фото-ЭДС, т.е. ЭДС, возникающей между участками области одного типа проводимости в направлении, параллельном плоскости *p*-*n*-перехода, является неравномерное освещение поверхности фотоприемника. Такие приборы отличаются простотой изготовления, высокой разрешающей способностью, высокой чувствительностью, а главное, для своего функционирования не требуют дополнительных источников питания, т. к. выходным сигналом таких координатно-чувствительных фотоприемников является фото-ЭДС, зависящая от координаты светового зонда на поверхности фотоприемника. В большинстве случаев эта зависимость линейна, а значения фото-ЭДС достигают единиц милливольт [6]. Механизм появления продольной фото-ЭДС, обусловленный явлением реинжекции, хорошо изучен и описан в [6,8], где также предложены способы увеличения фото-ЭДС и получения структур с линейными характеристиками. Эти способы сводятся к использованию внешних резистивных делителей и дополнительных источников энергии [8]. Подача дополнительного напряжения, например, между электродами 1 и 3 смещает выходную характеристику в ту или иную сторону от центра симметрии структуры в зависимости от напряжения, а также изменяет чувствительность элемента и может быть использована для модуляции выходного сигнала. Однако использование дополнительных элементов и источников питания существенно усложняет устройство, а относительно невысокий уровень выходного сигнала является

Гурин Нектарий Тимофеевич, доктор физико-математических наук, профессор, заведующий кафедрой радиофизики и электроники, первый проректор, проректор по учебной работе. E-mail: gurinnt@sv.ulsu.ru

Родионов Вячеслав Александрович, научный сотрудник НИТИ. E-mail: slv ldm@mail.ru

Штанько Александр Алексеевич, научный сотрудник НИТИ

Пронин Алексей Сергеевич, магистрант. E-mail: asp.pronin@gmail.com

также проблемой при использовании фотоприемников с продольным фотоэффектом в условиях малой интенсивности светового потока, попадающего на поверхность фотоприемника особенно при построении автономных систем преобразования физических величин. Поэтому задача повышения уровня выходного сигнала фотоприемников с продольным фотоэффектом без существенного его усложнения является актуальной.

В данной работе предложен метод повышения уровня выходной фото-ЭДС координатно-чувствительного фотоприемника за счет совместного использования продольного и поперечного фотоэффектов, одновременно наблюдаемых в полупроводниковой структуре с *p*-*n*-переходами [9].

Для наблюдения продольного и поперечного фотоэффекта в качестве объекта исследований выбрана протяженная кремниевая двухслойная структура *p*-*n*-типа. (рис.1) с двумя контактами 1 и 2 на верхней фоточувствительной поверхности по краям структуры и сплошным контактом 3 на нижней поверхности (рис.1.а). Структура *p*-*n*типа на основе кремния представляет собой полупроводниковую полоску длиной 26 мм, сечением трапецеидальной формы с верхним основанием шириной 0,6 mm, нижним основанием шириной 1,5 мм и толщиной 246 мкм. Угол между боковой стороной и нижним основанием составляет 32 градуса. Р-п-переход реализован на глубине 50 мкм в объеме полупроводника *n*-типа проводимости. Поверхностное сопротивление *p*области составляет 170 Ом/ц, удельное сопротивление *п*-области - 70 Ом·см. Электроды 1 и 2, выполнены при помощи контактной сварки (расщепленным электродом) золотой проволокой диаметром 40 мкм непосредственно на края верхнего фоточувствительного слоя кремния *p*-типа. Третий (3) электрод реализован в виде сплошной никелевой контактной площадки.

В случае локального освещения *p*-*n*-перехода с помощью светового зонда, наряду с возникновением разности потенциалов между *p* и *n* слоями полупроводника (поперечная фото-ЭДС) образуется разность потенциалов и между участками одной области в продольном направлении, параллельном *p*-*n*-переходу, обусловленная эффектами генерации носителей в области светового зонда, растекания носителей в квазинейтральных областях перехода за счет диффузии от области интенсивной генерации (светового зонда) в направлениях параллельных плоскости *pn*-перехода и реинжекции неосновных носителей через *p*-*n*-переход в областях, находящихся слева и справа от светового зонда по всей поверхности перехода [6]. Величина и знак продольной фото-ЭДС изменяется при смещении светового зонда от оси симметрии структуры, что также является проблемой при согласовании выходных сигналов фотоприемников с обрабатывающей электронной аппаратурой.

Типовые зависимости продольной фото-ЭДС, измеряемой между контактами 1 и 2, от координаты светового зонда диаметром 1 мм, для создания которого применялся полупроводниковый лазерный диод с длиной волны 980 нм, представлены на рис. 2. Как видно из рисунка, максимальное значение фото-ЭДС во всем диапазоне изменения координаты светового зонда по длине фотоприемника не превышает значения 17 мВ. При этом зависимость линейна и имеет точку по координате (геометрический центр структуры), в которой значение фото-ЭДС равно нулю.

Эту зависимость можно получить из анализа простой схемы замещения структуры, представленной на рис.1,б, в виде аналитического выражения:

$$U_{12} = \frac{I_F \cdot R_{pn} (R_2(x) - R_1(x))}{R + 2 \cdot R_{pn}}$$

где, $I_F - \phi$ ототок, $R - coпротивление верхнего слоя между контактами 1 и 2, <math>R_{pn} - coпротивление об$ ратносмещенного*p*-*n* $-перехода, <math>R_I(x) - coпротивление верхнего слоя от контакта 1 до области зас$ $ветки, <math>R_2(x) - coпротивление верхнего слоя от$ области засветки до контакта 2 (рис. 1).

Величина поперечной фото-ЭДС для данной двухслойной структуры при локальной засветке и при смещении светового зонда вдоль поверхности фотоприемника практически постоянна и в среднем составляет от 0,1 до 0,25 В при различных интенсивностях засветки. При объеди-

Рис. 1. Позиционно-чувствительный фотоприемник на базе структуры *p-n*-типа (а) и схема измерения фото-ЭДС (б)

нении вывода 2 от верхней *p*-области с выводом 3 от *n*-области (рис.1,6 пунктирная линия) вид зависимости выходной (комбинированной) фото-ЭДС от координаты светового зонда изменяется (рис.3) - наблюдается увеличение выходной фото-ЭДС за счет шунтирования *p*-*n*- перехода у контакта 2 короткозамкнутым участком цепи и увеличения тока, протекающего через сопротивление R_2 верхнего слоя между областью светового зонда и контактом 2 (рис. 1,6).

При этом приближенное аналитическое выражение для расчета выходного значения комбинированной фото-ЭДС имеет вид:

$$U_{12} = \frac{I_F \cdot R_{pn} R_2(x)}{R + R_{pn}},$$

И линейность зависимости комбинированной фото-ЭДС от координаты центра светового зонда сохраняется.

В отличие от рис. 2, зависимости, приведенные на рис.3 не меняют знак во всем диапазоне исследуемых координат, а значение выходной комбинированной фото-ЭДС изменяется от 0 при нахождении светового зонда на правой границе фотоприемника, до 50 мВ на левой границе. При этом увеличивается наклон характеристик при одинаковых токах через лазерный диод, в частности, при токе 0,2 А для продольной фото-ЭДС (рис. 2 линия 4) отношение U_g/x составляет 1,36 мВ/мм, а для комбинированной фото-ЭДС (рис.3 линия 4) - $U_3/x=2$ мВ/мм, что свидетельствует о повышении чувствительности фотоприемника.

Наличие фото-ЭДС, равной нулю у границы образца, может быть использовано для калибровки датчиков на основе таких фотопри-

Рис. 2. Зависимость величины продольной фото-ЭДС от координаты светового зонда на поверхности фотоприемника при различных токах, протекающих через лазерный диод: 1 – 0,05A; 2 – 0,08A; 3 – 0,1A; 4 – 0,2A

Рис. 3. Зависимость величины выходной фото-ЭДС от координаты светового зонда на поверхности фотоприемника при различных токах, протекающих через лазерный диод:

1 - 0.05 A; 2 - 0.08 A; 3 - 0.1 A; 4 - 0.2 A

емников или для измерения уровня интенсивности засветки.

При исследовании импульсного режима работы фотоприемника определены длительности переднего фронта и среза отклика при воздействии прямоугольным импульсом тока на излучающий диод. Значения длительности переднего фронта и среза для выходного импульса соответственно составили 30 мкс и 900 мкс. Данные значения для режимов измерения продольной фото-ЭДС и комбинированной фото-ЭДС практически не отличаются.

Однако в процессе увеличения частоты следования импульсов наблюдается рост постоянной составляющей в выходном сигнале. На рис. 4. представлена зависимость комбинированной фото-ЭДС от частоты. Зависимость носит логарифмический характер. Для схемы измерения продольной фотоЭДС кривая зависимости постоянной составляющей также изменяется по

Рис. 4. Зависимость постоянной составляющей выходного сигнала от частоты входного сигнала для схемы измерения комбинированной фотоЭДС

логарифмическому закону, но в отличие от первой схемы происходит уменьшение постоянной составляющей в 1,6 раза.

Таким образом, предложенный способ повышения выходного сигнала кординатно-чувствительного фотоприемника с продольной фото-ЭДС за счет изменения тока в одной из областей, находящихся слева или справа от светового зонда, позволяет увеличить величину выходной фото-ЭДС и чувствительности фотоприемника в 1,5 раза, с сохранением линейной зависимости выходного сигнала от координаты положения светового зонда на поверхности фотоприемника и обеспечением однополярности этого сигнала. Такие фотоприемники могут найти применение в различных автономных устройствах преобразования координат и размеров объектов в электрический сигнал.

Работа выполнена при поддержке Министерства образования и науки Российской Федерации в рамках федеральных целевых программ «Научные и научно-педагогические кадры инновационной России на 2009 - 2013 годы» и «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы»

СПИСОК ЛИТЕРАТУРЫ

- 1. Виглеб Г. Датчики. М.: Мир, 1989. 196 с.
- Полупроводниковые формирователи сигналов изображения. М.: Мир, 1979. 575с.
- *Турин Н.Т., Новиков С.Г., Корнеев И.В., Штанько А.А., Родионов В.А. //* Письма в ЖТФ, 2011. Т. 37. В. 6. С.57-62.
- Свечников С.В., Смовж А.К., Каганович Э.Б. Фотопотенциометры и функциональные фоторезисторы. М.: Сов.радио, 1978. 184 с.
- Золотарёв В.Ф. Безвакуумные аналоги телевизионных трубок. М. Энергия, 1972. 216 с.
- 6. Wellmark J.T. Proc.IRE. 1957. 45. P.474-484.
- Andersson H. Position Sensitive Detectors Device Technology and Aplications in spectroscopy. Sundsvall, Sweden, 2008, 76 p.
- Соболева Н.А., Берковский А.Г., Чечик Н. О., Елисеев Р.Е. Фотоэлектронные приборы. М.: Наука, 1965. 592 с.
- Координатно-чувствительный фотоприемник с комбинированным фотоэффектом: Рос. Федерация. № 2012128614; заявл. 05.07.2012; решение о выдаче патента от 09.08.2012.

ACTIVE COORDINATE-SENSITIVE POTODETECTOR

© 2012 S.G. Novikov, N.T. Gurin, V.A. Rodionov, A.S. Pronin, A.A. Shtan'ko

Ulyanovsk State University

We discuss the active silicon coordinate-sensitive photodetectors based on longitudinal photoelectric effect. A method to increase photo-emf in this type of photodetectors is proposed. In the considered coordinate-sensitive photodetectors an increase of combined photo-emf in comparison with the longitudinal one is observed. The studied photodetectors are characterized by the linear dependence of output signal on light beam coordinate. Key words: photodetector, longitudinal photoelectric effect, coordinate sensitivity.

Sergey Novikov, Candidate of Technics, Associate Professor at the Radiophysics and Electronics Department, Ulyanovsk State University. E-mail: novikovsg@ulsu.ru

Nectary Gurin, Doctor of Physics and Mathematics, Professor, Head at the Radiophysics and Electronics

Department, Vice-Rector. E-mail: gurinnt@sv.ulsu.ru Vyacheslav Rodionov, Research Fellow at the Research

Institute of Technology. E-mail: slv_ldm@mail.ru

Alexander Shtan'ko, Research Fellow at the Research Institute of Technology.

Alexey Pronin, candidate for a Master's degree. E-mail: asp.pronin@gmail.com