УЛК 597.585.1+591.5

ИЗМЕНЕНИЕ ПИТАНИЯ БЫЧКА-КРУГЛЯКА NEOGOBIUS MELANOSTOMUS (PERCIFORMES, GOBIDAE) В ПРОЦЕССЕ СОЗРЕВАНИЯ ГОНАД

© 2012 Е.В. Кириленко, Е.В. Шемонаев

Институт экологии Волжского бассейна РАН, г. Тольятти

Поступила 01.02.2011

В статье рассматриваются и анализируются особенности питания бычка-кругляка *Neogobius melanostomus* в зависимости от стадии зрелости половых продуктов, в условиях Саратовского и Куйбышевского водохранилищ.

Ключевые слова: спектр питания, гонады, бычок-кругляк, степень зрелости половых продуктов, вселенцы, инвазии, ареал.

Проблема инвазий чужеродных видов относится к одному из важных направлений фундаментальных и прикладных экологических исследований. Она приобрела особую значимость во второй половине XX в., когда расширение ареалов и проникновение многих видов в новые сообщества происходило на фоне общих антропогенных и климатических изменений. Созлание в Европейской России судоходных каналов, объединивших бассейны рек Балтийского, Белого, Черного, Каспийского морей, зарегулирование р. Волги водохранилищами привело к нарушению естественной гидрографической сети и разрушению изолирующих барьеров, что обусловило возможность саморасселения рыб. В водохранилища Средней и Нижней Волги проникли чужеродные виды рыб.

Одним из таких вселенцев является Neogobius melanostomus, естественный ареал которого, по данным [2], включает все прибрежные районы Чёрного, Азовского и Мраморного морей, низовыя крупных и малых рек, реки западного Закавказья, а также Каспийское море и низовыя впадающих в него рек: Волга, Урал. В Волге выше Волгограда бычок-кругляк не обитал. В настоящее время он распространился по всей Волге вплоть до Рыбинского водохранилища [1, 7, 12, 13, 16]. За истекший период, в литературе данные по биологии бычка-кругляка и его распределению по биотопам Куйбышевского и Саратовского водохранилищ практически не приводились.

Как отмечают некоторые авторы [3, 8, 10, 17], общий ход питания рыб зависит от физиологического состояния особи. Понижение интенсивности питания воблы осенью с созреванием гонад [3], а периоды быстрой смены питания совпадают с определенными биологическими моментами в жизни рыб, такими как половая зрелость [17]. Изменения характера питания в период созревания половых продуктов сильнее выражены у тех рыб, которые питаются, в основном, малокалорийной пищей, то есть в условиях Каспия у мол-

Удельная доля моллюска рода *Dreissena* в пище самок бычка-кругляка из исследуемых водоемов, на всем протяжении созревания половых продуктов остается достаточно высокой (табл. 1). При достижении V стадии зрелости – количество потребляемой дрейссены уменьшается, частично

заменяясь личинками хирономид (2.5% по массе

высококалорийной пищей, то есть у ракоедов, червеедов и хищников, эти изменения если и будут, то в значительно более слабой степени. Сильные изменения характера питания в Каспийском море, связанные с созреванием гонад, могут быть у бычка-кругляка [17].

Настоящая работа посвящена изменению пи-

люскоедов. У рыб же, питающихся, в основном,

Настоящая работа посвящена изменению питания бычка-кругляка в зависимости от степени зрелости половых продуктов и является продолжением серии статей по изучению инвазийных видов рыб в Куйбышевском и Саратовском водохранилищах [5, 6, 14, 15].

МАТЕРИАЛ И МЕТОДИКА

Материал собирали в период с 2003 по 2005 г. в прибрежных частях Куйбышевского и Саратовского водохранилищ на 19 станциях. Рыб отлавливали ставными жаберными сетями с ячеёй 10, 12, 15, 18, 30 мм и мальковой волокушей длиной 6 м и ячеёй 5 мм. Сети ставили на глубинах 2–25 м, мальковой волокушей рыб отлавливали на глубине 0.5–1.5 м.

У особей, фиксированных 4%-ным раствором формальдегида, определяли пол и стадию зрелости половых продуктов. Всего обработано 558 экз. Материал по питанию обрабатывали количественно-весовыми методами [9].

Относительное значение отдельных групп кормовых организмов в питании оценивали по частоте встречаемости и по массе отдельных компонентов от общего содержимого пищевого комка (в %). Накормленность выражали через общие индексы наполнения желудков (ОИН, ‱), которые вычисляли как отношение массы пищи к общей массе рыбы, умноженное на 10000.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кириленко Елена Васильевна, канд. биол. наук; Шемонаев Евгений Вячеславович, канд. биол. наук, e-mail: ievbras 2005 @ mail.ru

Таблица 1. Изменение состава пищи бычка-кругляка в зависимости от созревания половых продуктов (в %)

Пищевые	Степень зрелости половых продуктов																	
объекты	II		II-III		III		III-IV		IV		IV-V		V		VI		VI-II	
	По	ЧВ	По	ЧВ	По	ЧВ	По	ЧВ	По	ЧВ	По	ЧВ	По	ЧВ	По	ЧВ	По	ЧВ
	массе		массе		массе		массе		массе		массе		массе		массе		массе	
Зоопланктон	0.4*	15.8	0.1	28.6	1.2	9.5			0.01	3.6			0.03	8.3				
	0.2	5.3			0.8	4.1							0.01	14.3				
Бокоплавы	6.2	42.1	7.4	42.9	7.0	34.9	2.4	8.3	11.5	35.7	8.2	60.0	11.6	29.2			17.8	50.0
	8.1	33.2	1.2	33.3	0.9	8.2	1.4	33.3	13.1	16.7								
Ручейники	0.2	5.3																
-	0.01	1.2																
Хирономиды	7.0	63.2	3.2	71.4	3.8	54.0	0.8	25.0	0.1	17.9			2.5	37.5				
	1.2	30.8			0.3	12.2	0.1	25.0	0.1	16.7			2.1	28.6				
Насекомые			0.2	14.3	0.3	12.7							2.7	16.7				
	0.1	10.1			0.03	2.0	0.3	8.3					0.1	14.3				
Членистоногие					2.8	1.6			3.3	3.6								
	0.6	1.2					0.4	8.3										
Моллюск дрейссена	85.9	42.1	88.7	57.1	82.6	71.4	96.8	91,.7	74.6	75.0	91.5	100.0	83.2	62.5	100	100	82.2	75.0
	87.6	74.1	98.8	100.0	98.0	81.6	97.6	83.3	84,.7	66.7	100.0	66.7	97.8	71.4				
Моллюски брюхоногие	0.3	10.5	0.3	14.3	0.02	2.0			0.5	3.6	0.3	20.0						
П	1.0	2.8			0.02	2.0			0.4	2.6							1	
Личинки рыб	0.8	4.5			0.1	1.6	0.2	8.3	0.4 2.1	3.6 16.7								
Обрастания камней	0.8	4.3					0.2	0.3	9.0	3.6								
Обрастания камней									9.0	3.0								
Остатки пищи					0,.3	4.8			0.5	3.6								
•	0.03	0.8																
Песчинки					1,8	1,6												
	0.2	2.8																

^{*} цифры в верхней части столбца – показатели для самок; в нижней части – для самцов; ЧВ – частота встречаемости

и 37.5% по частоте встречаемости) и зоопланктоном (8.3% встречаемости). После нереста, самки вновь переходят на питание моллюском *Dreissena*, которая, у только что отнерестившихся особей, составляет 100% пищевого комка. Данный факт можно объяснить тем, что для ослабленных нерестом самок, моллюск является легкодоступной пищей.

У самцов наблюдаются аналогичные изменения в потреблении пищевых объектов. Самцы с незрелыми половыми продуктами активно используют в пищу дрейссену. При достижении V стадии зрелости происходит снижение встречаемости дрейссены в пищевом рационе самцов до 71.4%. Но возрастает значение хирономид (28.6% встречаемости) и зоопланктона (14.3% встречаемости).

Увеличение удельной доли ракообразных и личинок хирономид в питании взрослых бычков-

кругляков связанно с тем, что половые продукты на последних стадиях зрелости занимают всё пространство брюшной полости, и рыбы вынуждены переходить с питания объемными, низкокалорийными моллюсками на употребление объектов занимающих меньше места в кишечнике. Так как ракообразные и личинки хирономид, это высококалорийные пищевые компоненты [4], их небольшого количества в составе пищи достаточно для поддержания жизнедеятельности рыб [17]. Однако полной смены характера питания при созревании половых продуктов у кругляка мы не наблюдали.

По общим индексам наполнения желудочно-кишечного тракта, можно судить о степени накормленности рыбы.

Таблица 2. Индексы наполнения желудочно-кишечного тракта бычка-кругляка в зависимости от стадии зрелости половых продуктов

Пол	Стадии зрелости											
	II	II-III	III	III-IV	IV	IV-V	V	VI	VI-II			
Самка	211.0	240.8	144.6	242.1	162.0	249.5	64.6	310.0	206.7			
Самец	211.1	185.6	152.3	192.7	33.6	212.5	142.5	-	34.8			

Интенсивность питания самцов и самок изменяется на различных стадиях зрелости половых продуктов почти одинаково. На ранних стадиях зрелости наблюдаются достаточно высокие индексы наполнения желудочно-кишечных трактов рыб (табл. 2). Как правило, высокие показатели индексов наполнения у бычка-кругляка достигаются за счет содержания в кишечнике непереваренных и балластных остатков створок моллюсков. На пятой стадии зрелости у самок резко снижаются индексы наполнения (64.6‰‰), так как особи отягощены половыми продуктами, они почти не питаются. После нереста рыбы вновь начинают активно питаться. Индекс наполнения кишечника у бычкакругляка на шестой стадии зрелости (выбой) самый высокий (310.0‰‰), он увеличивается почти в пять раз по сравнению с особями на пятой стадии зрелости.

Уменьшение индексов наполнения у самцов начинается раньше (на IV стадии зрелости). Биологически это можно объяснить сложным брачным поведением бычка-кругляка. Оно заключается в строительстве гнезда, параллельно с которым самец охраняет участок, прилегающий к гнезду. После окончания постройки он начинает издавать нерестовые звуки, зазывая самок для откладывания и оплодотворения икры, после чего охраняет и аэрирует кладку [11]. В это время самец практически не питается, так как не покидает гнезда в течение всего периода развития потомства.

Эти данные совпадают с анализом встречаемости пустых кишечников рыб по стадиям зрелости (табл. 3).

Таблица 3. Встречаемость бычка-кругляка с пустыми пищеварительными трактами (ПТ) в зависимости от степени созревания половых продуктов (в %)

	тени сезревания половых продуктов (в 70)										
Сте-	(Самки		Самцы							
пен											
Ь											
зре-	пус-	Bce-	%	пус-	Bce-	%					
лос-	тые	ГО	пус-	тые	ГО	пус-					
ТИ	ПТ,шт	рыб	тых	ПТ,шт	рыб	тых					
II	4	42	9.5	23	270	8.5					
II-											
III	-	7	0.0	-	3	0.0					
III	4	67	6.0	7	49	14.3					
III-											
IV	-	12	0.0	-	12	0.0					
IV	7	35	20.0	1	6	16.7					
IV-											
V	-	5	0.0	1	3	33.3					
V	9	33	27.3	1	7	14.3					
VI	-	1	0.0	-	-	-					
VI-											
II	-	4	0.0	-	2	0.0					

ЗАКЛЮЧЕНИЕ

Таким образом, при созревании половых продуктов у бычка-кругляка в водах Саратовского и Куйбышевского водохранилищ происходит частичная смена спектра питания. При этом объемная, низкокалорийная пища (моллюски) частично заменяется бокоплавами и личинками хирономид, но полной смены характера питания не происходит.

СПИСОК ЛИТЕРАТУРЫ

1. Баянов Н.Г., Клевакин А.А. 2005. Особенности питания рыб-вселенцев в Чебоксарском водохранилище // Тез. докл. ІІ-го междунар. симп. по изучению инвазийных видов. Чужеродные виды в Голарктике (Борок – 2). 27 сентября – 1 октября 2005 г., Борок. С. 137-138.

- 2. *Берг Л.С.* 1949. Рыбы пресных вод СССР и сопредельных стран. Т. 3. М.–Л.: Изд-во АН СССР. С. 926-1382.
- 3. Желтенкова М.В. Питание воблы в северной части Каспийского моря // Труды ВНИРО. 1939. Т. Х. С. 46-54.
- 4. *Каширская Е.В.* Калорийность некоторых личинок хирономид Волгоградского водохранилища // Тр. компл. эксп-ции Сарат. ун-та. 973. Вып. 3. С. 135-140.
- Кириленко Е.В., Шемонаев Е.В. Некоторые черты биологии бычка-головача NEOGOBIUS GORLAP (PERCIFORMES, GOBIIDAE) в водах Куйбышевского водохранилища // Вопросы ихтиологии, 2010. Т. 50, № 8. С. 627-631.
- Кириленко Е.В., Шемонаев Е.В. Данные о морфологии и биологии ротана-головешки Perccottus glenii Dybowski, 1877 из озера Круглое Мордовинской поймы Саратовского водохранилища // Известия Самарского научного центра, 2011. Т. 13 (39), №1. С. 207-210.
- Клевакин А.А. 2005. Динамика расселения чужеродных видов рыб в Чебоксарском водохранилище // Тез. докл. 2-го междунар. симп. по изучению инвазийных видов. Чужеродные виды в Голарктике (Борок 2). 27 сентября 1 октября 2005 г., Борок. С. 152-154.
- 8. *Костюченко В.А.* 1960. Питание бычка-кругляка и использование им кормовой базы Азовского моря // Тр. Азов. НИИ рыб. хоз-ва. Т. 1. С. 341-360.
- Методическое пособие по изучению питания и пищевых отношений рыб в естественных условиях. 1974. М.: Наука, 254 с.
- 10. *Моисеев П.А., Азизова Н.А., Куранова И.И.* Ихтиология М.: Легкая и пищевая промышленность, 1981. 384 с.
- 11. Протасов В.Р., Цветков В.И., Ращеперин В.К. Акустическая сигнализация у Азовского бычка-кругляка

- Neogobius melanostomus PALLAS // Ж-л общей биол., 1965. T. XXVI, № 2. C. 151-160.
- Семенов Д.Ю., Шакирова Ф.М. 2005. Виды вселенцы в питании окуня Perca fluviatilis Linnaeus, 1758 Куйбышевского водохранилища // Тез. докл. 2-го междунар. симп. по изучению инвазийных видов. Чужеродные виды в Голарктике (Борок 2). 27 сентября 1 октября 2005 г., Борок. С. 169-170.
- Слынько Ю.В. 2001. Рыбы-вселенцы в бассейне Волги // Мат-лы росс.-амер. симп. по инвазионным видам. Инвазии чужеродных видов и Голарктике. 27–31 августа 2001 г., Борок, Ярославск. обл. С. 206-207.
- 14. Шемонаев Е.В., Кириленко Е.В. Некоторые черты биологии бычка-кругляка NEOGOBIUS MELANOSTOMUS (PERCIFORMES, GOBIIDAE) в водах Куйбышевского водохранилища // Вопросы ихтиологии, Т.49, №4, 2009г. С 483-487.
- 15. Шемонаев Е.В., Кириленко Е.В. Бычок-кругляк NEOGO-BIUS MELANOSTOMUS (PERCIFORMES, GOBIIDAE) новый вид в ихтиофауне реки Самара // Вопросы ихтиологии, 2011г, Т. 51, № 1. С. 138-139.;
- 16. Шляпкин И.В., Слынько Ю.В., 2003. Морфологическая характеристика двух видов бычков вселенцев в бассейнах Волги и Дона // Мат-лы докл. 10-й молодежной науч. конф. Актуальные проблемы биологии и экологии. 15–17 апреля 2003 г., Сыктывкар. С. 235–237.
- Руководство по изучению питания рыб в естественных условиях. 1961. М.: Изд-во АН СССР, 262 с.
- 17. *Шорыгин А.А.* 1952. Питание и пищевые взаимоотношения рыб Каспийского моря. М.: Пищепромиздат, 268 с.

FOOD CHANGE OF ROUND GOBY NEOGOBIUS MELANOSTOMUS (PERCIFORMES, GOBIIDAE) IN THE COURSE OF MATURING OF GONADS

© 2012 E.V. Kirilenko, E.V. Shemonaev

Institute of Ecology of the Volga river Basin of RAS, Togliatti

The article considers and analyses feeding characteristics of round goby *Neogobius melanostomus* depending on reproductive products maturing stage in Saratov and Kuybyshev reservoir.

Key words: feeding range, gonads, round goby, reproductive products maturing stage, invasive species, invasion, natural range.