УДК 631.468.52:631.432.25

ЧИСЛЕННОСТЬ МИКРОАРТРОПОД ЧЕРНОЗЕМОВ СТЕПНЫХ АГРОЛАНДШАФТОВ С ОЧАГАМИ СОВРЕМЕННОГО ПЕРЕУВЛАЖНЕНИЯ

©2013 С.А. Тищенко¹, А.А. Казадаев¹, Н.И. Булышева², А.Т. Гордей¹

¹Южный федеральный университет, г. Ростов-на-Дону ²Институт аридных зон Южного научного центра РАН, г. Ростов-на-Дону

Поступила 09.06.2013

В данной статье проведен анализ численности почвенных микроартропод (клещей и ногохвосток) черноземов, которые подвергаются избыточному увлажнению в степной зоне на богаре.

Ключевые слова: вторичный гидроморфизм, черноземы, микроартроподы, локальное переувлажнение.

Важной проблемой для степной зоны Юга России является появление и широкое распространение локального сезонного переувлажнения черноземов, которое не соответствует экологии этих почв. Особенность развития современного локального переувлажнения в условиях неорошаемого земледелия состоит в том, что оно является следствием процессов, которые связаны с незначительными, на первый взгляд, изменениями, приводящими при определенном сочетании природных предпосылок к изменениям в гидрологии целых регионов [8]. Причиной возникновения и развития переувлажнения черноземов является сочетание двух групп факторов: природных предпосылок и комплекса антропогенных воздействий, которые являются пусковым механизмом [5, 12]. На месте автоморфных черноземов возникли новые, весьма своеобразные ландшафты с типичной гидрофильной растительностью и минеральными гидроморфными почвами разной степени заболоченности и засоления. Такие ландшафты получили название мочары. Они занимают обычно дискретные ареалы среди зональных черноземов и, по сути, представляют собой комплекс болотных, лугово-болотных, луговых и лугово-степных почв [1].

Система критериев для индикации почв мочарных ландшафтов не разработана полностью. Поэтому использование достаточно надежных биологических объектов индикации, которые хорошо зарекомендовали себя для диагностики изменения почвенных свойств и режимов, позволит оценить степень развития процесса локального переувлажнения в любом месте их проявления. Некоторые биологические особенности почв участков локального переувлажнения были ранее изучены [7]. Но, несмотря на довольно широкое распространение локально переувлажненных участков в бассейне Нижнего Дона, до настоящего времени почвенные беспозвоночные населяющие их вообще не изучались.

Тищенко Светлана Александровна, к.б.н., доцент, e-mail: tischenko@sfedu.ru; Казадаев Анатолий Анисимович, д.б.н., проф., e-mail: zoo_sfedu@sfedu.ru; Булышева Наталья Ивановна, к.б.н., старший научный сотрудник, e-mail: bulisheva_nata@mail.ru; Гордей Анжела Тяйсумовна, студент, e-mail: ecology@sfedu.ru

Цель исследования — установить численность почвенных микроартропод (клещей и ногохвосток) черноземов, которые подвергаются избыточному увлажнению, и оценить возможность использования этого показателя в качестве одного из критериев проявления локального переувлажнения в нашем регионе.

МАТЕРИАЛ И МЕТОДЫ

Объектами исследования являлись локально переувлажненные ландшафты Зерноградского района Ростовской области. Согласно схеме геоморфологического районирования Волго-Донского региона, исследованная территория является частью Азово-Кубанской низменности. Климат Зерноградского района - среднеконтинентальный с амплитудой среднемесячных температур 28,5 С и Кт 0,7-0,8. Он относится к умеренно жаркому району с суммой положительных температур за период активной вегетации 3200-3400 С. Особенность Зерноградского района определяется равнинным рельефом, незначительной водопроницаемостью покровных отложений с подстиланием из третичных глин. Также для местности характерна природная замедленность грунтовых потоков. Возникновение и увеличение дополнительного питания грунтовых вод, связанного с нарушением естественного дренажа вследствие заиления балок и рек привело к появлению грунтового подтопления [9].

Для исследования численности почвенных микроартропод отбирались пробы почвы в мае 2010 г. в 8-кратной повторности металлической рамкой объемом 125 см³ на глубину до 25 см послойно по 5 см [4]. Всего было отобрано 40 почвенных образцов. Одновременно послойно измерялась температура, отбирались образцы для определения влажности. Определение полевой влажности почвы проводилось гравиметрическим методом. Пробы почвы отбирались послойно по 5 см в трехкратной повторности. Также на участке исследования был заложен полнопрофильный почвенный разрез. Экстракцию микроартропод из субстрата осуществляли на эклекторах при естественном освещении без электрического обогрева в течение 7 дней до полного высыхания [14] с последующим хранением в 70% спирте с добавлением глицерина. В спиртовых

пробах под бинокуляром МБС-10 выявляли состав микроартропод: панцирных клещей, относящихся к отряду Acariformes; гамазовых клещей, относящихся к подотряду Parasitiformes. Клещей, относящихся к подотряду Trombidiformes (тарсонемоидных, эндеостигматических, простигматических), а также акароидных клещей, подотряда Sarcoptiformes объединили в акароидно-тромбидиформный комплекс. Особое внимание было уделено ногохвосткам (Collembola), которых учитывали количественно в каждой пробе послойно. Остальных животных по своим мелким размерам относили к прочим беспозвоночным.

Для показателей численности подсчитывали среднее и ошибку среднего. Оценку зависимости распределения численности микроартропод по профилю от температуры и влажности проводили с помощью двухфакторного дисперсионного анализа. Характер распределения микроартропод на обследуемом участке определяли с использованием индекса агрегированности по формуле Лексиса (λ). Среди многочисленных параметров распределения этот коэффициент имеет наибольшую биологическую информативность [13]. Статистическая обработка выполнена с использованием компьютерной программы Microsoft Excel 2003.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для исследования численности микроартропод локального переувлажненого ландшафта были выбраны наиболее характерные точки и были отобраны пробы для последующего анализа. Как правило, подобные ландшафты резко выделяются среди сельскохозяйственных полей из-за смены растительности. Наряду со степными видами широко представлены гидроморфные растения, а также хорошо выраженной поясностью в характере размещения группировок травяно-лугово-болотной растительности [11].

Точки отбора образцов располагались под разными растительными ассоциациями: ассоциации с доминированием тростника обыкновенного и ассоциации на остепняемых участках мочарного ландшафта с доминированием степных злаков (типчака, пырея и др.) без участия тростника обыкновенного.

Помимо доминантов в растительных ассоциациях также встречаются трехреберник, молочай, чертополох, тысячелистник, ярутка полевая, щавель конский, осот полевой, подмаренник. Результаты исследования температуры и влажности почвы в точках отбора почвенных образцов в пределах локально переувлажненного ландшафта и на пашне представлены в таблице 1.

Из таблицы 1 видно, что исследуемый участок значительно отличается по условиям температуры и влажности от обычной пашни даже в переделах 25-см слоя. Согласно ранее проведённым исследованиям [10], влажность в верхнем метровом слое переувлажненных почв обычно выше, чем в зональных черноземах: в лугово-черноземных — на 2-3, в черноземно-луговых — на 3-5%.

Локально переувлаженный ландшафт представляет собой неоднородную по растительному покрову многолетнюю залежь (более 30 лет). В основном, большая часть участка занимает тростник обыкновенный, но встречаются участки свободные от него и занятые сообществом степных злаков: вейником наземным, типчаком, пыреем и пр. Неодинаковый растительный покров точек отбора стал причиной различий в температуре и влажности почвы. Более плотный и высокий покров, который образует сообщество тростника обыкновенного, является причиной более низкой температуры верхних слоев почвы и их более высокой влажности по сравнению с сообществом типчака и вейника (табл. 1).

В таблице 2 представлена численность микроартропод, населяющих локально переувлажненный участок.

В качестве эталона использовался участок с типичными для данной зоны почвами — черноземом обыкновенным карбонатным — памятник природы «Степь Приазовская». Наиболее полная характеристика комплекса микроартропод этого типа почв дана в работе Булышевой Н.И. [2]. Сходные данные были получены и для другого эталонного участка — ООПТ «Персиановская степь» [6] для такого же типа почв. В таблице 3 приведены данные по агроценозу и разным стадиям залежи.

Таблица 1. Температура и влажность почвы локально переувлажненного ландшафта и чернозема обыкновенного карбонатного под c/x культурой

	Точки отбора под тростни-		Точки отбора под типчаком		
Слой, см	Слой, см ком				
	Влажность, %	T, °C	Влажность, %	T, °C	
0 - 5	20,87	19,2	13,87	24,3	
5 – 10	24,56	15,6	18,23	19,3	
10 – 15	29,49	14,8	19,20	17,8	
15 - 20	28,14	14,1	19,94	15,8	
20 - 25	29,37	13,8	25,02	14,8	

Таблица 2. Средняя численность различных групп микроартропод (тыс.экз./м²) в слое 0–25 см локально переувлажненного ландшафта

Группы микроартропод	Май	
Панцирные клещи	21,2±0,7	
Гамазовые клещи	4,3±0,3	
Акароидно-тромбидиформные клещи	1,0±0,1	
Ногохвостки	3,8±0,3	
Прочие беспозвоночные	4,5±0,3	
Всего микроартропод	34,8±1,7	

Таблица 3. Средняя численность микроартропод (тыс.экз./м²) в пахотном горизонте чернозема обыкновенного карбонатного памятника природы «Степь Приазовская» в мае [2]

Группы микроартропод	Агроценоз	5-летняя за- лежь	15-летняя за- лежь	Многолетняя залежь
Панцирные клещи	$8,2 \pm 2,7$	10,0±2,6	13,9±2,6	23,3±3,2
Гамазовые клещи	$3,6 \pm 0,8$	6,2±1,7	10,5±2,7	12,3±2,8
Акароидно-тромбидиформные клещи	$2,5 \pm 0,4$	9,2±2,1	10,9±2,6	15,3±2,5
Ногохвостки	$3,2 \pm 0,6$	5,8±1,7	7,8±1,9	11,1±2,1
Прочие беспозвоночные	$3,9 \pm 0,7$	4,1±0,5	4,9±1,6	6,5±1,2
Всего микроартропод	$21,4 \pm 3,4$	35,3±4,6	48,0±4,8	68,5±5,7

Анализ результатов исследований показал, что в мае на локально переувлажнённых почвах общая численность микроартропод (34,8 тыс.экз./м²) сходна с данными, полученными под пятилетней залежью (35,3 тыс.экз./м²). При этом численность на многолетней залежи при переувлажнении в два раза ниже, чем таковая в автоморфных условиях. Однако численность основных деструкторов растительного опада – панцирных клещей (21,2 тыс.экз./м²) сравнима с численностью, отмечавшейся на многолетней залежи (23,3 тыс.экз./м²), что является следствием как достаточной влажности и теплообеспеченности почвы, так и наличия питательного субстрата. Показатели плотности населения остальных групп микроартропод аналогичны либо несколько ниже, отмеченных на пашне эталонного участка. Например, количество акароидно-тромбидиформных клещей в агроценозе составляет 2,5 тыс.экз./м², а в переувлажнённой почве всего 1 тыс.экз./м².

Исследование вертикального и горизонтального распределения микроартропод позволяет оценить степень неоднородности условий среды в пределах биотопа, механизмы взаимодействия различных групп почвенных беспозвоночных друг с другом и др.

В ходе оценки плотности населения мелких членистоногих по почвенному профилю наибольший ее показатель отмечен в слое 0-5 см для всех групп микроартропод исключая прочих клещей. Для них пик численности зафиксирован в слое 5-10 см. Далее, с глубиной во всех исследуемых группах отмечено снижение численности. По данным двухфакторного дисперсионного анализа зависимость изменения численности микроартропод с глубиной от температуры и влажности не достоверна $(P\square 0.05)$.

Горизонтальное распределение микроартропод на переувлажненном участке носит агрегированный характер (2,5 \square λ \square 5). На эталонных 5-, 15- и 70- летних залежах наблюдается слабоагрегированное распределение (λ меньше 2,5), и отмечается сниже- ние индекса с увеличением возраста оставления в залежь, а, следовательно, и стабилизации биоцено- за [3].

На территории локально переувлажненного ландшафта в зависимости от длительности переувлажнения происходит смена растительных сообществ, что влечет за собой изменение численности всех исследуемых групп мелких членистоногих.

Также в большинстве случаев, локальное переувлажнение становится причиной увеличением количества общего органического вещества в почве. Комплекс сложившихся почвенно-гидрологических условий и изменение характера растительных остатков способствует тому, что происходит замедление минерализации органических остатков и накопление полуразложившегося материала. Вероятно, это и послужило причиной значительного увеличения количества панцирных клещей на переувлажненном участке, т.к. они участвуют на средних и поздних этапах разложения органических веществ.

При этом общая численность мелких членистоногих ненамного увеличивается по сравнению с пашней, хотя количество потенциальной пищи на участках переувлажнения гораздо выше. Роль ограничивающего фактора в данном случае играет большое разнообразие как гидрологических режимов, так и химического состава почв переувлажнённых ландшафтов. Возможность использования показателей численности микроартропод как диагностического критерия процесса переувлажнение требует дальнейшего изучения. Исследование выполнено при поддержке Министерства образования и науки Российской Федерации (14.A18.21.0187, 14.A18.21.1269) и в рамках реализации Программы развития Южного федерального университета.

СПИСОК ЛИТЕРАТУРЫ

- Безуглова О.С., Назаренко О.Г. Генезис и свойства мочаристых почв Предкавказья // Почвоведение. 1998. № 12. С. 1423-1430.
- 2. *Булышева Н.И*. Микроартроподы (Acarina, Collembola) в пахотном горизонте черноземов обыкновенных и каштановых почв Нижнего Дона: Дис. ... канд. биол. наук. Ростов н/Д, 2004. 177 с.
- 3. Бульшева Н.И., Кременица А.М., Казадаев А.А. Динамика комплекса микроартропод (Acarina, Collembola) памятника природы «Степь Приазовская» при естественном остепнении // Вестник Южного научного центра. 2008. Т. 4. № 1. С. 52-60.
- Гиляров М.С. Зоологический метод диагностики почв. М. 1965. 278 с.
- Зайдельман Ф.Р., Тюльпанов В.И., Ангелов Е.Н., Давыдов А.И. Почвы мочарных ландшафтов – формирование, агроэкология и мелиорация. М.: Изд-во МГУ, 1998. 160 с.
- Казадаев А.А., Бульшева Н.И., Кременица А.М., Казеев К.Ш., Колесников С.И., Абрамова Т.И. Некоторые биологические особенности чернозема обыкновенного нижнего дона (целинный участок ООПТ «Персиановская степь») // Изв. Вузов. Сев.-Кавк. регион. Серия: Естеств. науки. 2004. № S4. С. 91-101.
- 7. *Казеев К.Ш., Фомин С.Е., Колесников С.И., Вальков В.Ф.* Биологические особенности локально-гидроморфных

- почв Ростовской области // Почвоведение. 2004. № 3. С. 361-372.
- 8. *Назаренко О.Г.* Современные процессы развития локальных гидроморфных комплексов в степных агроландшафтах: Автореф. дис. . . . д-ра биол. наук. М., 2002. 46 с.
- Отчет о мониторинге земель сельскохозяйственного назначения Ростовской области (переувлажненные почвы Зерноградского, Егорлыкского и Целинского районов).
 ЮжНИИгипрозем, г. Ростов-на-Дону, 1998 г. 82 с. (рукопись).
- Тищенко С.А. Изменение черноземов Нижнего Дона при локальном переувлажнении: Дис. ... канд. биол. наук. Ростов н/Д, 2004. 166 с.
- 11. Филоненко В.Н. Взаимосвязь структуры почвенного покрова и растительного покрова при переувлажнении геоморфологически расчлененных ландшафтов восточных отрогов Донецкого кряжа: Дис. ... канд. биол. наук. Персиановка, 2000. 162 с.
- 12. Хитров Н.Б., Назаренко О.Г., Чижикова Н.П., Герасименко Н.М., Клюкин Н.В., Литвинов С.А. Вторичное переувлажнение почв автоморфных степных агроландшафтов в условиях богарных систем земледелия // Совр. проблемы почвоведения. М.: Почв. Ин-т им. В.В. Докучаева РАСХН, 2000. С. 482-502.
- Чернов Ю.И. Основные синэкологические характеристики почвенных беспозвоночных и методы их анализа // Методы почвенно-зоологических исследований. М.: Наука, 1975. С. 160-216.
- 14. Balogh J. Lebensgerneinschaften der Landtiere, ihre Erforschung unter besonderer Berucksichigung der zoozonologischen Arbeitsmethoden. B. Budapest. 1958. 260 p.

THE NUMBER OF MICROARTHROPODA IN CHERNOZEMS OF THE STEPPE AGROLANDSCAPES WITH AREAS OF MODERN WATERLOGGED

©2013 S.A.Tischenko¹, A.A. Kazadaev², N.I. Bulisheva³, A.T. Gordey¹

¹Southern Federal University, Rostov-na-Donu ²Institute of Arid Zones, Southern Sci. Center of RAS, Rostov-na-Donu

The analysis of the number of soil microarthropods (*Acarina* and *Collembola*) in chernozems that are exposed to excessive moisture in the steppe zone without irrigation were carried out.

Keywords: secondary hydromorphism, chernozem, microarthropoda, local waterlogging.

Svetlana Tischenko, Candidate of Biology, associate professor, e-mail: tischenko@sfedu.ru; Anatoly Kazadaev, Doctor of Biology, professor, e-mail: zoo_sfedu@sfedu.ru; Natalya Bulisheva, Candidate of Biology, senior researcher, e-mail: bulisheva_nata@mail.ru; Angela Gordey, student, e-mail: ecology@sfedu.ru