УДК 621.039.8.002:621.039.554

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СХЕМ РЕАКТОРНОЙ НАРАБОТКИ ЛЮТЕЦИЯ-177

© 2013 В.А. Тарасов, Е.Г. Романов, Р.А. Кузнецов

ОАО "ГНЦ НИИАР", Ульяновская область, Димитровград-10

Поступила в редакцию 26.11.2013

В статье проведен сравнительный анализ двух схем реакторного получения радионуклида медицинского назначения лютеция-177. Определены количественные и качественные характеристики, сформулированы ограничения эффективности применения той или иной схемы. Ключевые слова: Реакторное облучение, лютеций-177, удельная активность, выход радионуклида.

Две схемы реакторного получения ¹⁷⁷Lu

Радионуклид ¹⁷⁷Lu (T_{1/2}= 6,734 дня) является весьма перспективным для применения в современной ядерной медицине. Для получения препарата ¹⁷⁷Lu высокой удельной активности могут быть использованы такие широко известные способы, как:

- облучение нейтронами ядерного реактора стартового материала, содержащего ¹⁷⁶Lu;

- облучение нейтронами ядерного реактора стартового материала, содержащего ¹⁷⁶Yb.

На рис. 1 представлена схема цепочек накопления ¹⁷⁷Lu.

Отметим, что отсутствие достоверных данных по нейтронным сечениям для ряда нуклидов (короткоживущих: Yb-175, Yb-177 и др.) практически не влияет на корректность теоретического анализа схем накопления, так как в данном случае скорость активации нейтронами мала по сравнению со скоростью радиоактивного распада.

Моделирование трансмутации нуклидов производилось с использованием комплекса программ ORIP_XXI [1], включающего в себя электронную базу ядерно-физических данных NKE, программу автоматического нахождения цепочек образования нуклидов ChainFinder и программу расчета кинетики образования нуклидов ChainSolver. В расчетах показателей трансмутации учитывался нестационарный эффект самоэкранирования резонансов сечения поглощения изотопов цепочки. Главное приближение, принимаемое при расчете трансмутации, предположение об отсутствии влияния изменений состава облучаемого материала на характеристики режимов работы реактора как источника нейтронов.

Для проведения предварительного анализа эффективности двух схем предположим, что производитель ¹⁷⁷Lu располагает:

• моноизотопами ¹⁷⁶Lu и ¹⁷⁶Yb, к тому же, материалы не содержат химических примесей;

 кроме того, производитель имеет возможность реализовать цикл облучения любой продолжительности и химически разделить лютеций, гафний и иттербий сразу после окончания облучения.

Накопление 177Lu из 176Lu

Кроме целевого ¹⁷⁷Lu, при облучении ¹⁷⁶Lu образуется "вредный" ¹⁷⁷mLu ($T_{1/2}$ = 160,4 сут), а также стабильные изотопы гафния ^{177,178,179}Hf. На рис.2 и 3 представлены результаты расчетов на-копления ¹⁷⁷Lu из ¹⁷⁶Lu для различных значений плотности потока тепловых нейтронов.

Как и следовало ожидать, максимальные значения удельной активности ¹⁷⁷Lu пропорциональны плотности потока тепловых нейтронов и достигаются достаточно быстро. При облучении ¹⁷⁶Lu в потоке 2×10^{15} см⁻² с⁻¹ (такой поток тепловых нейтронов доступен лишь в двух реакторах мира: HFIR, США, Ок-Ридж и СМ, Россия, Димитровград) за 10 суток достигается максимальное значение удельной активности равное 76 000 Ки/г. Это значение составляет примерно 70% от теоретической удельной активности ¹⁷⁷Lu (~ 110 000 Ки/г) и, видимо, является на настоящее время пределом качества при реализации схемы реакторного получения ¹⁷⁷Lu из ¹⁷⁶Lu.

Данные рис.2 недостаточны для оценки производительности изучаемой схемы по наработке ¹⁷⁷Lu. В процессе облучения лютеций интенсивно выгорает, поэтому максимум выхода ¹⁷⁷Lu (активность на грамм облучаемого материала) достигается раньше максимума удельной активности и существенно меньше (см. табл. 1).

Тарасов Валерий Анатольевич, заместитель директора Отделения радионуклидных источников и препаратов. E-mail: orip@niiar.ru

Романов Евгений Геннадьевич, кандидат технических наук, начальник лаборатории Отделения радионуклидных источников и препаратов. E-mail: orip@niiar.ru

Кузнецов Ростислав Александрович, кандидат химических наук, директор Отделения радионуклидных источников и препаратов. E-mail: orip@niiar.ru

Для того, чтобы определить активность ¹⁷⁷Lu соответствующую максимуму удельной активности достаточно перемножить значения удельной активности ¹⁷⁷Lu и массу лютеция в облучаемой мишени (табл.1, 2-ой столбец). Возвращаясь к примеру облучения ¹⁷⁶Lu в потоке 2×10^{15} см⁻² с⁻¹, получим через десять суток ~44 000 Ки ¹⁷⁷Lu с удельной активностью 76 000 Ки/г Lu. Максимальный выход ¹⁷⁷Lu достигается через 5 суток облучения и составляет 55 000 Ки, но достигаемая при этом удельная активность несколько ниже ~ 66 000 Ки/г.

В каждом конкретном случае производитель должен решать, либо стремиться к наилучшему качеству конечного препарата ¹⁷⁷Lu, либо к наибольшей производительности.

Еще одним фактором, определяющим качество препарата ¹⁷⁷Lu (наряду с удельной активностью) является относительное содержание долгоживущего изомера ¹⁷⁷mLu.

В рассматриваемом диапазоне изменения величин теплового потока $1\times10^{14}\div2\times10^{15}$ см $^{-2}$ с $^{-1}$, отношение активностей $^{177m}Lu/^{177}Lu$ изменяется

Плотность потока тепловых нейтронов, см ⁻² с ⁻¹	Макс. уд. активность ¹⁷⁷ Lu, Ки/г Время ее достижения, сут (Содержание Lu в мишени, г)	Макс. активность ¹⁷⁷ Lu, Ки Время ее достижения, сут Уд. активность ¹⁷⁷ Lu, Ки/г
1×10 ¹⁴	13 000	10 000
	40	20
	(0,68)	12 000
5×10 ¹⁴	45 000	30 000
	20	12
	(0,54)	40 000
2×10 ¹⁵	76 000	55 000
	10	5
	(0,58)	66 000

Таблица 1. Показатели	накопления ¹⁷⁷ Lu	при облучении 1 грам	ма ¹⁷⁶ Lu
(для различных	значений потока	и тепловых нейтронов)	

Рис. 3. Баланс ядер при облучении ¹⁷⁶Lu

от 0,03 до 0,01 (данные приведены для момента достижения максимума удельной активности ¹⁷⁷Lu, дальнейшее облучение приводит к резкому возрастанию доли ^{177m}Lu)

Диаграмма на рис.З иллюстрирует баланс ядер при облучении ¹⁷⁶Lu на момент достижения максимума удельной активности ¹⁷⁷Lu.

Накопление ¹⁷⁷Lu из ¹⁷⁶Yb

При «идеальной» реализации схемы реакторного получения ¹⁷⁷Lu из ¹⁷⁶Yb при облучении образуется лишь один изотоп лютеция, поэтому в нейтронном поле любой интенсивности получаем ¹⁷⁷Lu с теоретической удельной активностью (~ 110 000 Ки/г Lu).

В данном случае, более интересен другой параметр накопления, характеризующий производительность рассматриваемой схемы. На рис. 4 приведена временная зависимость выхода ¹⁷⁷Lu (Ки/на грамм стартового ¹⁷⁶Yb) для различных значений плотности потока тепловых нейтронов.

В отличие от кривых (рис. 2) зависимости выхода (рис. 4) не имеют ярко выраженных максимумов в рассматриваемом диапазоне изменения продолжительности цикла облучения. Это позволяет в широких пределах варьировать время облучения, практически не теряя в величине выхода ¹⁷⁷Lu.

Диаграмма на рис.5 иллюстрирует баланс ядер при облучении ¹⁷⁶Yb на момент достижения максимума выхода ¹⁷⁷Lu.

Для анализа эффективности изучаемой схемы важно знать интегральный выход ¹⁷⁷Lu при полном использовании одного грамма ¹⁷⁶Yb, т.е. с учетом возврата иттербия в производственный цикл после химической переработки облученной мишени.

Введем обозначения:

• у_{max} – выход ¹⁷⁷Lu за один цикл облучения, Ки/г ¹⁷⁶Yb;

• Birr – оставшаяся после цикла облучения доля ¹⁷⁶Yb, отн.ед;

Тогда интегральный выход ¹⁷⁷Lu (Ymax, Ки) из одного грамма ¹⁷⁶Yb составит:

 $Ymax = y_{max} \cdot (1) + y_{max} \cdot (1 \cdot Birr) + y_{max} \cdot (1 \cdot Birr) \cdot (Birr) \dots + \dots$

+ у
 $_{max}{\cdot}(Birr)^{n}$ +..., учитывая, что Birr
 1получим:

$$Ymax = y_{max} \sum_{n=1}^{\infty} (Birr)^n = y_{max} / (1 - Birr)$$

Вычисленные значения интегральных выходов ¹⁷⁷Lu для различных значений плотности потока тепловых нейтронов приведены в табл. 2.

Время облучения, сут

Рис. 4. Зависимость выхода ¹⁷⁷Lu от времени облучения ¹⁷⁶Yb для различных значений плотности потока тепловых нейтронов (Ф)

Рис. 5. Баланс ядер при облучении ¹⁷⁶Yb

Таблица 2.	Интегральный	выход ¹⁷⁷ Lu из	одного грамма ¹⁷⁶ Yb
------------	--------------	----------------------------	---------------------------------

Плотность потока	Выход ¹⁷⁷ Lu за один цикл	Оставшаяся после	Интегральный выход ¹⁷⁷ Lu
тепловых	облучения,	цикла облучения доля	(требуемое число циклов
нейтронов,	у _{тах} Ки/г ¹⁷⁶ Үb	¹⁷⁶ Yb,	1/(1- Birr)),
$CM^{-2}C^{-1}$		Birr отн.ед	Ки
1×10^{14}	27	0,99873	~21 000 (790)
5×10^{14}	134	0,99368	~21 000 (160)
2×10^{15}	530	0,97495	~21 000 (40)

Из данных табл. 2 следует, что интегральный выход ¹⁷⁷Lu при полном использовании одного грамма ¹⁷⁶Yb не зависит от уровня нейтронного потока, но достигается за разное количество циклов облучения (увеличение выхода ¹⁷⁷Lu «компенсируется» ростом выгорания ¹⁷⁶Yb за один цикл).

Предварительные выводы

Перед проведением сравнительного анализа двух схем получения ¹⁷⁷Lu, сделаем два важных замечания:

• При сравнении необходимо ориентироваться на минимальное потребительское значение удельной активности $^{\rm 177} Lu,$ равное 20 000 Ки/г;

• Настоящая и ближайшая перспективная мировая потребность в препарате ¹⁷⁷Lu может исчисляться видимо сотнями кюри в год (по крайней мере, не десятками тысяч, которые можно получить с применением обеих схем).

С учетом сделанных замечаний, на первый план при сравнительном анализе выходят показатели качества получаемого ¹⁷⁷Lu, а не количественные характеристики.

Сделаем ряд предварительных выводов об эффективности схем получения ¹⁷⁷Lu:

• Схемы ¹⁷⁶Lu \rightarrow ¹⁷⁷Lu и ¹⁷⁶Yb \rightarrow ¹⁷⁷Lu обладают высокой производительностью. Из одного грамма ¹⁷⁶Lu можно единовременно (или, разделив грамм на порции, за требуемое число циклов) получить до 55 000 Ки ¹⁷⁷Lu. При полном использовании одного грамма ¹⁷⁶Yb можно получить примерно 21 000 Ки ¹⁷⁷Lu;

• При реализации схемы ${}^{176}{\rm Yb} \rightarrow {}^{177}{\rm Lu}$ для нейтронного поля любой интенсивности получаем ${}^{177}{\rm Lu}$ с теоретической удельной активностью (~ 110 000 Ки/г Lu). Таким образом, производство ${}^{177}{\rm Lu}$ с использованием данной схемы может быть организовано даже на базе низкопоточных реакторов;

• Достигаемое значение удельной активности ¹⁷⁷Lu при использовании схемы ¹⁷⁶Lu \rightarrow ¹⁷⁷Lu существенно меньше (до 70% от теоретического значения) и пропорционально плотности потока тепловых нейтронов. Минимальное потребительское значение удельной активности ¹⁷⁷Lu, равное 20 000 Ки/г, можно достичь в потоке тепловых нейтронов ~ 1,8×10¹⁴ см⁻²с⁻¹. С учетом необходимого запаса для компенсации распада ¹⁷⁷Lu при проведении послереакторных операций (упаковка, аттестация, транспортировка Заказчику), необходима плотность потока тепловых нейтронов в диапазоне 3 ÷ 4×10¹⁴ см⁻²с⁻¹;

• При реализации схемы 176 Lu $\rightarrow ^{177}$ Lu неизбежно появляется «вредный» долгоживущий 177m Lu, доля (по активности) которого в 177 Lu может достигать 3%;

• ¹⁷⁷Lu, полученный по схеме ¹⁷⁶Lu \rightarrow ¹⁷⁷Lu, не потребует послереакторной радиохимической переработки. Тогда, как схема ¹⁷⁶Yb \rightarrow ¹⁷⁷Lu предполагает химическое отделение иттербия после облучения для возврата его в производственный цикл.

Суммируя плюсы и минусу обеих схем, авторы считают схему получения ¹⁷⁷Lu облучением ¹⁷⁶Yb более предпочтительной. Она позволяет получать препарат ¹⁷⁷Lu с максимально высокой удельной активностью и может быть реализована практически на базе любого реактора (если не требуется высокая производительность). Изза необходимых химических переработок эта схема более затратна, но, с другой стороны, определяющим может стать соотношение стоимостей обогащенных ¹⁷⁶Lu и ¹⁷⁶Yb.

Факторы, ограничивающие эффективность схем получения ¹⁷⁷Lu

Мы рассматривали идеальные варианты реализации схем $^{176}Lu \rightarrow ^{177}Lu$ и $^{176}Yb \rightarrow ^{177}Lu.$

Проанализируем основные факторы, ограничивающие эффективность реализации схем получения ¹⁷⁷Lu:

• На практике, реализация непрерывного облучательного цикла заданной продолжительности не всегда возможна. Любая реакторная установка работает по определенному графику, который предусматривает, в частности, необходимые для перегрузки ядерного топлива остановки. Кроме того, зачастую облучаемые мишени недоступны во время работы реактора и могут быть извлечены лишь на остановках. Таким образом, не всегда удается реализовать оптимальный режим облучения, что приводит к снижению эффективности процесса. Это касается обеих схем, но более существенно для схемы получения ¹⁷⁷Lu из ¹⁷⁶Lu (из-за наличия ярко выраженных максимумов во временных зависимостях, см. рис. 2).

• Наличие в стартовых ¹⁷⁶Lu и ¹⁷⁶Yb микропримесей других химических элементов имеет принципиальное значение для схемы ¹⁷⁶Yb → ¹⁷⁷Lu, если в стартовом ¹⁷⁶Yb присутствует даже небольшая примесь лютеция. Из диаграммы баланса ядер при облучении ¹⁷⁶Yb (рис. 5) следует, что даже при облучении в высоком потоке нейтронов (Ф= 2×10¹⁵ см⁻² с⁻¹) из грамма стартового материала образуется лишь ~ 4.8 мг¹⁷⁷Lu (0,48 масс.%). Таким образом, наличие в стартовом ¹⁷⁶Yb примеси стабильных изотопов лютеция на уровне нескольких десятых масс.% приведет к заметному снижению удельной активности ¹⁷⁷Lu. Для эффективной реализации схемы ¹⁷⁶Yb → ¹⁷⁷Lu может потребоваться дополнительная процедура химической очистки стартового материала от примесей лютеция.

• Степень обогащения стартового материала нуклидами ¹⁷⁶Lu или ¹⁷⁶Yb:

- для схемы ¹⁷⁶Lu \rightarrow ¹⁷⁷Lu все просто, с уменьшением обогащения стартового материала по ¹⁷⁶Lu пропорционально уменьшается удельная активность получаемого ¹⁷⁷Lu. Для сохранения приемлемого качества препарата потребуется более высокий нейтронный поток, что не всегда можно реализовать на практике (даже для «идеальной» схемы необходимы потоки на уровне $3 \div 4 \times 10^{14}$ см⁻²с⁻¹, см. выше);

- для схемы ¹⁷⁶Yb → ¹⁷⁷Lu от обогащения стартового материала по ¹⁷⁶Yb зависит только выход ¹⁷⁷Lu, который прямо пропорционален обогащению. Важным (для кинетики удельной активности ¹⁷⁷Lu) является наличие в стартовом материале стабильного изотопа ¹⁷⁴Yb, из которого по реакции ¹⁷⁴Yb(n, γ)¹⁷⁵Yb(в⁻)¹⁷⁵Lu(n, γ)¹⁷⁶Lu (см. рис.1) в процессе облучения образуются стабильные изотопы лютеция.

Более того, накопившийся короткоживущий 175 Yb ($T_{1/2}$ = 4,18 сут) уже после облучения (до момента химического отделения лютеция от иттербия) генерирует стабильный 175 Lu.

На рис. 6 приведены временные зависимости удельной активности ¹⁷⁷Lu для различных составов стартовой смеси изотопов иттербия (для простоты, считали, что в стартовой смеси содержатся только два изотопа иттербия ¹⁷⁴Yb и ¹⁷⁶Yb).

Зависимости рис. 6 наглядно иллюстрируют, что проблема ¹⁷⁴Yb является определяющей при реализации схемы получения ¹⁷⁷Lu облучением ¹⁷⁶Yb.

Действительно, при использовании моноизотопа ¹⁷⁶Yb удельная активность получаемого ¹⁷⁷Lu (равная теоретической) не меняется во времени, изменяется лишь его общая активность. Наличие ¹⁷⁴Yb в стартовой смеси изотопов иттербия и, как следствие, появление в процессе облучения стабильных изотопов лютеция, приводит к совершенно другой кинетике. Удельная активность быстро достигает своего максимального значения, которое несколько меньше теоретического, а затем, с ростом содержания стабильного ¹⁷⁵Lu, начинает уменьшаться. Учитывая, что выход ¹⁷⁷Lu монотонно возрастает на всем временном интервале (рис. 4), максимум удельной активности соответствует минимальным значениям выхода ¹⁷⁷Lu. После облучения, удельная активность ¹⁷⁷Lu падает быстрей, чем вследствие радиоактивного распада ¹⁷⁷Lu, из-за прироста массы стабильного ¹⁷⁵Lu.

Таким образом, можно выделить ключевые проблемы, влияющие на эффективность реализации рассматриваемых схем получения ¹⁷⁷Lu:

• Для эффективной реализации схемы $^{176}Lu \rightarrow ^{177}Lu$ необходим высокообогащенный ^{176}Lu и высокопоточный реактор (с плотностью потока тепловых нейтронов на уровне ~ $2 \div 5 \times 10^{14}$ см⁻²с⁻¹). Кроме того, требует отдельного исследования проблема долгоживущего «вредного» ^{177m}Lu (например, определение минимально допустимой доли, не влияющей на потребительские качества получаемого препарата ^{177}Lu);

• Для эффективной реализации схемы 176 Yb \rightarrow 177 Lu требуется стартовый иттербий с минимальным содержанием 174 Yb. Производитель 177 Lu, реализующий схему 176 Yb \rightarrow 177 Lu, должен иметь экспрессную радиохимическую процедуру отделения лютеция от иттербия. Как следует из вышеприведенных данных (рис. 5), массовая доля нуклида 177 Lu в иттербиевой мишени на момент окончания облучения составляет не более нескольких десятых процентов. Данная величина определяет требования к радиохимической технологии отделения иттербия. Для получения конечного препарата с массовым содержанием примеси иттербия не более 1% относительно массы 177 Lu, не-

Рис. 6. Зависимость удельной активности ¹⁷⁷Lu от времени облучения и послереакторной выдержки (облучение смеси ¹⁷⁴Yb и ¹⁷⁶Yb в нейтронном потоке $\Phi = 2 \times 10^{15}$ см⁻² с⁻¹)

обходимо обеспечить отделение иттербия с коэффициентом очистки не менее $nx10^5$.

СПИСОК ЛИТЕРАТУРЫ

- Работа выполнена при поддержке Министерства образования и науки Российской Федерации.
- RSICC Newsletters, No.491, January 2006, Radiation Safety Information Computational Center, ORNL, P.1.

COMPARATIVE ANALYSIS OF FLOWSHEETS FOR LUTETIUM-177 REACTOR PRODUCTION

© 2013 V.A. Tarasov, E.G. Romanov, R.A. Kuznetsov

JSC SSC RIAR, Ulyanovsk Region, Dimitrovgrad-10

The paper presents a comparative analysis of two flowsheets for reactor production of medical-purpose radionuclide Lu-177. The qualitative and quantitative characteristics were defined and application limits for both flowsheets were specified.

Key words: reactor irradiation, lutetium-177, specific activity radionuclide yield.

Valery Tarasov, Radionuclide Sources and Radiochemicals Division, Director Deputy. E-mail: orip@niiar.ru Eugeny Romanov, Candidate of Technics, Radionuclide Sources & Radiochemicals Division, Head of Laboratory. E-mail: orip@niiar.ru Rostislav Kuznetsov, Candidate of Chemistry, Radionuclide Sources and Radiochemicals Division, Director. E-mail: orip@niiar.ru