ВЛИЯНИЕ ФАЗОВОГО И ЭЛЕМЕНТНОГО СОСТАВА Ті_{1-х}Аl_xN СИСТЕМЫ НА ЕЕ ТРИБОЛОГИЧЕСКИЕ СВОЙСТВА

© 2013 А.Л. Каменева

Пермский национальный исследовательский политехнический университет

Поступила в редакцию 21.03.2012

В данной статье получены зависимости, позволяющие прогнозировать трибологические свойства $Ti_{1-x}Al_xN$ систем по их фазовому и элементному составу, установлено улучшение износостойких и антифрикционных свойств $Ti_{1-x}Al_xN$ системы при увеличении в ней содержания алюминия и гексагональной фазы $h\text{-}Ti_aAl_xN_2$

Ключевые слова: Ti_{1-x}Al_xN система, ионно-плазменные методы, фазовый и элементный состав, износостойкие и антифрикционные свойства.

введение

Работоспособность деталей узлов трения (деталей) с износостойкими пленками может быть увеличена равномерным прогревом с минимальным теплоотводом в приспособление на стадии подготовки детали за счет устранения последствий предшествующих операций и переходов технологического цикла ее изготовления [1, 2]; бомбардировкой поверхности на стадии осаждения пленки высокоэнергетичными ионами за счет уменьшения в ней внутренних напряжений [3, 4], обработкой отжигом на завершающей стадии процесса получения пленки за счет уменьшения в ней остаточных напряжений [5]. Значимость термических обработок для стабилизации структуры подложки и формируемых пленок в процессе и после их осаждения практически изучена [6-9], однако использование термических обработок для управления фазовым и элементным составом пленок будет рассмотрено в работе впервые.

Целью настоящей работы является изучение влияния термических обработок подложки и многокомпонентной пленки на основе $Ti_{1-x}Al_xN$ системы (в дальнейшем $Ti_{1-x}Al_xN$ система) на ее фазовый и элементный состав, улучшение трибологических свойств $Ti_{1-x}Al_xN$ системы за счет оптимизации ее фазового и элементного состава.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Интервалы варьирования температурных параметров (ТемП) обработки подложки и осаждения $Ti_{1-x}Al_xN$ системы: скорость нагрева подложки $V_{\mu,\Pi} = 10...90$ К/мин, начальная температура $Ti_{1-x}Al_xN$ системы $T_c = 605...870$ К после осаждения подслоя TiN и скорость ее нагрева $V_{\mu,\Pi} = 0, 1...3, 0$ К/мин

в процессе осаждения обеспечивали за счет изменения технологических параметров (ТехП) обработки подложки: величины и скорости увеличения высокого напряжения, подаваемого на подложку в процессе ее ионной очистки-нагрева (U_{выс} и V_{н.п.} – скорость нагрева подложки соответственно) и осаждения Ti_{1.}Al₂N системы: давления газовой смеси (P) и напряжения смещения (U,), подаваемого на подложку (табл. 1); использования *различных методов осаждения* Ti_{1-x}Al_xN системы: магнетронного распыления (МР), электродугового испарения (ЭДИ), комбинированного метода (МР+ЭДИ). В качестве материала тестовых образцов с диаметром 20 мм и толщиной 4 мм использовали конструкционную теплостойкую 25ХЗМЗНБЦА и аустенитную сталь 12Х18Н10Т; для материала мишеней и катодов – титан марки BT-1-00 и алюминий марки A85.

Фазовый состав определяли по дифрактограммам, полученным с участков Ti_{1.x}Al_xN системы с использованием дифрактометра ДРОН-4 в Со К α излучении при напряжении 30 кВ и токе 20 мА. Угловой интервал съемки 2 θ = 30-130°, шаг 0,1°, экспозиция в точке 4 с. Фазовые изменения в сформированных Ti_{1-x}Al_xN системах оценивали объемными долями входящих фаз: гексагональных Ti₃Al₂N₂, Ti₂AlN (в дальнейшем V_{тізаl2N2}, V_{Ti2AlN} , h-Ti₃Al₂N₂ и h-Ti₂AlN) и/или кубических Ti_{3}^{HZAIN} AlN, AlN, TiN (в дальнейшем $V_{\text{Ti3AlN}}, V_{\text{AlN}}, V_{\text{TiN}}, c-Ti_{3}$ AlN, c-TiN, c-AlN), направлениями их преимущественной кристаллографической ориентации. Элементный состав Ti_{1-x}Al_xN системы определяли с использованием растрового электронного микроскопа BS 300 с приставкой для микроанализа EDAX Genesis 200 и количественного микрорентгеноспектрального анализа - на микрорентгеновском анализаторе типа МАР-3 при ускоряющем напряжении 20кВ, токе зонда 20 нА и размере зонда 5мкм. Температуру поверхности неподвижной подложки после ионной очистки, осаждения подслоя TiN и Ti_{1-x}Al_xN сис-

Каменева Анна Львовна, кандидат технических наук, доцент кафедры технологии, конструирования и автоматизации в специальном машиностроении. E-mail: ann-kam789@mail.ru

темы определяли с использованием инфракрасного бесконтактного пирометра "Термикс".

Трибологические испытания Ti_{1-x}Al_xN систем проводили по схеме "палец-диск" на машине трения (рис. 1); профилограммы поверхности Ті, "Al N систем получали и обрабатывали с использованием высокоточного кругломера MarForm MMQ 400, оснащенного программой MarShell MarWin. Условия проведения трибологических испытаний: материал пальца (контртела) – ВК8, радиус сферы контртела - R = 6.5 ± 0.25 мм, осевая нагрузка на три пальца – F_a=175 H, линейная скорость скольжения пальца – V=0,68 м/с, путь трения L_т = 1500 м, радиус кольца износа пленки – г = 7 мм, продолжительность испытания – t=740 с, среда испытания – СОЖ, температура – Т=20 <u>+</u> 1°С [10]. Антифрикционные: коэффициент (f) и момент трения (M_{тр})¹ и износо-стойкие свойства Ti_{1-x}Al_xN системы: массовый износ (Δ m), объем лунки износа (Δ V_n), приведенный износ по массе (I_{Π}^{m}) и объему (I_{Π}^{V}); изнашивающую способность Ti_{1-x}Al_xN системы по отношению к контртелу: скорость износа контртела (Vк), приведенный износ контртела по объему (I_{κ}^{V}) определяли по формулам:

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Фазовый и элементный состав Ti_{1-x}Al_xN системы в зависимости от температурных и технологических параметров подготовки подложки и осаждения системы

В условиях кратковременной термической подготовки подложки (V_{и.п.}=90 К/мин) и низко-

Рис. 1. Машина трения для трибологических испытаний по схеме "палец-диск":

1 – электродвигатель; 2 – ременная передача; 3 – рычажное устройство с разновесами; 4 – опора; 5 – держатель; 6 – контртело - палец; 7 – диск с образцом (тестовый образец с нанесенной на него Ті_{1-х}Al_xN системой) и рычагом; 8 – тензометрический датчик силы; 9 – шарик; 10 – стакан с СОЖ; 11 - стойка; 12 – подшипник

температурного процесса магнетронного распыления (T_c=605...630 К и V_{н.с.}=0,1...0,4 К/мин) объемная доля основной фазы h-Ti₂AlN (P6₃/mmc (194), а=0,29846 нм и с=2,335 нм)) Ті_{1-х}Al_xN системы в большей степени зависит от изменения давления газовой смеси и напряжения смещения на подложке (табл. 1). При оптимальном сочетании ТехП: Р=1,0 Па и U_{см}=80 В формируется двухфазная Ti_{1-x}Al_xN система с основной h-Ti₂AlN и дополнительной с-TiN (Fm3m (225), a=0,4244 нм)) фазами и x=0,36. В случае понижения напряжения смещения при многократном увеличении объемной доли с-TiN понижается, как объемная доля h-Ti₂AlN, так и содержание алюминия в Ті, "Al N системе до х=0,25. Фазовый переход h- $Ti_2AlN + c - TiN \rightarrow h - Ti_2AlN + c - TiN + h - Ti_3Al_2N_2$ (пространственная группа РЗ1с (159), а=0,29875 нм и с=2,335 нм) является следствием отклонения давления газовой смеси относительно 1,0 Па. Увеличение содержания Al в Ti_{1-x}Al_xN системе с x=0,25 до x=0,32 при повышении давления объясняется большей объемной долей h-Ti₂AlN фазы и большей скоростью нагрева Ti_{1-x}Al_xN системы в процессе осаждения.

Фазовый и элементный состав Ti_{1-x}Al_xN систем, сформированных электродуговым испарением и комбинированным методом при более высокой степени ионизации парового потока, в первую очередь зависит от давления газовой смеси, ТемП подготовки подложки и осаждения Ti_{1-x}Al_xN систем (табл. 1). При минимальном давлении

¹ За момент и коэффициент трения принять средние значения от полученных за 3 сек с момента прохождения пальцами пути трения 10 м.

ТехП		ТемП		Объемные доли фаз (V), %					Элементный состав, ат.%				
		Τ _п , К	V _{H.c.} ,	$Ti_3Al_2N_2$	Ti ₂ AlN	Ti ₃ AlN	AlN	TiN	Al	Ti	Ν	$C_{Al}\!/C_{Ti}$	Ti-Al-N
			К/мин										система
					Магцетр	011100 02							
		обши	е ТехП:	$U_{RUR} = 600$	$3B. V_{n,n}$	оннос ра =90 К/ми	H. N_2	спис =35 %	6. N=2.	0 кВт:	U=80) B:	
		,		вые	P=1,0) Па; L=1	00 м	м	, ,		CM	,	
Р, Па	0,8	605620	0,33	18,7	54,0	-	-	27,3	17,81	44,53	37,66	0,40	$Ti_{0,75}Al_{0,25}N$
	1,2	605630	0,56	8,2	88,3	-	-	3,5	19,78	41,35	33,70	0,48	$Ti_{0,68}Al_{0,32}N$
U _{см} , В	40	605610	0,11	-	75,0	-	-	25,0	12,61	47,82	39,57	0,26	$Ti_{0,75}Al_{0,25}N$
	60	605615	0,22	-	76,0	-	-	24,0	14,63	46,90	38,47	0,31	$Ti_{0,75}Al_{0,25}N$
	80	605625	0,44	-	95,0	-	-	5,0	25,40	44,90	29,70	0,57	$Ti_{0,64}Al_{0,36}N$
Электродуговое испарение													
		общие Т	ехП: пр	и U _{выс} = 100	00 эВ; V _в	.п.=25 К∕	/мин;	$U_{cM} =$	200 B;	$N_2 = 10$) %; I _д =	=75 A;	
L=310 мм; Р=1,0 Па													
Р, Па	0,5	670690	0,7	-	13,0	27,0	-	60,0	9,28	65,80	24,92	0,14	$Ti_{0,88}Al_{0,12}N$
	0,6	670705	1,2	-	19,0	30,0	-	52,0	8,55	63,17	28,28	0,14	$Ti_{0,88}Al_{0,12}N$
	0,8	670710	1,3	82,0	5,0	-	-	15,0	25,85	44,02	30,13	0,59	$Ti_{0,62}Al_{0,37}N$
	1,0	620665	1,5	91,6	-	-	8,4	-	26,54	43,01	30,45	0,62	$Ti_{0,62}Al_{0,38}N$
V _{н.п.} , К/мин / t, мин	45/	670715	1,5	76,2	22,0	-	-	1,8	26,58	46,90	26,52	0,57	$Ti_{0,64}Al_{0,36}N$
	$\frac{10}{25^{*}}$	(70 7(0	2.0	100					22.14	40.00	25.00	0.01	T: A1 NI
	$\begin{vmatrix} 25 \\ 20 \end{vmatrix}$	6/0/60	3,0	100	-	-	-	-	33,14	40,88	25,98	0,81	1 1 _{0,55} A1 _{0,45} N
	15/	770815	1,5	92,8	-	-	2,5	4,7	28,02	42,60	29,38	0,66	$Ti_{0,60}Al_{0,40}N$
	40	870 915	15	95.0				5.0	28 70	12 02	28.38	0.67	Ti Al N
	60	870915	1,5	95,0	-	-		5,0	28,70	42,92	28,38	0,07	1 1 _{0,60} 711 _{0,40} 1 N
Комбинированный метод: МР+ЭДИ													
			общие 7	ГехП: N=2,	0 кВт; U, ериал каз	_{см} =90 В; гола – А1	N ₂ =5	0 %; I тени -	_д =75 А . ті	; P=1,0) Па;		
V _{н.п.} , К/мин / U _{выс} , эВ	45/	615, 690	2.5	90 2	67		, mriii –	31	26.50	43 50	30.00	0.61	Tio 62Alo 20N
	600		2,0	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	0,7			5,1	20,00	.5,50	20,00	0,01	0,02*0,38* •
	47/	630705	2,5	90,5	3,3	-	-	6,2	27,33	44,02	28,66	0,62	$\overline{Ti}_{0,62}Al_{0,38}N$
,	/00												

Таблица 1. Фазовый и элементный состав Ti_{1.}Al_vN системы

*U_{cm}= 280 B

Р=0,5...0,6 Па и низкой скорости нагрева системы V_{н.с.}=0,7...1,2 К/мин даже после продолжительного нагрева подложки до Т =670 К формируется трехфазная Ti_{1-x}Al_xN система, состоящая из кубических с-TiN, с-Ti₃AlN (пространственная группа Pm3m (221), параметр кристаллической решетки: a=0,4112 нм) и гексагональной h-Ti₂AlN фаз с минимальным содержанием алюминия (x=0,12). При P \ge 0,8 Па осаждается Ti_{1-v}Al_vN система, состоящая из основной h-Ti₂Al₂N₂ и дополнительных фаз h-Ti₂AlN и c-TiN, c x=0,36...0,40. Объемная доля h-Ti₃Al₂N₂ фазы увеличивается при осаждении Ti_{1-x}Al_xN системы на равномерно прогретую подложку с V_{нп}=10...25 К/мин и $T_c = 670$ К при P=1,0 Па и $V_{H,C} = 1,5$ К/мин, а с повышением за счет увеличения U_{cM} до 280 В скорости нагрева V_{н с} до 3,0 К/мин объемная доля

фазы h-Ti₃Al₂N₂ достигает 100 %, а содержание алюминия увеличивается до x=0,45. В случае непродолжительного нагрева подложки с $V_{\rm H.R.}$ =45 К/мин и повышения только $V_{\rm H.C.}$ до 2,5 К/мин при одновременной работе электродугового испарителя и магнетронного распылителя фазовый состав Ti_{1-x}Al_xN системы не изменяется.

Элементный состав Ti_{1-x}Al_xN системы, сформированной MP, ЭДИ и MP+ЭДИ изменяется в зависимости от технологических и температурных параметров подготовки подложки и осаждения системы в следующих интервалах: 8,55...33,14 ат.% Al; 40,88...65,80 ат.% Ti, 24,92...39,57 ат.% N (рис. 2). Стехиометрический состав соответствует Ti_{1-x}Al_xN системам, сформированным при объемной доле основной тройной системы ≥ 90 ат. %.

Рис. 2. Схематичные диаграммы зависимости элементного состава пленок на основе Ti_{1-x}Al_xN системы от входящих в нее фаз

3.3. Трибологические свойства Ti_{1-x}Al_xN системы в зависимости от ее фазового и элементного состава

Рост объемных долей основных фаз $\mathrm{Ti}_{1\text{-}x}\mathrm{Al}_x\mathrm{N}$ систем: h-Ti₂Al₂N₂ (ЭДИ и ЭДИ+МР) и h-Ti₂AlN (МР) с одинаковым направлением преимущественной кристаллографической ориентации (103) оказывает неоднозначное влияние на их трибологические свойства. Уменьшение V_{тізА!2N2} и одновременное увеличение V_{Ti2AlN} в $Ti_{1-x}Al_xN$ системе, сформированной МР, до 75 % приводит к ухудшению всех ее трибологических свойств. При $\mathrm{V}_{\mathrm{ti2AlN}}\!>75$ % характеристики износа пленки и контртела резко уменьшаются. Фаза h-Ti₂Al₂N₂ с объемной долей, не превышающей 80 %, практически не оказывает влияние на трибологические свойства Ti_{1-x}Al_xN систем, сформированных ЭДИ и комбинированным методом, но дальнейшее повышение V_{тізаl2N2} в системе резко их улучшает (рис. 3);

- повышение содержания Al в Ti_{1-x}Al_xN системах при формировании их MP способствует монотонному уменьшению, как износа пленки, так и контртела, в то время как при осаждении Ti_{1-x}Al_xN систем электродуговым и комбинированным методом резкое улучшение трибологических свойств Ti_{1-x}Al_xN системы наблюдается только при превышении содержания Al 36 ат.% и отношения концентраций алюминия и титана (C_{Al}/C_{Ti}) - 0,57. При постоянном содержании Al в Ti₁₋

 ${}_{x}Al_{x}N$ системе, но при повышении $C_{Al'}/C_{Ti}$ и уменьшении содержания в ней N_{2} все трибологические свойства улучшаются. Данный факт по результатам химического анализа объясняется приближением состава $Ti_{1-x}Al_{x}N$ системы к стехиометрическому. Оптимальное содержание Al в $Ti_{1-x}Al_{x}N$ системе - 45 ат. % не превышает критического 0,5...0,65 с точки зрения растворимости элементов в решетках нитридов;

- сравнение значений Δ m, I^m_n, I^V_n, I^V_κ, V^K, f и М_{тр} показало, что Ti_{1-x}Al_xN системы (ЭДИ и ЭДИ+МР) при примерно одинаковой концентрации в них алюминия по сравнению с Ti_{1-x}Al_xN (МР) обладают лучшими трибологическими свойствами.

ЗАКЛЮЧЕНИЕ

Основной фазой $Ti_{1-x}Al_xN$ системы, сформированной в результате низкотемпературного процесса магнетронного распыления на кратковременно прогретой подложке, является гексагональная фаза h- Ti_2AlN , объемная доля которой может быть повышена за счет оптимизации напряжения смещения на подложке и давления газовой смеси. К образованию в системе дополнительной гексагональной фазы h- $Ti_3Al_2N_2$ приводит отклонение давления газовой смеси 1,0 Па.

Основной причиной формирования методом ЭДИ трехфазной Ti_{1-x}Al_xN системы, состоящей из

Рис. 3. Зависимости трибологических свойств Ti_{1-x}Al_xN систем, полученных MP (a), (в), ЭДИ и ЭДИ+ MP (б), (г) от фазового (а), (б) и элементного (в), (г) состава

кубических с-ТіN, с-Ті₂AlN и гексагональной h-Ті₂AlN фаз, с минимальным содержанием алюминия x=0,12 является минимальное давление газовой смеси. Основной фазой Ті, "Al N системы, сформированной при оптимальном Р, является h-Ti₃Al₂N₂, объемная доля которой может быть увеличения за счет уменьшения $V_{_{\rm H.II.}}$ до 10 К/мин, увеличения $\rm T_{c}$ до 670 К и $\rm V_{_{H,C}}$ до 1,5 К/ мин. Содержание Al в $Ti_{1-x}Al_xN$ системе может быть повышено до x=0,38 за счет увеличения V_{нс} в процессе ее осаждения до 2,5 К/мин при одновременной работе электродугового испарителя и магнетронного распылителя и до х=0,45 - при повышении $V_{_{\rm H.C.}}$ до 3,0 К/мин за счет роста $U_{_{\rm CM}}$ до 280 В. Стехиометрический состав соответствуют Ті_{1-х}Аl_хN системам, сформированным при объемной доле основной тройной фазы не менее 90 %.

Улучшение трибологических свойств системы возможно при превышении объемных долей соответствующих гексагональных фаз 80 % и достижении содержания алюминия в Ti_{1-x}Al_xN системе не ниже x=0,36. Ti_{1-x}Al_xN система с содержанием гексагональной фазы h-Ti₃Al₂N₂ - 100 % и алюминия - x=0,45 обладает оптимальным комплексом износостойких и антифрикционных свойств, минимальной изнашивающей способностью по отношению к контртелу, Ti_{1-x}Al_xN система на основе h-Ti₃AlN уступает ей по свойствам.

Основными путями улучшения трибологических свойств Ti_{1-x}Al_xN системы при оптимальных TexП является равномерный прогрев подложки и осаждение системы при оптимальной начальной температуре и скорости ее нагрева в процессе осаждения.

Оптимизация фазового и элементного состава за счет управления температурными условиями формирования позволила многократно улучшить трибологические свойства Ti_{1-x}Al_xN систем. Использование термических обработок подложки и пленки для управления фазовым и элементным составом пленок и в конечном итоге улучшения их трибологических свойств рассмотрено в работе впервые.

Работа выполнена при финансовой поддержке Минобрнауки РФ (договор № 13.G25.31.0093) в рамках реализации Постановления Правительства РФ № 218 "О мерах государственной поддержки развития кооперации российских высших учебных заведений и организаций, реализующих комплексные проекты по созданию высокотехнологичного производства".

СПИСОК ЛИТЕРАТУРЫ

- Табаков В.П. Формирование износостойких ионноплазменных покрытий режущего инструмента. М.: Машиностроение, 2008. 311 с.
- 2. *Ящерицын П.И*. Технологическое наследование эксплуатационных параметров деталей машин / П.И. Ящерицын // Справочник. Инженерный журнал. 2004. № 9. С. 20-22.
- Шулаев В.М., Андреев А.А. Сверхтвердые наноструктурные покрытия в ННЦХФТИ // ФИП РЅЕ, 2008.
 Т. 6. - № 1-2. - С. 4-19.
- Plasma-based ion implantation utilizing a cathodic arc plasma / M.M.M. Bilek, D.R. McKenzie, R.N. Tarant, S.H.M. Lim, D.G. McCulloch // Surface and Coatings Technology, 2003. Vol. 156. Pp. 136-142.
- Theory of the effects of substitutions on the phase stabilities of Ti₁Al_xN / H.W. Hugosson, H. Hoëgberg, M. Algren, M. Rodmar, T.I. Selinder // J. Appl. Phys.,

2003. Vol. 93. № 8. Pp. 4505-4511.

- Pressure-induced rocksalt phase of aluminum nitride: a metastable structure at ambient condition / Q. Xia, H. Xia, A. Ruoff // J. Appl. Phys, 1993.Vol. 73. Pp. 8198– 8200.
- Self-organized nanostructures in the Ti-Al-N system / P.H. Mayrhofer, A. Hurling, L. Karlsson, J. Sjulün, T. Larsson, C. Mitterer and L. Hultman // Appl. Phys. Lett., 2003. Vol. 83. Pp. 2049-2051.
- Верещака А.С. Работоспособность режущего инструмента с износостойкими покрытиями. М.: Машиностроение, 1993. 356 с.
- Богданович В.И. Управление эксплуатационными свойствами деталей с вакуумными ионно-плазменными покрытиями при производстве летательных аппаратов: дисс. ... докт. техн. наук. Самара: Самарский государственный аэрокосмический университет имени академика СП. Королева, 2002. 439 с.
- Каменева А.Л., Караваев Д.М. Улучшение трибологических характеристик пленок на основе ZrN путем оптимизации технологических условий процесса магнетронного распыления // Сб. тр. 9-й Междунар. науч.-практ. конф. Освоение минеральных ресурсов Севера: проблемы и решения, Филиал СПГГИ (ТУ) "Воркутинский горный институт", 2011. С. 289-293.
- 11. *Baptista A.P.M.* Friction and wear of TiN coatings contribution of CETRIB /INEGI to the TWA 1- 1993 VAMAS round-robin // Wear, 1996. Vol. 192. Pp. 237-240.
- 12. Современные методы оценки механических и трибологических свойств функциональных поверхностей / М.И. Петржик, Д.В. Штанский, Е.А. Левашов // Матер. Х Междунар. науч.-техн. конф. Высокие технологии в промышленности России, ОАО ЦНИТИ "Техномаш", 2004. С. 311-318.

EFFECT OF PHASE AND ELEMENTAL COMPOSITION Ti_{1-x}Al_xN SYSTEM AT ITS PHYSICAL AND MECHANICAL PROPERTIES

© 2013 A.L. Kameneva

Perm National Research Polytechnic University

In this paper, the dependences allowing prediction of tribological properties of $Ti_{1-x}Al_xN$ systems in their phase and elemental composition have been received, was established that improved wear and antifriction properties of $Ti_{1-x}Al_xN$ system is due to increase of aluminum content in it, and the hexagonal phase h- $Ti_3Al_2N_2$. Keywords: $Ti_{1-x}Al_xN$ system, the ion-plasma methods, phase and elemental composition, wear and antifriction properties.

Anna Kameneva, Candidate of Technics, Associate Professor at the Technology, Engineering and Automation in Special Machine Construction Department. E-mail: annkam789@mail.ru