УДК 621.313:621.314

К ВОПРОСУ СОЗДАНИЯ ПЕРЕНОСНЫХ ИМПУЛЬСНЫХ НЕВЗРЫВНЫХ СЕЙСМОИСТОЧНИКОВ С ИНДУКЦИОННО-ДИНАМИЧЕСКИМ ПРИВОДОМ

© 2013 В.В. Ивашин, Н.А. Иванников, К.Х. Узбеков

Тольяттинский государственный университет

Поступила в редакцию 18.02.2013

Рассматриваются требования, предъявляемые к переносным (малогабаритным) импульсным невзрывным сейсмоисточникам, проведена сравнительная оценка электромеханических приводов используемых для импульсных сейсмоисточников, рассмотрены их особенности, обоснована перспективность применения индукционно-динамического привода в качестве импульсного силового привода сейсмоисточника.

Ключевые слова: невзрывная сейсморазведка, переносной импульсный невзрывной сейсмоисточник, электромеханический привод, короткоходовой электромагнитный двигатель, индукционно-динамический двигатель.

ВВЕДЕНИЕ

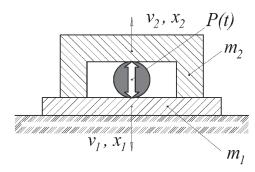
Для решения задач сейсморазведки — изучения верхней части разреза (ВЧР), сейсморазведки на акваториях и транзитных зон — необходим переносной невзрывной сейсмоисточник весом 50...60 кг с автономным питанием. Его применение расширит возможности проведения сейсморазведки в труднодоступных для транспортных средств горных районах, в переходных зонах (транзитных) вода—суша, в местах поселения людей и т.л.

В настоящее время эта задача решается созданием сейсмических волн с поверхности грунта механическим ударным воздействием на грунт кувалдой, небольшим падающим грузом или применением мощных импульсных источников предназначенных для сейсморазведочных исследований на глубину до 2..4 км, весом от 1,6 до 7 тонн, транспортируемых тракторами или большегрузным автомобилями повышенной проходимости.

Ударный способ не позволяет эффективно применять современные методы обработки информации, а использование мощных импульсных невзрывных сейсмоисточников ограничено их массогабаритными показателями и значительными эксплуатационными расходами.

Ивашин Виктор Васильевич, доктор технических наук, профессор, профессор-консультант кафедры «Промышленная электроника». E-mail: NIL-6@tltsu.ru

Иванников Николай Александрович, кандидат технических наук, ведущий научный сотрудник научно-исследовательской лаборатории №6 (НИЛ-6) «Импульсные электромеханические и полупроводниковые преобразователи энергии». E-mail: nikaliv@hotmail.ru


Узбеков Камиль Харрясович, научный сотрудник НИЛ-6 «Импульсные электромеханические и полупроводниковые преобразователи энергии». E-mail: K.Uzbekov@tltsu.ru

КОНСТРУКТИВНАЯ СХЕМА ИМПУЛЬСНОГО СЕЙСМОИСТОЧНИКА. ПОСТАНОВКА ЗАДАЧИ

Создание сейсмических волн является следствием механического воздействия на нагрузку (грунт, водную среду). В источниках невзрывного типа грунт деформируется излучающей плитой массой m_{τ} при приложении к плите силы P(t), создаваемой специальным импульсным двигателем (рис. 1.) Пригрузочная масса m_2 выполняет роль инерционной "опоры" для источника силы P(t). В результате действия силы P(t) плита-излучатель m_{τ} смещается в направлении грунта, что сопровождается созданием сейсмических волн, а пригруз m_2 ускоряется вверх в течение длительности силы t_p , затем перемещается в поле силы тяжести и возвращается в исходное положение на плите m_{τ} .

Импульсные сейсмоисточники различаются в основном типом применяемого привода (газодинамические, пневматические и т.д.) [1]. Схемы же конструктивного решения обычно соответствует рис. 1.

Площадь *S* прилегания излучающей плиты к грунту и скорость его деформации оп-

Рис. 1. Упрощенная конструктивная схема импульсного невзрывного сейсмоисточника

ределяют передаваемую в грунт механическую мощность и сейсмическую эффективность источника.

Технические характеристики источника зависят от соотношения масс m_1 и m_2 , и силы P(t) величина и длительность которой обеспечивает деформацию грунта x с допустимой скоростью и в течение определенного времени, которые зависят от реологических характеристик грунта.

Энергия механического воздействия на грунт источником силы P(t):

$$A = \int_{0}^{t_p} P(t)v_1(t)dt , \qquad (1)$$

где t_p – длительность силы P(t).

Скорость $v_1(t)$ плиты-излучателя зависит от её массы m_1 и реакции грунта на движение плиты и определяет значение силы P(t), прикладываемой двигателем к плите. С целью ограничения доли энергии A расходуемой на неупругую деформацию грунта под плитой, она не должна существенно, т.е. в несколько раз превышать скорость смещения v_{CM} частиц грунта при распространении по нему сейсмической волны:

$$v_{CM} = \frac{\sigma}{\rho \cdot v_o},\tag{2}$$

где σ – давление в грунте;

 ρ – удельный вес (плотность) грунта;

 $\mathcal{V}_{
ho}$ – скорость распространения продольных сейсмических волн в грунте.

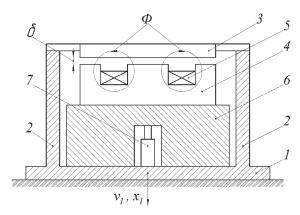
Принимая, что (2) справедливо и для прилегающего к плите слою грунта, деформируемого плитой-излучателем со скоростью $\nu_{_{f}}(t)$, логично считать, что последняя не должна превышать значения максимальной скорости смещения $\nu_{_{CMmax}}$, при которой создаваемые под плитой давления σ будут превышать значения максимального давления $\sigma_{_{max}}$ определяющего прочность грунта. В противном случае, т.е. при $\sigma > \sigma_{_{max}}$ значительная часть энергии выделяется на неупругую деформацию грунта, что снижает эффективность работы источника.

В [2] отмечается важное положение, что более прочным грунтам обычно соответствует большие значения ρ и v_{ρ} . Соответственно допустимые значения скорости смещения v_{CMmax} для грунтов различной плотности обычно изменяются в значительно меньшей мере и составляют 0,7...1,5 м/с. Следует отметить, что близкие к этим значения скорости излучающей плиты характерны для сейсмических вибраторов и мощных импульсных электромагнитных источников типа "Енисей СЭМ" и "Геотон", наиболее широко применяющихся в настоящее время.

С уменьшением диаметра D излучающей плиты источника уменьшается и время формирования сейсмической волны под плитой:

$$t_{\phi} \approx \frac{D}{v_{\rho}}.$$
 (3)

Это соотношение получено академиком А.А. Харкевичем [3] для случая постоянной скорости деформации упругого полупространства. При характерных для поверхностных слоев грунта значениях v_{ρ} =50..250 м/с [4, 5], время действия деформаций для сейсмоисточника с излучателем диаметром D равным одному метру лежит в диапазоне: $2 \div 10$ мс.


Условие (3) определяет выбор рациональной длительности t_p ? t_ϕ действия силы P(t) на плиту, поскольку при $t_p > t_\phi$ передаваемая от двигателя механическая энергия не приводит к увеличению энергии сейсмической волны, а расходуется в основном на увеличение скорости движения v_2 пригруза m_2 вверх.

Таким образом, скорость деформации грунта $V_1(t)$ плитой-излучателем и длительность t_p приложения силы P(t) к излучающей плите диаметром D являются условиями, обеспечивающими близкий к оптимальному режим передачи механической энергии от двигателя в упругие деформации грунта, следствием которых и является создаваемая сейсмическая волна.

Следует также отметить, на основании оценки влияния уменьшения длительности импульса двигателя сейсмоисточника на его выходные характеристики [6] следует, что при уменьшении длительности воздействия импульса силы $t_{\it pmax}$ целесообразно одновременное увеличение его максимального значения.

При разработке мощных источников типа "Енисей" и "Геотон" с площадью воздействия на грунт 1..2 м² необходимые параметры воздействия ($v_{tmax} \approx 1 \text{ м/c}, t_p \approx 5 \cdot 10^{-3} \text{ c}$) обеспечивались специально разработанным короткоходовым электромагнитным двигателем с зазором между якорем и индуктором $\mathcal{S} = 5 \cdot 10^{-3} \text{ м}$ [7, 8].

Конструктивное решение электромагнитного двигателя (ЭМД) такого типа сейсмоисточника не зависит от его мощности (рис. 2) и содержит излучающую плиту 1 со стойками 2, на которые оперт якорь 3 электромагнита. Индуктор 4 электромагнита с обмоткой возбуждения 5 закреплен на массивном пригрузе 6, опирающемся на плиту 1. Магнитопровод якоря 3 отделен от индуктора 4 зазором δ . При подаче в обмотку 5 импульса тока вокруг обмотки создается магнитный поток Φ проходящий по магнитопроводам 3 и 4 через зазор δ . При этом между якорем и индуктором создается сила:

Рис. 2. Конструктивная схема сейсмоисточника с электромагнитным приводом

$$P(t) \approx \frac{B_{\delta}^2 \cdot S}{2 \cdot \mu_0} \,, \tag{4}$$

где B_{δ} – индукция поля в зазоре;

S – площадь зазора;

 $\mu_{\scriptscriptstyle 0}$ – магнитная постоянная.

Усилие от якоря через стойки передается на плиту, что приводит к созданию деформации грунта плитой и генерированию сейсмической волны.

При этом якорь в течение времени действия силы P(t), которое определяется временем выбора зазора δ перемещается вместе с излучающей плитой.

При выборе зазора δ между якорем 3 и перемещающимся вверх магнитопроводом индуктора 4 происходит механический удар, что сопровождается шумом и значительными механическими нагрузками. После удара пригруз 6 совместно с якорем 3 перемещаются вверх в поле силы тяжести на некоторую высоту, демпфер 7 обеспечивает уменьшение скорости его возврата в исходное положение.

Скорость движения плиты 1 - 1,5 м/с не превышает значений, при которых в грунте создаются в основном упругие деформации, а длительность действующей на плиту силы не превышает времени его сжатия, что обеспечивает близкий к наиболее эффективному режим деформации грунта плитой [6].

Эти особенности мощных электромагнитных сейсмоисточников, а также простота конструктивного решения, высокий кпд преобразования потребляемой энергии в механическую энергию воздействия на грунт обусловили их широкое применение при проведении профильных сейсморазведочных работ.

В переносных источника весом 50 кг площадь S воздействия на грунт плитой составляет порядка 0,1..0,15 м 2 . Применение двигателя электромагнитного типа для переносного источника неперспективно, поскольку при деформации грунта под излучающей плитой в режиме близком к согласованному с параметрами грунта, двигатель не обеспечивает

создания необходимого силового воздействия на плиту, в связи с недостаточным соотношением создаваемой им силы к массе якоря (1000 H/кг). В переносном сейсмоисточнике необходимо применять силовой двигатель со значительно более высокими значения удельный силы, например (4..5)·10³ H/кг. Этому требованию удовлетворяют двигатель индукционно-динамического типа (ИДД).

Принцип его действия (рис. 3) состоит в том, что при создании в катушке возбуждения 1 импульса тока $i_{_{1}}$ в прилегающем к поверхности катушки якоре 2, представляющем собой электропроводящую пластину, индуцируется ток $i_{_{2}}$. При этом магнитный поток Φ создается в основном между катушкой и якорем, что сопровождается возникновением аксиально1 силы $P_{_{\partial M}}$ отталкивания между катушкой и якорем:

$$P_{\Im M} = i_1 i_2 \frac{dM}{dx} \,, \tag{5}$$

где M — коэффициент магнитной связи между пластиной 2 и катушкой 1, определяемый их конструктивными параметрами;

x — направление действия расталкивающей силы.

Импульсный ток i_1 определяющий величину и длительность силы P создается в катушке 1 при разряде на неё емкостного накопителя C (рис.36,в) заряженного до необходимого напряжения от источника электропитания.

Двигатели такого типа находят широкое применения в промышленных технологиях требующих приложения к нагрузке двигателя больших импульсных воздействий: штамповке и формовке деталей, создание неразъемных соединений деталей (холодная сварка), быстродействующие выключатели и т.д. [9].

Основными особенностями ИДД ограничивающими их применение в магнитно-импульсных промышленных технологиях являются низкий кпд преобразования потребляемой энергии в механическую энергию воздействия на рабочее тело, значительные радиальные силы, действующие на обмотку, которые при увеличении тока в обмотке действуют на её витки и могут привести к механическому разрушению катушки.

Однако эти особенности применения ИДД в переносном источнике не являются критическими. Механическая прочность катушки при применяемом режиме преобразования энергии обеспечивается достаточной даже в сложных условиях эксплуатации источника, а низкий кпд несущественно сказывается на весе источника. А главное достоинство — создание на якорь необходимого силового воздействия при малом весе якоря обеспечивает возможность создания переносного источника

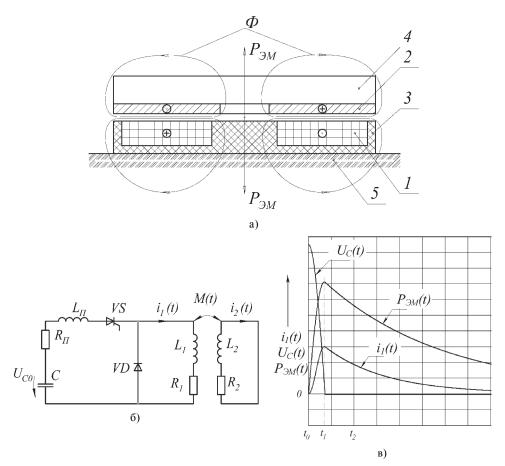


Рис. 3. Индукционно-динамический двигатель:

а — конструктивная схема, б — электрическая схема двигателя и силовой системы питания, в — характер изменения токов $i_{_1}$ и $i_{_2}$, электромагнитной силы $P_{_{\partial M}}(t)$ и напряжения $U_{_C}(t)$ на емкостном накопителе C от времени

Известны источники с ИДД для высокочастотной сейсморазведки на акваториях [10], а также для наземной сейсморазведки [11]. В конце 80-х годов XX века в "Енисейгеофизике" (на производственной базе в г. Минусинске) совместно с Харьковским политехническим институтом велась разработка мощных импульсных сейсмоисточников с электродинамическим приводом ("Енисей-СВ", "Енисей-СН") и совместно с Тольяттинским политехническим институтом (ныне Тольяттинский государственный университет) с электромагнитным приводом ("Енисей-СЭМ") [7, 8, 11].

В экспериментальных образцах источника "Енисей-СН", несколько ИДД обеспечивали создание на полозы саней, служащие излучателями, усилия до $60\cdot10^4$ Н при весе источника ~10 тонн. Питание двигателей обеспечивалось батареей импульсных конденсаторов с энергией $60\cdot10^3$ Дж.

Для сравнения отметим, что санный вариант импульсного источника "Енисей СЭМ" с электромагнитным двигателем при весе \sim 7 тонн создает силу $100\cdot10^4$ Н при энергии емкостного накопителя $8\cdot10^3$ Дж. Существенно более низкие технические показатели сейсмоисточника "Енисей-СН" являются в основном следствием низкого значения кпд преобразования энергии

емкостного накопителя в механическую энергию воздействия на грунт при длительности силы $(6..10)\cdot 10^{-3}\,\mathrm{c}$.

В настоящее время, основываясь на опыте использования ИДД в промышленных устройствах, современных достижениях по увеличению удельной энергоемкости конденсаторов и мощности коммутирующих приборов, а также опыте разработки невзрывных источников импульсного и кодоимпульсного типа, можно сделать вывод о перспективности применения ИДД в конструктивных решениях источников до 25·10⁴ H, в том числе при создании переносных источников на усилия до 5·10⁴ H и, возможно, до (6..7)·10⁴ H.

На рис. 4 приведен внешний вид опытного образца опытного образца малогабаритного источника сейсмического сигнала "МИСС-У-3"с индукционно-динамическим приводом [15, 17].

В табл. 1 приведены основные технико-экономические параметры экспериментальных образцов и серийно выпускающихся сейсмоисточников [11-15,17].

Из данных приведенных в таблице видно, при прочих сопоставимых технических показателях среди источников с электромагнитным приводом наиболее лучшими характеристиками обладают

Рис. 4. Внешний вид опытного образца переносного сейсмоисточника с индукционно-динамическим двигателем:

а – в корпусе, б – со снятой крышкой

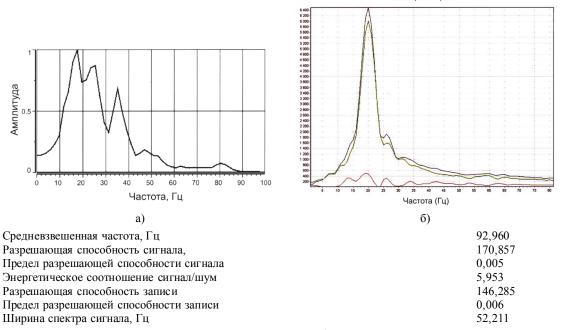
Таблица 1. Основные технические данные и характеристики сейсмоисточников с электромеханическим приводом

	Наименование, разработчик / производитель, страна происхождения, год выхода на рынок						
Показатели сейсмоисточников	«Енисей СЭМ 100» /«100М2», ТГУ / ОАО «Енисей-геофизика, Россия, 1992	«Енисей-СВ» /«СН» ХПИ/ ОАО «Енисей-геофизика»	« Геотон-06» , TГУ / ООО «Фирма «Геосейс», Россия, 2004	«Енисей ЭМ-1,6», ОАО «Енисей-геофизика», Россия, 2005	«ЭД И 0,4/1», ХПИ, Украина	МИСС-У , TГУ/ ООО «ВИЭМТЕХ» Россия, 2002	MИСС-У-3 («КВАНТ») TITУ&ООО «ВИЭМТЕХ»/ ОАО «СКБ СП» Россия, 2009
Исполнение	Транспортируемые тракторами (Т150 / Т170)			Переносные			
Тип двигателя	ЭМД	ЭМД	ЭМД	ЭМД	ИДД	ЭМД	ИДД
Сила воздействия на излучающую	100	60 / 30	60	16	27	10	30
поверхность в импульсе, кН, не менее:							
Длительность воздействия, мс:	5-6	5-6 / 10	3-8	3-5	5	3-4	1-2
Интервал времени между последующими действиями сек, не менее:	6	6	5	2	1	1	2
Площадь плиты одиночного излучателя, м ²	1,05 / 0,96	0,75 / 0,25	0,62	0,39	0,09	0,16	0,18
Масса источника, кг, не более, в	7600/ 6640	~5700/~ 8800	350	153	>70	43	57
- излучателя,	0040	8800	190	148	70	40	55
- системы питания	20	120	160	45		3	2
Ёмкость накопителя, мФ	20 10	120 60	0,5	2 0,5	0,8* 0,4	0,01	1,2 0,6
Максимальная энергия ёмкостного накопителя, кДж (при напряжении 1000 В)	10	60	0,3	0,3	0,4	0,030	0,6
Средняя потребляемая мощность, кВт	2,8	37,5 / 25	0,4	0,4	4	0,05	0,4
Первичный источник питания:	ГС	ГС	АКБ	АКБ		АКБ	АКБ
- ГС – синхронный генератор	380B,	380B,	+24 B	+12 B		+12B	+12B
- АКБ аккумуляторная батарея	50 Гц	50 Гц	98 Ач,	55 Ач,		55Ач, 1	55 Ач,
(тип АКБ, количество):	121.5	107/	2 шт	2 шт	265	шт	1 шт
Удельное развиваемое усилие к	131,6	105/	171	104,6	385	232	526
полной массе источника (к массе излучателя), Н/кг	/150,6	34,1	(315)	(108)		(250)	(545)
Удельное развиваемое усилие к максимальной энергии емкостного накопителя, Н/Дж	100	10 / 5	120	32	67,5	200	50

серийно выпускаемые сейсмоисточники типа "Геотон-06" и "МИСС-У", среди источников с ИДД опытный образец "МИСС-У-3". При этом сейсмоисточник с индукционно-динамическим приводом "МИСС-У-3", несмотря худшие энергетические характеристики: меньшее в 2,4 - 5 раз значение отношение развиваемого усилия к максимальной энергии емкостного накопителя (определяемое более низким кпд индукционно-динамических двигателей) значительно превосходит последние по значению отношения максимального механического усилия к общей массе источника. По сравнению с источником "Геотон-06" при вдвое меньшем значении развиваемой силы, масса источника меньше в 6,1 раз, и при сопоставимой массе с источником "МИСС-У" (отличие в 1,3 раза), развиваемое источником усилие больше в 3 раза.

Особенности сейсмоисточника "МИСС-У-3" следующие:

- 1. Длительность силового воздействия на плиту-антенну выбрана с учетом меньшего диаметра плиты излучателя и существенно, в 2-3 раза меньше, чем у электромагнитных приводов, и составляет порядка (1ч2)мс.
- 2. Уменьшение длительности воздействия силы обеспечивает повышение коэффициента передачи магнитной энергии привода в кинетическую энергию движения излучающей плиты и, в конечном итоге, в энергию упругих деформаций грунта и энергию сейсмической волны.
- 3. Удельное развиваемое усилие (отношение развиваемого усилия к массе источника) в 1,7-2,2 раза больше чем у лучших электромагнитных сейсмоисточников ("Геотон -06", "МИСС-У").
 - 4. Применение в емкостном накопителе кон-


денсаторов с высокой удельной энергоемкостью на рабочие напряжения менее 1 кВ упрощает эксплуатацию сейсмоисточника, обеспечивает уменьшение веса схемы питания (вес силовой части системы питания составляет 5 кг — менее 10% от общей массы источника) и позволяет достигать приемлемого уровня массогабаритных и энергетических показателей системы питания [18].

Как показала практика полевых испытаний (рис. 5) сейсмоисточник "МИСС-У-3" обеспечивает хорошее качество сейсмических работ, получаемые материалы сопоставимы с данными в ходе работы источника "Геотон-06" [17, 19].

выводы

- 1. Использование переносных сейсмоисточников весом до 50..70 кг актуально для решения задач инженерной геофизики, изучения верхней части разреза при поиске нефти, газа и других полезных ископаемых.
- 2. Характерной особенностью переносных импульсных невзрывных сейсмоисточников является малое, по сравнению со временем формирования сейсмической волны, время формирования импульса силы.
- 3. Применение конструктивных схем мощных источников типа "Енисей СЭМ" и "Геотон" с короткоходовыми электромагнитными двигателями не позволяет обеспечивать необходимую сейсмическую интенсивность источников переносного типа: основными ограничивающими факторами являются недостаточное значение развиваемого электромагнитом усилия к массе излучающей плиты источника.

Спектры энергии

Рис. 5. Результаты полевых испытаний опытного образца сейсмоисточника "МИСС-У-3" (ПКО, 10 накоплений, вертикальная компонента. Фильтрация (8 16 70 80) гармонизация "МИСС-У-3")

4. С учетом особенностей проектирования переносного импульсного сейсмоисточника, а также возможностей современных приборов и компонентов, в настоящее время для создания малогабаритного импульсного источника более перспективным представляется применение индукционно-динамического двигателя.

СПИСОК ЛИТЕРАТУРЫ

- Шнеерсон М.В. Теория и практика наземной сейсморазведки [под ред. М. В. Шнеерсона]. М.: ОАО "Издательство Недра", 1998.527с
- Молоканов, Г.И. Преобразование механической энергии в сейсмическую при ударе по поверхности // Прикладная геофизика. М.: Недра, 1979. Вып.65. С.3-12.
- 3. *Харкевич А.*А. Избранные труды. В 3 т. Т. 1. Теория электроакустических преобразователей. Волновые процессы. М.: Наука, 1973. 399 с.
- 4. *Камп Л*. Разведочная геофизика. М.: Мир, 1972. С.102
- 5. *Чичинин И.С.* Вибрационное излучение сейсмических волн.М.: Наука, 1984.223 с.
- Ивашин В.В., Узбеков К.Х. Анализ влияния уменьшения длительности механического импульса двигателя сейсмоисточника на его выходные характеристики // Вектор науки Тольяттинского государственного университета. 2010. №3.С.95–10.
- 7. Пат. 2172496 Российская Федерация, МКИ⁷ G 01 V 1/09. Импульсный электромагнитный привод невзрывного сейсмоисточника / Ивашин В.В., Певчев В.П.; заявитель и патентообладатель ЗАО "Континентальная геофизическая компания". №2000104236/28; заявл. 23.02.00; опубл. 20.08.01, Бюл. № 23.
- Пат. 2172497 Российская Федерация, МКИ⁷ G 01 V 1/04. Силовой электромагнит импульсного невзрывного сейсмоисточника / Ивашин В.В., Певчев В.П.; заявитель и патентообладатель ЗАО "Континентальная геофизическая компания". №2000104236/28; заявл. 23.02.00; опубл. 20.08.01, Бюл. № 23.
- 9. *Карпенко Л.Н.* Быстродействующие электродинамические отключающие устройства. Л.: Энергия, 1973. 158 с.
- 10. Parkes, G. The marine seismic source /G. Parkes, L.

- Hatton.-Merlin Profilers (Research) Ltd., U.K., 1989.
- 11. Электрофизические установки для сейсморазведки и интенсификации добычи нефти и газа / Н.В. Свистунов, В.А. Ерофалов, А.Г. Гурин, С.П. Мостовой, О.Н. Ярман // Вестник национального технического университета "ХПИ". 2006. №24. С.129–136.
- Импульсные электромагнитные источники "Енисей" от компании "Енисейгеофизика" // Приборы и системы разведочной геофизики. 2005. №2. С.26–27
- 13. ОАО "Енисейгеофизика". Производство импульсных источников. Типы источников. Санный. [Электронный ресурс]. URL: http://www.e-geo.ru/ru/enisey-geo-phisics/pulsed-source-production/source-types/38.html (дата обращения: 02.01.2011).
- 14. Компания ГЕОСЕЙС представляет новый малогабаритный источник возбуждения "Геотон-06" / В.В. Анкушев, С.В. Гурьев, В.Й. Резвов // Приборы и системы разведочной геофизики. 2004. №1. С.14 – 15.
- Пат. 2369883 Российская Федерация, МПК⁷ G 01 V 1/155. Импульсный невзрывной сейсмоисточник / Ивашин В.В., Иванников Н.А., Позднов М.В., Узбеков К.Х.; заявитель и патентообладатели Ивашин, В.В., Иванников, Н.А., Позднов М.В., Узбеков К.Х. №2008114261/28; заявл. 11.04.2008; опубл. 10.10.2009, Бюл. №28.
- 16. Пат. 2453870 Российская Федерация, МПК⁷ G 01 V 1/155. Импульсный невзрывной сейсмоисточник / Ивашин В.В., Иванников Н.А., Певчев В.П., Узбеков К.Х.; заявитель и патентообладатели Ивашин, В.В., Иванников, Н.А., Певчев, В.П., Узбеков, К.Х. №2009133495/28; заявл. 07.09.2009; опубл. 20.06.2012, Бюл. №17
- Беляев В.Л., Вейхт Б.А. Новый переносной малогабаритный импульсный источник сейсмических сигналов "МИСС-У-3"// Приборы и системы разведочной геофизики. 2009. №3. С. 22 – 23.
- 18. Узбеков К.Х., Шевцов А.А. Исследование показателей мощности источников питания невзрывного импульсного источника сейсмического сигнала, как импульсной нагрузки аккумуляторных батарей // Известия Самарского научного центра РАН. 2012. Т. 14. №4. С.99–105.
- Мичурин А.В. "Прогресс" и "Квант" это успех // Приборы и системы разведочной геофизики. 2009. №4. С.23.

TO QUESTION ABOUT THE CREATION A PORTABLE PULSE OF NON-EXPLOSIVE SEISMIC SOURCE WITH ELECTRODYNAMIC DRIVE

© 2013 V.V. Ivashin, N.A. Ivannikov, K. H. Uzbekov

Togliatti State University

Discusses the requirements applicable to a portable of pulse non-explosive seismic signal sources, a comparative evaluation of electromechanical actuators, which used for pulse seismic signal sources, discussed of their features, substantiated prospects applications of electrodynamic motor as drive of pulse seismic signal source.

Keywords: seismic prospecting (not-explosive), a portable pulse seismic signal source (not-explosive), electromechanical drive, electromagnetic motor short-stroke, electrodynamic motor.

Victor Ivashin, Doctor of Technics, Professor, Professor-Consultant at the Industrial Electronics Department.

E-mail: NIL-6@tltsu.ru

Nikolay Ivannikov, Candidate of Technics, Leading Research Fellow at the Scientific Research Laboratory № 6 «Electromechanical and Solid-State Pulsed Power Converters». E-mail: nikaliv@hotmail.ru

Kamil Uzbekov, Research Fellow at the Scientific Research Laboratory №6 «Electromechanical and Solid-State Pulsed Power Converters». E-mail: K.Uzbekov@tltsu.ru