УДК 621.74.046

ИССЛЕДОВАНИЕ ТЕХНОЛОГИИ И КАЧЕСТВА ПОЛУНЕПРЕРЫВНОЛИТЫХ РАСХОДУЕМЫХ ЭЛЕКТРОДОВ ДЛЯ ВАКУУМНО-ДУГОВОГО ПЕРЕПЛАВА С ЭЛЕКТРОШЛАКОВЫМ ОБОГРЕВОМ

© 2014 В.В. Аникеев

Самарский государственный технический университет

Поступила в редакцию 25.03.2014

Приведены результаты математического моделирования и экспериментальные исследования полунепрерывного литья стальных расходуемых электродов для вакуумно-дугового переплава с электрошлаковым обогревом. Представлены данные по качеству электродов и их влиянию на процесс вакуумно-дугового переплава.

Ключевые слова: полунепрерывное литье, сталь, электроды, обогрев, технология, качество, вакуумно-дуговой переплав

Технология литья расходуемых электродов большого сечения для вакуумно-дугового переплава (ВДП) полунепрерывным способом имеет специфические особенности в сравнении с литьём в изложницы. Отличие состоит в отсутствии конусности электрода и его большой относительной длине (H/D>5), отсутствии прибыли и прибыльных надставок. Эти факторы неблагоприятно сказываются на условиях затвердевания электрода и формировании усадочной раковины. В полунепрерывнолитых электродах усадочная раковина имеет форму вытянутого конуса, переходящего в осевой зоне электрода в пористость.

Известны способы уменьшения размеров усадочной раковины и уплотнения осевой зоны, создающие направленную кристаллизацию металла снизу вверх до окончания затвердевания электрода. Сущность способов сводится к сохранению тепла или поддержанию более длительное время жидкой фазы металла в головной части электрода. К таким способам относятся снижение скорости вытягивания электродов, что приводит к переохлаждению металла в ковше; доливка жидкого металла в процессе затвердевания электрода; теплоизоляция головной части электрода теплоизолирующей смесью; механическое перемешивание жидкой фазы в конце разливки; быстрый вывод электрода из кристаллизатора с интенсивной подачей на него охладителя в зоне вторичного охлаждения [1-4]. Данные способы незначительно влияют на размеры

усадочной раковины, протяжённость которой в среднем составляет 10% длины отливаемого электрода. Эффективным способом уменьшения протяжённости усадочной раковины и осевой пористости, снижения головной обрези перед ВДП является электрошлаковый обогрев графитовыми электродами и электрошлаковая подпитка стальными электродами из разливаемой марки стали головной части электродов по окончании разливки [5-7].

Цель работы: исследование влияния технологии электрошлакового обогрева на протяжённость усадочной раковины и качество металла подусадочной области полунепрерывнолитых электродов и качество слитков после ВДП.

При выполнении работы решались следующие задачи: проведены математическое моделирование процесса затвердевания электрода с учётом электрошлакового обогрева головной части, сопоставление результатов моделирования с экспериментальными данными, экспериментальные исследования качества металла подусадочной области электродов и слитков после ВДП.

Исследование выполняли на электродах диаметром 520 мм, массой 7,6 т из стали марок 03X11H10M2T (ЭП678У) и 30XГСН2А и слитках ВДП после переплава в кристаллизаторе диаметром 630 мм на Златоустовском металлургическом заводе и в Краматорском НИИПТмаш. При составлении математической модели процесса затвердевания электрода с электрошлаковым обогревом принимали следующие основные условия [8]:

Аникеев Владимир Викторович, кандидат технических наук, доцент кафедры «Литейные и высокоэффективные технологии». E-mail: tlp@samgtu.ru

- вытягивание электрода начинали с верхнего среза кристаллизатора с постоянной скоростью $v_{\rm c}$;

 конвективный теплообмен в металлической и шлаковой ваннах учитывали путём соответствующего увеличения коэффициента теплопроводности;

- в момент наведения шлаковой ванны между отлитым электродом и поверхностью кристаллизатора образуется шлаковый гарнисаж, изменяющий условия охлаждения электрода в области кристаллизатора при электрошлаковом обогреве;

- поверхность усадочной раковины описывается изотермой ликвидуса в тот момент, когда объём $V_{\rm yc}$, ограниченный изотермой ликвидуса, составляет $V_{\rm yc}=\beta V_{\rm x}$, где β – коэффициент усадки металла при затвердевании, $V_{\rm x}$ – объём жидкометаллической ванны в момент окончания разливки.

Температурное поле в отливаемом электроде, шлаковой ванне и графитовом электроде определяем из решения дифференциального уравнения теплопроводности

$$C_{\rm sph} \rho \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + q_{\rm sn}$$
(1)

где $q_{_{3л}}$ – плотность источников джоулева тепла в шлаковой ванне и графитовом электроде; $C_{_{3\phi\phi}}$ – удельная теплоёмкость, учитывающая выделение теплоты кристаллизации L в интервале температур ликвидуса T_L и солидуса T_S :

$$C_{_{3\phi\phi}} = \begin{cases} C_{_{\pi}}, T > T_{_{L}}; \\ C_{_{TB}} + L \frac{T - T_{_{L}}}{(T_{_{L}} - T_{_{S}})^{2}}, \\ T_{_{S}} \le T \le T_{_{L}}; \\ C_{_{TB}}, T < T_{_{S}}. \end{cases}$$
(2)

При расчёте температурного поля в электроде начало координат связывали с его нижним основанием. Начальная температура разливаемого металла составляла $T_{\rm H1}=T_{L1}+\Delta T_{\rm n}$, шлака – $T_{\rm H2}$, графитового электрода – $T_{\rm H3}$. Граничные условия на боковых поверхностях графитового электрода, шлаковой ванны и отливаемого электрода принимали в виде:

$$-\lambda_{i}\frac{\partial T}{\partial n_{i}} = \alpha_{i}\left(T_{n} - T_{cp}\right), \qquad (3)$$

где n_i – нормаль к поверхности расчётной области (рис. 1, а); $T_{\rm n}$, $T_{\rm cp}$ – температура поверхности и температура среды; i = 1 для электрода, i = 2 для

шлаковой ванны, *i* =3 для графитового электрода.

Теплообмен на зеркале металлической ванны (во время разливки), а также на верхней поверхности шлаковой ванны описывали граничным условием

$$-\lambda \frac{\partial T}{\partial z} = \sigma_{\text{\tiny HAII}} \left(T_{\text{\tiny I}}^4 - T_{\text{\tiny cp}}^4 \right) + \alpha \left(T_{\text{\tiny I}} - T_{\text{\tiny cp}} \right)_{.(4)}$$

Теплообмен между шлаковой ванной, зеркалом металлической ванны и поверхностью графитового электрода, погружённого в шлаковую ванну, описывали граничным условием

$$\lambda_2 \frac{\partial T}{\partial n_2} = \lambda_i \frac{\partial T}{\partial n_i}, \qquad (5)$$

где i = 1,3.

На оси симметрии электрода (шлаковой ванны и графитового электрода) принимали условие $\frac{\partial T}{\partial z} = 0$. Полученную систему уравнений расписывали в виде конечных разностей по явной схеме; основные параметры системы, используемые при расчётах теплового состояния, принимали следующими: плотность металла ρ_1 =7600 кг/м³, шлака ρ_2 =2600 кг/м³, графитового электрода $\rho_3 = 1900$ кг/м³, теплопроводность $\lambda_1 = 22 \text{ BT/(M \cdot K)}, \lambda_2 = 0,7 \text{ BT/(M \cdot K)}, \lambda_3 = 86 \text{ BT/(M \cdot K)};$ удельная теплоёмкость C₁=0,63 кДж/(кг·К), $C_2=0,84$ кДж/(кг·К), $C_3=1,7$ кДж/(кг·К); теплота кристаллизации L₁=268 кДж/кг, L₂=14,6 кДж/кг; температура ликвидуса T_{L1} =1763 К, T_{L2} =1623 К, солидуса T_{S1}=1703 К, T_{S2}=1573 К; коэффициент теплообмена излучением $\sigma_{_{H3Л}}=2,5\cdot10^{-8}$ BT/($M^2\cdot K^4$); коэффициент теплоотдачи между шлаковой ванной и кристаллизатором α_2 =430 Вт/(м²К); коэфу кристаллизатора фициент теплоотдачи α_{1k}=215-145 Вт/(м²К); коэффициент теплоотдачи с нижней поверхности электрода α_{1π}=510 Вт/(м²К); коэффициент теплоотдачи на боковой поверхности графитового электрода α₃=30 Вт/(м²К). Результаты расчётов сравнивали с экспериментальными данными, полученными путём фиксации серой фронта затвердевания (рис. 1б) и обмера усадочной раковины (рис. 2а, б) при заданном режиме подвода электрической мощности на шлаковую ванну (рис. 2в).

На рис. 1б сопоставлены расчётные и экспериментальные данные по определению границы жидкой фазы в процессе разливки для момента времени 20 мин. Установлено совпадение экспериментальных данных с расчётными, за исключением нижней части электрода, где сказывается влияние затравки. Сравнение расчётных данных по определению контура усадочной

раковины проводили для времени обогрева 30 и 60 мин. Результаты расчётов и экспериментальные данные приведены на рис. 2а, б. Контур усадочной раковины, полученный с помощью разработанной математической модели, хорошо согласуется с экспериментальными данными; количественное расхождение результатов по определению глубины усадочной раковины не превышает 12-16%. Результаты расчётов, приведенные на рис. 2а, б, получены при задании графика подвода электрической мощности на шлаковую ванну в соответствии с экспериментальными данными (рис. 2б). Из анализа результатов, приведенных на рис. 2а, б можно заключить, что математическая разработанная модель затвердевания электрода с учётом электрошлакового обогрева позволяет достаточно реально (с точностью 12-16%) прогнозировать форму и глубину усадочной раковины в зависимости от режима обогрева.

Рис. 1. Схема электрошлакового обогрева расходуемого электрода диаметром 520 мм:

а) 1 – графитовый электрод, 2 – шлаковая ванна, 3 – кристаллизатор, 4 – металлическая ванна, 5 – двухфазная зона, 6 – затвердевший металл, 7 – форсунки, 8 – затравка; б) сопоставление расчётных (сплошные линии) и экспериментальных (значки) результатов по определению границы металлической ванны через 20 мин после начала разливки

Исследование динамики изотерм ликвидуса и солидуса при затвердевании электрода диаметром 520 мм и длиной 5 м с учётом электрошлакового обогрева на среднюю часть электрода не распространяется, максимальная глубина проникновения зоны теплового влияния обогрева составляет 1,0-1,3 его диаметра.

Рис. 2. Конфигурация усадочной раковины в электроде диаметром 520 мм при электрошлаковом обогреве в течение 30 мин (а) и 60 мин (б) с учётом изменения электрической мощности (в): 1 – расчётные данные; 2 – экспериментальные данные по обмеру усадочной раковины; 3 и 4 – данные по изменению электрической мощности при обогреве в течение соответственно 30 и 60 мин

Электрошлаковый обогрев головной части электродов проводили с помощью установки, основными техническими характеристиками которой являются: тип трансформатора – ТШС-3000-3; мощность трансформатора – 570 кВА; ток на фазу – 1000-3000 А; напряжение на электродах – 40-60 В; диаметр графитовых электродов - 75-100 мм; расход воды на охлаждение токоведущих частей - 5 м³/ч; ход каретки с электродами – 1500 мм; рабочая скорость перемещения каретки – 50-350 мм/мин; масса установки (с трансформатором) – 3000 кг.

Схема и работа установки в процессе обогрева приведены на рис. 3. На плите 11 смонтирована колонна, по которой движется каретка 2. Привод каретки осуществляется от двигателя 12. На каретке крепится панель, к которой присоединяются три консоли 5. Электроды 10 зажимаются в электродержателях 6 и располагаются симметрично оси кристаллизатора 7. Консоли и электродержатели изготовлены пустотелыми с целью охлаждения их во время работы. Вода из цеховой сети подаётся по гибким шлангам к нижним патрубкам 4 каждой из трёх консолей и отводится из верхних патрубков 3.

Рис. 3. Схема (а) и электрошлаковый обогрев головной части электрода диаметром 520 мм (б)

После прекращения подачи металла в кристаллизатор отключается механизм вытягивания электрода, а в кристаллизатор из сталеразливочного ковша заливают электропечной шлак толщиной 50-80 мм. После этого графитовые электроды устанавливают в рабочее положение. Обогрев начинают не позднее 1 минуты после окончания разливки. В шлаковую ванну дополнительно присаживаются при необходимости электропечной шлак или флюсы АНФ-6 (CaF2-Al₂O₃) и AH-29 (CaO-Al₂O₃). Продолжительность обогрева составляла 0,9-0,95 времени затвердевания электрода. Управление процессом обогрева осуществляется автоматически [9-11]. Результаты экспериментальных исследований качества металла подусадочной области полунепрерывнолитых электродов приведены на рис. 4 и в табл. 1.

Макроструктура головной части электродов плотная, без видимых дефектов, в том числе, в осевой зоне. Ниже зоны действия обогрева в средней части электрода наблюдается слабо выраженная осевая рыхлость, не превышающая 1/5 длины электрода. Высокое качество макроструктуры подтверждается при снятии серного отпечатка: дефекты усадочного и ликвационного происхождения отсутствуют. В зоне осевой рыхлости наблюдается незначительная V-образная ликвация серы. Ликвация по другим элементам по высоте и сечению электродов практически отсутствует; степень ликвации значительно ниже, чем при обычной разливке.

Сталь	τ, мин	<i>h</i> , мм	Проба	Химический состав, %							
				С	Mn	Si	Р	S	Ni	Cr	Ti
ЭП678У	60	$\frac{220}{260}$	край	0,015	0,04	0,23	0,009	0,010	9,75	11,00	0,78
			¹ / ₂ r	0,023	0,04	0,21	0,011	0,010	9,65	10,90	0,77
			центр	0,023	0,04	0,22	0,009	0,011	10,0	11,05	0,58
			ковш	0,018	0,03	0,16	0,008	0,010	9,6	10,80	0,78
30ХГСН2А	64	<u>300</u> 300	край	0,31	1,43	1,14	0,005	0,004	1,65	1,08	0,003
			¹ / ₂ r	0,31	1,45	1,14	0,006	0,004	1,63	1,08	0,003
			центр	0,34	1,45	1,14	0,005	0,004	1,63	1,09	0,005
			ковш	0,30	1,40	1,09	0,010	0,005	1,60	1,09	0,003
Сталь	τ, мин	<i>h</i> , мм	Проба	[0]			[N]		γ, г/см ³		
ЭП678У	60	<u>220</u> 260	Край	0,0061			0,033		7,8184		
			½ R	0,0017			0,003		7,8289		
			Центр	0,0014			0,003		7,8431		
			Ковш								
30ХГСН2А	64	<u>300</u> 300	Край	0,0032			0,008		7,7730		
			½ R	0,0029			0,009		7,7769		
			Центр	0,0045			0,009		7,7756		
			Ковш								

Таблица 1. Качественная характеристика электродов, полученных с электрошлаковым обогревом головной части

Примечание: τ – время обогрева; *h* – глубина усадочной раковины (числитель) и уровень отбора проб (знаменатель); γ – плотность металла

Рис. 4. Макроструктура головной части электродов диам. 520 мм стали марок ЭП678У и 30ХГСН2А с электрошлаковым обогревом: а, б – ЭП678У, продольное и поперечное сечение (уровень 350 мм), время обогрева 60 мин.; в – ЭП678У, время обогрева 30 мин; г – 30ХГСН2А, уровень 600 мм, время обогрева 60 мин

В зоне действия обогрева в 2 раза снижается содержание серы в сравнении с ковшевой пробой, но несколько увеличивается содержание углерода (при использовании графитовых электродов), марганца и кремния (повышенная температура способствует их восстановлению из шлака). Их содержание не выходит за пределы марочного состава. Отмечается снижение количества неметаллических, в частности, сульфидных, и газовых включений. На качество поверхности и геометрию электродов электрошлаковый обогрев не влияет. Усадочная раковина принимает форму чаши, её протяжённость снижается в 2-2,5 раза. Качество металла головной части электрода практически не отличается от основного металла.

ВДП электродов после обрези головной части проходил без замечаний, при отсутствии сильной ионизации и выделений шлака и соответствовал ходу переплава остальной части электродов. Уровень механических свойств проката ВД-слитков ($\sigma_{\rm B}$, $\sigma_{\rm T}$, δ , ψ , $a_{\rm H}$) превышает нормы технических условий на 20-50% и практически не отличается от свойств металла, наплавленного из катаных электродов.

Выводы: разработана технология электрошлакового обогрева полунепрерывнолитых расходуемых электродов для ВДП из легированных сталей. Приведены математическая модель и расчёты затвердевания электродов с электрошлаковым обогревом. Проведенные расчёты соответствуют результатам экспериментальных исследований. Электрошлаковый обогрев улучшает качество подусадочной области отливаемых электродов; протяжённость усадочной раковины снижается в 2-2,5 раза. Качество металла вакуумно-дугового переплава удовлетворяет предъявляемым требованиям.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Бровман, М.Я. Непрерывная разливка металлов. М.: «ЭКОМЕТ», 2007. 484 с.
- 2. *Ефимов, В.А.* Технологии современной металлургии / *В.А. Ефимов, А.С. Эльдарханов.* – М.: Новые технологии, 2004. 784 с.
- Марченко, И.К. Новые технологические процессы в полунепрерывном литье / И.К. Марченко, В.В. Аникеев, М.Я. Бровман и др. // Механизация и автоматизация работ в литейном производстве. – Краматорск: НИИПТмаш, 1988. С. 25-34.
- Шмидт, П.Г. Отливка электродов с применением механического перемещения жидкой стали в кристаллизаторе МПНЛЗ / П.Г. Шмидт, Г.А. Хасин, В.В. Аникеев и др. // Бюл. «Черметинформация». 1978. №1. С. 26-27.
- Марченко, И.К. А.с. № 747021 СССР, М. Кл.² В 22 D 11/00, С 21 С 5/56. Способ обогрева слитков при полунепрерывной разливке металла / И.К. Марченко, В.В.Аникеев, В.Х. Римен и др. - № 2718718/22-02; заявл. 30.01.79.

- Марченко, И.К. Электрошлаковый обогрев слитков полученных полунепрерывным способом / И.К. Марченко, Г.Г. Галентовский, В.Х. Римен и др. / Библиографический указатель ВИНИТИ, депонированые рукописи. – М.: 1978. №9 (83). С.118.
- 7. Марченко, И.К. Опытно-промышленная установка для электрошлакового обогрева слитков, отливаемых полунепрерывным способом / И.К. Марченко, Г.Г. Галентовский, В.Х. Римен и др. / Библиографический указатель ВИНИТИ, депонированые рукописи. – М.: 1978. №10 (84). С.67.
- Марченко, И.К. Исследование режимов электрошлакового обогрева и качества металла расходуемых электродов, отливаемых на машинах полунепрерывного литья / И.К. Марченко, Г.Г. Галентовский, В.С. Кошман, В.В. Аникеев // Проблемы

специальной электрометаллургии. – Киев: Наукова думка. 1983. Вып. 18. С. 18-24.

- 9. Марченко, И.К. Обогрев и подпитка полунепрерывных слитков с применением электродов / И.К. Марченко, Г.Г. Галентовский, В.Х. Римен и др. // Сталь. 1980. №10. С. 902-903.
- Аникеев, В.В. Повышение физико-химической однородности стальных отливок и слитков при электрошлаковом обогреве и подпитке / В.В. Аникеев, Г.Г. Галентовский, Н.Н. Зонненберг // П Междун. науч.-практ. конф. «Прогрессивные литейные технологии». – М.: МИСиС, 2002. С. 94-96.
- 11. Аникеев, В.В. Технология получения и качество полунепрерывнолитых расходуемых электродов для ВДП // Электрометаллургия. 2013. №12. С. 10-15.

RESEARCH THE TECHNOLOGY AND QUALITY OF SELF-CONTINUOUS CASTING SPENT ELECTRODES FOR VACUUM-ARC REMELTING WITH ELECTROSLAG HEATING

© 2014 V.V. Anikeev

Samara State Technical University

Results of mathematical modeling and experimental researches of semi-continuous casting of steel spent electrodes for vacuum-arc remelting with electroslag heating are given. Data on quality of electrodes and their influence on process of vacuum-arc remelting are submitted.

Key words: semi-continuous casting, steel, electrodes, heating, technology, quality, vacuum-arc remelting

Vladimir Anikeev, Candidate of Technical Sciences, Associate Professor at the Department "Foundry and High Effective Technologies". E-mail: tlp@samgtu.ru