УДК 575.22:574.3:582.475

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ АНАЛИЗ ПОПУЛЯЦИЙ ХВОЙНЫХ ВИДОВ РАСТЕНИЙ НА УРАЛЕ И ВОСТОКЕ ЕВРОПЕЙСКОЙ ЧАСТИ РОССИИ ДЛЯ СОХРАНЕНИЯ И ВОЗОБНОВЛЕНИЯ ЛЕСНЫХ РЕСУРСОВ

© 2014 Ю.С. Нечаева¹, С.В. Боронникова¹, А.И. Видякин², Я.В. Пришнивская¹, Р.Р. Юсупов¹

¹ Пермский государственный национальный исследовательский университет ² Институт биологии Коми научного центра УрО РАН, г. Сыктывкар

Поступила в редакцию 12.05.2014

Установлены эффективные ISSR-праймеры для выявления генетического полиморфизма для *Pinus sylvestris* L. и *Larix sibirica* Ledeb. В четырех изученных популяциях *P. sylvestris* выявлены 117 ISSR-маркеров, а в четырех изученных популяциях *L. sibirica* – 126 ISSR-маркера. Доля полиморфных локусов (P_{95}) высока в изученных популяциях обоих видов: 0,949 у *P. sylvestris* и 0,968 у *L. sibirica*. Ожидаемая гетерозиготность изученных популяций лиственницы сибирской составила 0,171, а сосны обыкновенной – 0,138. Анализ генетической структуры изученных популяций показал, что популяции *P. sylvestris* дифференцированы в большей степени (G_{S7} =0,567), чем популяции *L. sibirica* (G_{S7} =0,403). Даны рекомендации для сохранения и возобновления лесных ресурсов с учетом генетического разнообразия и генетической структуры популяций лесообразующих видов хвойных растений.

Ключевые слова: генетический полиморфизм, ISSR-маркеры, генетическая структура, дифференциация, Pinus sylvestris L., Larix sibirica Ledeb.

Актуальной проблемой сохранения лесных ресурсов является учет генетического разнообразия и особенностей генетической структуры популяций видов хвойных растений при отборе деревьев и популяций для восстановления и сохранения лесов [1]. При анализе полиморфизма больших геномов растений, включая и геномы голосеменных растений, важно выявить полиморфные и стабильно воспроизводящиеся при повторных полимеразных цепных реакциях (ПЦР) ДНК-маркеры. Для определения генетической структуры и дифференциации популяций видов хвойных растений активно используются молекулярные маркеры, основанные на микросателлитах [2]. Для молекулярно-генетического анализа впервые был избран метод межмикро-

Нечаева Юлия Сергеевна, младший научный сотрудник. E-mail: yulianechaeva@mail.ru

Боронникова Светлана Витальевна, доктор биологических наук, профессор, заведующая кафедрой ботаники и генетики растений, ведущий научный сотрудник. E-mail: SVBoronnikova@yandex.ru

Видякин Анатолий Иванович, доктор биологических наук, ведущий научный сотрудник. E-mail: les@aiv.kirov.ru

Пришнивская Яна Викторовна, инженер-исследователь

Юсупов Руслан Равильевич, студент

сателлитного анализа (ISSR-Inter Sequence Repeats). Метод основан на использовании ПЦР с одним или несколькими праймерами длиной 15-24 нуклеотида. Праймеры состоят из тандемных коротких 2-4 нуклеотидных повторов и одного селективного нуклеотида на 3'конце праймера. В геномах растений количество микросателлитных повторов очень велико, что делает этот метод удобным для генетического анализа [3]. Несмотря на изученность многих аспектов популяционной биологии видов хвойных растений [4-6] генетические ресурсы многих лесообразующих видов хвойных России, включая популяции сосны обыкновенной и лиственницы сибирской, в том числе на Урале и в восточной части Европейской части России, остаются слабоизученными. Эффективность решения задач популяционной биологии многих видов зависит от изученности различных элементов генома и их полиморфизма.

Цель работы: получение качественно новой информации при оценке генетического разнообразия, генетической структуры и дифференциации популяций сосны обыкновенной и лиственницы сибирской с использованием межмикросателлитного анализа полиморфизма ДНК.

Материал и методика исследования. Объектами исследований являются восемь популяций двух видов хвойных растений из семейства *Pinaceae*: сосны обыкновенной (*Pinus sylvestris* L.) и лиственницы сибирской (*Larix sibirica* Ledeb.). Две популяции *P. sylvestris* расположены в Республике Коми: около п. Мордино (Ps_1) и около п. Визинга (Ps_2), а две – в Кировской области в Шабалинском лесничестве (Ps_3) и в Ежихинском лесничестве (Ps_3) и в Ежихинском лесничестве (Ps_4). Три изученные популяции *L. sibirica* расположены в Пермском крае: около п. Полазна (Ls_1), около г. Оса (Ls_2) и около г. Очер (Ls_4), а одна популяция *L. sibirica* – в Сверд-ловской области около п. Билимбай (Ls_3).

Выделение ДНК проводили по методике С. Роджерса [7], модифицированной использованием в качестве сорбента PVPP (polyvinylpolypyrrolidone). ДНК была выделена из свежих почек, собранных от каждого дерева индиивидуально. В каждой популяции изучено от 30 до 46 деревьев. Расстояние между деревьями не менее 50 м. Навеска растительного материала составляла 100 мг. Анализ полиморфизма ДНК проведен у 184 проб ДНК P. sylvestris и у 160 проб ДНК L. sibirica с пятью праймерами посредством ПЦР. Для изучения генетической изменчивости популяций P. sylvestris амплифицировано 920 проб ДНК, а у *L. sibirica* – 800 проб ДНК. Концентрацию и качество ДНК определяли на спектрофотометре «NanoDrop 2000» (Thermo Fisher Scientific, США) и выравнивали до 10 нг/мкл. Эффективность праймеров по выявлению полиморфизма ДНК рассчитывали в соответствии со шкалой 1-5: от низкой (1) до высокой (5) [8]. Каждый праймер индивидуально был анализирован в ПЦР с геномной ДНК исследуемых видов.

Для ПЦР ISSR-методом объемом 25 мкл мы использовали реакционную смесь следующего состава: 2 единицы *Тад*-полимеразы, 2,5 мкл стандартного 10х буфера для ПЦР, 25 пМ праймера, 2,5 мМ Mg²⁺, 0,25 мМ dNTP, 5 мкл геномной ДНК. Амплификацию проводили в амплификаторе GeneAmp PCR System 9700 (Applied Biosystems, США) по следующей программе: предварительная денатурация 94°C, 2 мин.; первые пять циклов 94°C, 20 сек.; t° отжига, 10 сек.; 72°С, 10 сек.; в последующих тридцати пяти циклах 94°C, 5 сек.; t° отж., 5 сек.; 72°C, 5 сек. Последний цикл элонгации длился 2 мин при 72°C. Температура отжига в зависимости от G/C-состава праймеров варьировала от 52° до 64°С. В качестве отрицательного (К-) контроля в реакционную смесь для проверки чистоты реактивов добавляли вместо ДНК 5 мкл деионизированной воды. Продукты амплификации разделяли путем электрофореза в 1,7% агарозном геле в 1х ТВЕ буфере. Гели окрашивали бромистым этидием и фотографировали в проходящем ультрафиолетовом свете в системе Gel-Doc XR («Віо-Rad», США). Для определения длины фрагментов ДНК использовали маркер молекулярной массы (100 bp +1.5 + 3 Kb DNA Ladder) («ООО-СибЭнзим-М», Москва). Определение длин фрагментов проводилось с использованием программы Quantity One в системе гельдокументации Gel-Doc XR («Віо-Rad», USA).

Компьютерный анализ полученных дан-[9] проведен с помощью программы POPGENE1.31 и с помощью специализированного макроса GenAlEx6 для MS-Excel с определением: доли полиморфных локусов (P_{95}), абсолютного числа аллелей (n_a) , эффективного числа аллелей (n_e) , ожидаемой гетерозиготности (H_E) . Для описания генетической структуры популяции были использованы следующие параметры: ожидаемая доля гетерозиготных генотипов (H_T) во всей популяции, как мера общего генного разнообразия; ожидаемая доля гетерозиготных генотипов (H_S) в субпопуляции как мера ее внутрипопуляционного разнообразия; доля межпопуляционного генетического разнообразия в общем разнообразии или показатель подразделенности популяций (G_{ST}).

Экспериментальная часть и обсуждение результатов. Протестировано 20 и выявлено 5 наиболее эффективных ISSR-праймеров для каждого из двух исследуемых видов. Лишь два праймера (X10 и CR-215) оказались эффективными (5 баллов) для обоих изученных видов (табл. 1). Установлены по 3 специфических эффективных ISSR-праймера для сосны обыкновенной и для лиственницы сибирской. Для сосны обыкновенной эффективными являются 4 динуклеотидных праймера и один трехнуклеотидный (в зависимости от числа нуклеотидов в коровом повторе), а для лиственницы сибирской 2 эффективных праймера динуклеотидные, а 3 – тринуклеотидные (табл. 1). В изученных 4 популяциях P. sylvestris выявлены 117 ISSR-маркеров, а в 4 же популяциях L. sibirica – 126 ISSRмаркеров. Число амплифицированных ISSRмаркеров P. sylvestris варьировало в зависимости от праймера от 13 (праймер М27) до 21 (праймеры X10 и CR215) а их размеры – от 150 до 1400 пн. В среднем один ISSR-праймер инициировал у P. sylvestris синтез 16,7 фрагментов ДНК. В изученных же популяциях L. sibirica число амплифицированных ISSR-маркеров варьировало в зависимости от праймера в большей степени – от 11 (праймер M3, ISSR8) до 29 (праймер M9); диапазон длин ISSR-маркеров также шире - от 210 до 2240 пн. Один ISSR-праймер у L. sibirica инициировал синтез 17,1 фрагментов ДНК.

Таблица 1. Эффективность ISSR-праймеров для изучения генетического полиморфизма двух видов хвойных растений

ISSR-праймер		Эффективность праймера		ISSR-праймер		Эффективность праймера		
		для P.sylvestris	для L.sibirica	135K-1	граимер	для P.sylvestrisis	для L.sibirica	
M1	(AC) ₈ CG	2	3	ISSR-5 (AG) ₈ CA		2	3	
M2	(AC) ₈ CC	4	1	ISSR-6	(AG) ₈ CG	4	3	
M3	(AC) ₈ CT	3	5	ISSR-7	(CTC) ₆ C	2	3	
M27	(GA) ₈ C	5	2	ISSR-8	(GAG) ₆ C	3	5	
M9	(GAC) ₅ AC	2	5	ISSR-9	(ACG) ₇ G	1	4	
X10	(AGC) ₆ C	5	5	ISSR-10	(ATG) ₇ C	1	4	
X11	(AGC) ₆ G	3	4	CR-212	(CT) ₈ TG	5	2	
ISSR-1	(AC) ₈ T	5	4	CR-215	(CA) ₆ GT	5	5	
ISSR-3	(TG) ₈ AA	4	1	CR-216	(GA) ₆ GG	3	4	
ISSR-4	(TG) ₈ GC	1	1	CR-217	(GT) ₆ GG	1	3	

Примечание: эффективность праймеров от 1 (низкая) до 5 (высокая) определена по шкале, предложенной Р.Н. Календарем и С.В. Боронниковой (2007).

Установлено, что доля полиморфных локусов (P_{95}) высока в изученных популяциях обоих видов: 0,949 у P. sylvestris и 0,968 у L. sibirica (табл. 2). Число полиморфных маркеров в общей выборке P. sylvestris варьировало от 19 до 28, а доля полиморфных локусов (P_{95}) в зависимости от ISSR-праймера колебалась от 0,880 до 1,000. Число полиморфных маркеров полиморфизма в общей выборке второго изученного вида растений L. sibirica изменялось от 21 до 35, а доля полиморфных локусов (P_{95}) в зависимости от ISSR-праймера варьировала от 0,917 до 1,000. Ожидаемая гетерозиготность (H_E) по локусам (один из основных показателей генетического разнообразия на популяционном уровне) выше (табл.

2) в общей выборке L. sibirica (H_E =0,171) по сравнению с P.sylvestris (H_E =0,138). Ожидаемая гетерозиготность выше в первой популяции P. sylvestris (H_E =0,186) и ниже в третьей популяции H_E =0,088). Этот показатель самый высокий в четвертой популяции L.sibirica (H_E =0,194) и самый низкий во второй популяции L.sibirica (H_E =0,130). Эффективное число аллелей (n_e) оценивает величину, обратную гомозиготности, и представляет собой такое число аллелей, при одинаковой частоте которых в популяции ожидаемая гетерозиготность будет равна фактической [10]. Этот показатель выше (табл. 3) в общей выборке P. sylvestris (n_e =1,549) по сравнению с L. sibirica (n_e =1,421).

Таблица 2. Генетическое разнообразие популяций P. sylvestris и L. sibirica

По- каза за- тели	Ps_1	Ps_2	Ps_3	Ps_4	На об- щую выбор- ку P. sylvestris	Ls_1	Ls_2	Ls_3	Ls_4	На общую вы- борку L. si- birica
P_{95}	0,739	0,827	0,442	0,500	0,949	0,909	0,678	0,769	0,876	0,968
$H_{\scriptscriptstyle E}$	0,186	0,183	0,088	0,093	0,138	0,172	0,130	0,190	0,194	0,171
	(0,018)	(0,018)	(0,014)	(0,015)	(0,016)	(0,017)	(0,015)	(0,017)	(0,017)	(0,017)
n_a	1,556	1,539	1,299	1,325	1,949	1,556	1,452	1,556	1,619	1,968
	(0,499)	(0,501)	(0,460)	(0,470)	(0,222)	(0,499)	(0,499)	(0,499)	(0,488)	(0,176)
n_e	1,312	1,308	1,143	1,152	1,549	1,286	1,211	1,315	1,319	1,421
	(0,360)	(0,359)	(0,278)	(0,287)	(0,351)	(0,351)	(0,313)	(0,348)	(0,346)	(0,302)
R	7	3	2	4	16	5	7	4	4	20

Примечание: H_E — ожидаемая гетерозиготность; n_a — абсолютное число аллелей на локус; n_e — эффективное число аллелей на локус; у всех вышеуказанных параметров в скобках даны стандартные отклонения; R — число редких маркеров, в скобках указана их доля от общего числа фрагментов; популяции P. sylvestris: Ps_1 , Ps_2 , Ps_3 , Ps_4 ; популяции L.sibirica: Ls_1 , Ls_2 , Ls_3 , Ls_4 .

Анализ генетической структуры изученных популяций P. sylvestris показал, что ожидаемая доля гетерозиготных генотипов в общей популяции (H_T) составила 0,317, а в субпопуляциях $(H_s) - 0,137$. Коэффициент подразделенности популяций P.sylvestris (G_{ST}) равен 0,567

(табл. 3). У изученных популяций *L. sibirica* показатели, характеризующие генетическую структуру ниже. Так, H_T =0,287, а H_s составил 0,171. Следовательно, и коэффициент подразделенности популяций *L. sibirica* меньше (G_{ST} =0,403).

Таблица 3. Генетическая структура и дифференциация изученных популяций *P. sylvestris* и *L.Sibirica*

ISSR- прай- мер	Нуклеотид- ная последо- вательность $(5' \rightarrow 3')$	H_T	H_s	G_{ST}	ISSR- прай- мер	Нуклеотид- ная последо- вательность $(5' \rightarrow 3')$	H_T	H_s	G_{ST}
X10	(AGC) ₆ C	0,325 (0,024)	0,127 (0,008)	0,565	X10	(AGC) ₆ C	0,297 (0,030)	0,100 (0,006)	0,663
CR-215	(CA) ₆ GT	0,325 (0,026)	0,172 (0,009)	0,472	CR-215	(CA) ₆ GT	0,259 (0,034)	0,176 (0,015)	0,319
M27	(GA) ₈ C	0,295 (0,034)	0,124 (0,007)	0,579	М3	(AC) ₈ CT	0,308 (0,020)	0,211 (0,015)	0,314
ISSR-1	$(AC)_8T$	0,356 (0,028)	0,143 (0,014)	0,600	ISSR-8	(GAG) ₆ C	0,338 (0,023)	0,146 (0,011)	0,567
CR-212	(CT) ₈ TG	0,290 (0,031)	0,126 (0,012)		M9	(GAC) ₅ AC	0,255 (0,020)	0,206 (0,012)	0,191
На общую выборку P. sylvestris		0.317 (0.028)	0.137 (0.010)	0,567	На общую выборку <i>L.sibirica</i>		0,287 (0,025)	0,171 (0,013)	0,403

Примечание: H_T — ожидаемая доля гетерозиготных генотипов как мера общего генного разнообразия во всей популяции; H_s — ожидаемая доля гетерозиготных генотипов в субпопуляции, как мера ее внутрипопуляционного разнообразия или среднее выборочное генное разнообразие по всем локусам; G_{ST} — доля межпопуляционного генетического разнообразия в общем разнообразии или показатель подразделенности популяций; в скобках даны стандартные отклонения

Для характеристики генетической структуры популяций важны редкие, то есть встречающиеся с частотой менее 5% маркеры. В изученных популяциях P. sylvestris выявлено 16 редких ISSR-маркеров, из которых наибольшее число (R=7) отмечено в популяции Ps_1 , а наименьшее (R=2) в популяции Ps_3 . В изученных популяциях L. sibirica выявлено 20 редких ISSR-маркеров, при этом их число варьировало в зависимости от популяции от 4 до 7 (табл. 2).

Выводы и рекомендации: для Pinus sylvestris L. и Larix sibirica Ledeb. установлены эффективные ISSR-праймеры для выявления генетического полиморфизма. В 4 изученных популяциях P. sylvestris выявлены 117 ISSRмаркеров, а в 4 изученных популяциях L. sibirica - 126 ISSR-маркеров. Доля полиморфных локусов (P_{95}) высока в изученных популяциях обоих видов: 0,949 у *P. sylvestris* и 0,968 у *L. sibirica*. Ожидаемая гетерозиготность изученных популяций лиственницы сибирской составила 0,171, а сосны обыкновенной – 0,138. Анализ генетической структуры изученных популяций показал, что популяции P. sylvestris дифференцированы в большей степени (G_{ST} =0,567), чем популяции L.sibirica (G_{ST} =0,403).

Для сохранения и возобновления лесных ресурсов с учетом генетического разнообразия для *P. sylvestris* рекомендуется использовать две популяции из республики Коми (Ps_1 Ps_2), а для *L. sibirica* — одну популяцию из центральной части Пермского края около п.Полазна (Ls_1). При отборе деревьев для лесовосстановления необходимо учитывать генетическую структуру природных популяций, устойчивое сочетание гомозиготных и гетерозиготных генотипов, а также наличие редких ISSR-маркеров, которые наряду с другими маркерами могут быть использованы и для идентификации популяций, в том числе для генетического контроля происхождения древесины [10, 11].

Работа выполнена при финансовой поддержке задания 2014/153 государственных работ в сфере научной деятельности в рамках базовой части государственного задания Минобрнауки России и гранта РФФИ (проект № 12- 04-00062-а).

СПИСОК ЛИТЕРАТУРЫ:

1. Биоразнообразие лиственниц Азиатской России / Отв. ред. *С.П. Ефремов, Л.И. Милютин*; Рос. академ. наук, Сиб. отд-ние, Ин-т леса им. В.Н. Сукачева. — Новосибирск: Академ. изд-во «Гео», 2010. 159 с.

- Орешкова, Н.В. Генетическое разнообразие, популяционная структура и дифференциация лиственниц сибирской, гмелина и каяндера по данным SSR-маркеров / Н.В. Орешкова, М.М. Белоконь, С. Жамъянсурен // Генетика. 2013. Т 49. №2. С. 204-213.
- 3. Zietkiewicz, E. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification / E. Zietkiewicz, A. Rafalski, D. Labuda // Genomics. 1994. V. 20. P. 176-183.
- Власенко, В.Э. Лесные сообщества в системе особо охраняемых природных территорий Свердловской области / В.Э. Власенко, В.А. Галако, О.В. Ерохина, Л.А. Пустовалова // Известия Самарского научного центра Российской академии наук. 2013. Т. 15. №3(2). С. 814-818.
- Политов, Д.В. Генетика популяций и эволюционные взаимоотношения видов сосновых (Сем. Ріпасеае) Северной Евразии: автореф. дис... д-ра биол. наук. – М.: ИОГен, 2007. 47 с.
- 6. Видякин, А.И. Популяционная структура сосны обыкновенной на востоке европейской части России: автореф. дис. ... д-ра биол. наук. Екатеринбург: ИЭРиЖ, 2004. 48 с.
- 7. Rogers, S.O. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant

- tissues / S.O. Rogers, A.J. Bendich // Plant Molecular Biology. 1985. V. l. № 19. P. 69-76.
- 8. Календарь, Р.Н. Анализ молекулярно-генетического полиморфизма природных популяций редких видов растений Урала с помощью ретротранспозонов / Р.Н. Календарь, С.В. Боронникова // Материалы Четвертого Моск. межд. конгр. «Биотехнология состояние и перспективы развития». М.: ЗАО «Экспо-биохим-технологии», РХТУ им. Д.И. Менделееева, 2007. Ч.2. 121 с.
- 9. Молекулярная генетика / под ред. *С.В. Боронниковой.* Учеб.-метод. пособие. Пермь: Перм.ун-т., 2007. 150 с.
- Шереметьева, И.Н. Оценка генетического разнообразия островных и материковых популяций дальневосточной полевки Microtus fortis (Rodentia, Cricetidae): данные RAPD-PCR анализа / И.Н. Шереметьева, Г.Н. Челомина // Биол. исследования на островах северной части Тихого океана. – Владивосток. 2003. № 9. С. 1-18.
- Боронникова, С.В. Молекулярно-генетический анализ и оценка состояния генофондов ресурсных видов растений Пермского края. Монография. Пермь: -Перм. гос. нац. исслед. ун-т, 2013. 239 с.

MOLECULAR GENETIC ANALYSIS OF CONIFER PLANTS POPULA-TIONS IN URALS AND EAST EUROPEAN PART OF RUSSIA FOR CON-SERVATION AND REPRODUCTION THE FOREST RESOURCES

© 2014 Yu.S. Nechaeva¹, S.V. Boronnikova¹, A.I. Vidyakin², Ya.V. Prishnivskaya¹, R.R. Yusupov¹

¹ Perm State National Research University ² Institute of Biology, Komi Scientific Center, UB RAS, Sykryvkar

9

Selected informative ISSR-primers for two coniferous species: *Pinus sylvestris* L. and *Larix sibirica* Ledeb. In four studied populations of *P. sylvestris* identified 117 ISSR-markers, and in four populations of *L. sibirica* identified 126 ISSR-markers. The proportion of polymorphous loci is high in both species: 0,949 for *P. sylvestris* and 0,968 for L. *sibirica*. Expected heterozygosity in the populations of *L. sibirica* was 0,171 and in the populations of *P sylvestris* it was 0,138. The analysis of populations genetic structure showed that populations of *P. sylvestris* more differentiated $(G_{ST}=0,567)$, than the population of *L. sibirica* $(G_{ST}=0,403)$. We made recommendations for conservation and reproduction of forest resources based on the genetic diversity and population structure of studied species.

Key words: genetic polymorphism, ISSR-markers, genetic structure and differentiation of populations, Pinus sylvestris L., Larix sibirica Ledeb.

Yuliya Nechaeva, Minor Research Fellow. E-mail: yulianechaeva@mail.ru
Svetlana Boronnikova, Doctor of Biology,
Professor, Head of the Botany and Plants Genetics
Department, Leading Research Fellow. E-mail:
SVBoronnikova@yandex.ru
Anatoliy Vedyakin, Doctor of Biology, Leading
Research Fellow. E-mail: les@aiv.kirov.ru
Yana Prishnivskaya, Engineer-Researcher
Ruslan Yusupov, Student