УДК 378

ФОРМИРОВАНИЕ ИНФОРМАЦИОННО-ДИДАКТИЧЕСКОЙ БАЗЫ ДЛЯ ОРГАНИЗАЦИИ САМООБРАЗОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ

© 2014 Р.Н.Черницына

Самарский государственный университет путей сообщения

Статья поступила в редакцию 30.06.2014

В статье рассматривается инновационный подход к организации самообразовательной деятельности студентов технических университетов с помощью модульного представления дидактической базы. Системообразующим фактором формирования модулей является матричная модель познавательной деятельности. Ключевые слова: самообразовательная деятельность студентов, познавательно-деятельностная матрица, модуль учебной дисциплины.

На кафедре «Высшая математика» Самарского государственного университета путей сообщения разрабатывается инновационный подход к организации самообразовательной деятельности студентов на основе матричной модели познавательной деятельности (таб. 1), согласно которой усвоение учебной информации можно рассматривать как «движение» по элементам познавательно-деятельностной матрицы¹. Используя данную матрицу в качестве системообразующего фактора можно систематизировать учебный материал по уровням сложности, структурировать задачи на учебные элементы и организовать дозированную самообразовательную деятельность студентов. Учебно-методические пособия, созданные на основе матричной модели познавательной деятельности, состоят из четырех модулей, каждый из которых имеет различный уровень сложности. Первый модуль содержит простейшие задачи первого уровня сложности, второй - задачи второго уровня сложности и т.д. С целью эффективного формирования системности знаний студентов предлагается усвоение учебного материала начинать с решения простейших заданий и постепенно двигаться к самому сложному заданию четвёртого уровня Y_{44} . Первый модуль, содержащий, как правило, учебные задания на основные определения и понятия является наиболее объёмным. Без умения решать задачи первого уровня сложности нельзя продвинуться дальше.

Познавательные уровни усвоения учебной

информации $\psi_i, i=\overline{1,4}$ и деятельностные уровни $d_j, j=\overline{1,4}$ объединены в матрицу размера 4x4, где каждое сочетание пар (ψ_i, d_j) будет соответствовать определенному количеству учебной информации. Отсюда следует, что количество усвоенной студентом учебной информации на iтом познавательном jтом деятельностном уровне можно записать в виде: $Y_{ij} = F(\psi_i, d_j)$, $i, j=\overline{1,4}$.

Из таб. 1 видно, что рассматриваемая структура познавательной деятельности, в основе которой лежат не только психологические процессы, но и виды деятельности, позволяет представить освоение студентами учебного материала как «движение» по элементам ψd — матрицы размером 4х4, составленной из перечисленных выше познавательных и деятельностных уровней. При этом каждому из элементов этой матрицы соответствует вполне определенное количество усвоенного учебного материала Y_{ij} , начиная с самого элементарного уровня Y_{11} (узнавание на уровне отражения) и заканчивая самым высоким уровнем Y_{44} — исследованием с контролем собственных действий.

Известны два уровня деятельности в зависимости от способа выражения приобретаемой в процесс обучения информации — репродуктивный и продуктивный. При репродуктивном уровне деятельности усвоенная информация только воспроизводится в различных сочетаниях и комбинациях — от прямого копирования до реконструированного ее воспроизведения и применения в типовых ситуациях. Репродуктивный уровень деятельности студента является копией деятельности преподавателя, прямым воспроизведением усвоенного алго-

[°] Черницына Рузиля Нябиулловна, старший преподаватель кафедры высшей математики. E-mail: <u>y-abc@mail.ru</u>

¹ *Рябинова Е.Н.* Формирование познавательнодеятельностной матрицы учебного материала в высшей профессиональной школе. – Самара: 2008. – С 258.

ритма действия. Продуктивные уровни деятельности реализуются с использованием усвоенных приемов. В процессе этих уровней деятельности усвоенный алгоритм либо приспосабливается к новой ситуации, либо создается вновь из частей нескольких других алгорит-

мов. В итоге продуктивной деятельности по отношению к содержанию обучения всегда создается новая информация, причем эта информация будет новой, как правило, не объективно, а субъективно.

Деятельностные	Репродукти	вная деятельность	Продуктивная	деятельность
Уровни	Узнавание d ₁	Воспроизведение d ₂	Применение d ₃	Творчество d ₄
Познавательные уровни				
Отражение ψ_1	У11 —	→ y ₁₂ —	→ У13	→ y ₁₃
Осмысление ψ_2	y ₂₁	→ ^ÿ 22 —	→ y ₂₃	→ y ₂₃
Алгоритмирование ψ_3	y ₃₁ -	→ ^y 32	→ y ₃₃	→ y ₃₃
Контролирование ψ_4	y ₄₁	→ ÿ42	→ y ₄₃ —	→ y ₄₃

Таб.1. Матричная модель познавательной деятельности

Рассмотренные уровни репродуктивной и продуктивной деятельности обозначим через $d_{i}, j = 1,4$. Таким образом, уровень d_{i} (узнавание) связан с репродуктивной деятельностью. В этом случае каждая операция этой деятельности выполняется с опорой на подсказку, содержащуюся в явном или неявном виде, на ответ или описание действия. Второй уровень d_2 , (воспроизведение) - это воспроизведение изученного учебного материала по памяти, без подсказки. Третий уровень d_3 , связан с продуктивной деятельностью в фазе применения. Студент должен обладать именно этим уровнем усвоения знаний по определенному ряду учебных элементов программы. Четвертый уровень усвоения d_4 , связан с продуктивной деятельностью в творчестве и сформировать этот уровень у студента достаточно трудно. Следует отметить, что иерархическая последовательность познавательных уровней ψ_i , i = 1,4 прослеживается для каждого уровня деятельности d_i , j = 1,4. Из познавательно-деятельностной матрицы видно, что наибольший объем знаний у студента имеет место на уровне ψ_1, d_1 . Чем дальше мы перемещаемся по элементам уд матрицы $(i \rightarrow 4; j \rightarrow 4)$, тем труднее приобретаются знания, так как весовые коэффициенты учебных элементов познавательнодеятельностной матрицы на разных уровнях ψ_i, d_i качественно разные: с возрастанием индексов *i* и *j* ($i = \overline{1,4}; j = \overline{1,4}$) возрастают как сложность изучаемого учебного элемента, так и

трудность его познания.

Информационно-дидактическая база для организации самообразовательной деятельности студентов² состоит из четырех модулей, каждый из которых имеет различный уровень сложности. Первый модуль содержит простейшие задачи первого уровня сложности, второй задачи второго уровня сложности и т.д. В каждом модуле приведено поэтапное решение задач в общем виде, рассмотрены конкретные числовые примеры, а также имеются задачи для самостоятельного решения. Только в этом случае организация опыта учебной деятельности осваивается постепенно, при этом учебные действия осуществляются с пониманием самого механизма формирования знаний для каждого конкретного студента.

Так первый модуль формирует умение отражать, осмысливать, алгоритмировать и контролировать усвоенный учебный материал на уровне узнавания, что означает начальное овладение учебными навыками, способность

² Хайруллина Р.Н., Рябинова Е.Н. Самообразовательная деятельность студентов: изучаем комплексные числа: Руководство к выполнению индивидуальных заданий. — Самара: 2013. — С. 71; Хайруллина Р.Н., Рябинова Е.Н., Данилкина О.Ю. Организация самообразовательной деятельности студентов при изучении кривых второго порядка: Учебно-методич. пособ. для самостоятельной профессион. подгот. студ. технич. универс. — Самара: 2011. — С. 202; Хайруллина Р.Н., Рябинова Е.Н., Генварева Ю.А. Организация самостоятельной работы студентов на основе матричной модели познавательной деятельности при изучении дифференциальных уравнений: Учебно-методич. пособ для самостоятельной профессион. подгот. студ. технич. универс. — Самара: 2013. — С. 119.

использовать базовые знания в учебной деятельности, понимание смысла полученного результата для заданий первого уровня сложности. Рассмотрим пример первого уровня сложности из учебно-методического пособия «Организация самостоятельной работы студентов на

основе матричной модели познавательной деятельности при изучении дифференциальных уравнений». Найти общее решение уравнения

$$y'' = \frac{1}{1+x^2} + x - \sin x$$

Таб.2. Задача первого уровня сложности

Учебные элементы	Последовательность действий
Y ₁₁ – отражение на	Требуется решить дифференциальное уравнение второго порядка.
уровне узнавания	
Y ₂₁ – осмысление на уровне узнавания	Так как $y' = \frac{dy'}{dx}$, то исходное уравнение перепишем в виде $\frac{dy'}{dx} = \frac{1}{1+x^2} + x - \sin x$; это уравнение с разделяющимися переменными, разделим переменные и получим уравнение
	$dy' = \left(\frac{1}{1+x^2} + x - \sin x\right) dx.$ Интегрируя, находим
	$y' = \int \left(\frac{1}{1+x^2} + x - \sin x\right) dx = arctgx + \frac{x^2}{2} + \cos x + C_1$
Y ₃₁ – алгоритмирование на уровне узна-	Далее $y = \frac{dy}{dx}$; $\frac{dy}{dx} = arctgx + \frac{x^2}{2} + \cos x + C_1$;
вания	$dy = (arctgx + \frac{x^2}{2} + \cos x + C_1)dx$, интегрируя, получаем
	$y = \int (arctgx + \frac{x^2}{2} + \cos x + C_1)dx = xarctgx + \frac{1}{2}\ln(1+x^2) + \frac{x^3}{6} + \sin x + C_1x + C_2$
Y ₄₁ - контролирова-	Запись общего решения.
ние на уровне узна- вания	$y = x \arctan (1 + x^2) + \frac{x^3}{6} + \sin x + C_1 x + C_2$

Ответ: общее решение $y = xarctgx + \frac{1}{2}\ln(1+x^2) + \frac{x^3}{6} + \sin x + C_1x + C_2$

Второй модуль продолжает отражать, осмысливать, алгоритмировать и контролировать учебного материала на уровне воспроизведения, что означает формирование соответствующих самообразовательных компетенций: студент понимает, что последовательность формирования умственных действий (отражение, осмысление, алгоритмирование, контролирование) будет осуществляться в два этапа не только на уровне узнавания, но и на уровне воспроизведения. При выполнение таких заданий информация не только узнаётся, но и воспроизводиться в различных сочетаниях и комбинациях, обнаруживая различные логические связи и аналоги на уровне воспроизведения. При выполнении таких заданий информация не только узнается, но и воспроизводится в различных сочетаниях и комбинациях, обнаруживая различные логических связи и аналоги на уровне воспроизведения. Приведем пример задания второго уровня сложности. Найти общее решение линейного неоднородного

$$y = \frac{2}{x}y = x^2$$

Таб. 3. Задача второго уровня сложности

Учебные элементы	Последовательность действий
Y ₁₁ – отражение на уровне узнавания	Требуется решить линейное неоднородное дифференциальное уравнение.
Y ₁₂ – отражение на уровне воспроизведения	Линейное неоднородное дифференциальное уравнение решается подстановкой $y=uv$, где u и v – некоторые функции переменной x на интервале (a,b) : $u=u(x)$, $v=v(x)$.
Y ₂₁ – осмысление на уровне узнавания	Дифференцируя это равенство по x , получим $y' = uv' + vu'$.

Y ₂₂ – осмысление на уровне воспроизведения	Подставив в уравнение $y = uv$ и $y' = uv' + vu'$ получим $u'v + v'u + \frac{2}{x}uv = x^2$ или
	$u'v + u\left(v' + \frac{2}{x}v\right) = x^2.$
Y ₃₁ - алгоритмирование на	Нам нужно найти две функции и и v; эти функции связаны лишь одним условием:
уровне узнавания	их произведение должно быть решением уравнения. Поэтому одну из этих функций
	мы вправе выбрать произвольно. В целях упрощения выберем функцию <i>v</i> так, что-
	бы выражение $v' + \frac{2}{x}v$ (стоящее в скобках) обратилось в нуль; иначе говоря, возь-
	мем за функцию v одно из решений уравнения $v' + \frac{2}{x}v = 0 \Rightarrow \frac{dv}{dx} + \frac{2}{x}v = 0$ разделим
	переменные $\frac{dv}{v} = -\frac{2}{x}dx$ почленно проинтегрируем полученное выражение
	$\int \frac{dv}{v} = -2\int \frac{dx}{x} \Rightarrow \ln v = -2\ln x \Rightarrow v = \frac{1}{x^2}$
Y ₃₂ – алгоритмирование на уровне воспроизведения	При этом уравнение приводится к виду $\frac{u'}{x^2} = x^2 \Longrightarrow$
	$\frac{du}{dx} = x^4 \Rightarrow du = x^4 dx \Rightarrow \int du = \int x^4 dx \Rightarrow u = \frac{x^5}{5} + C$
Y ₄₁ – контролирование на	Подставив значение u и v в $y = uv$, получим общее решение линейного неодно-
уровне узнавания	родного уравнения
Y ₄₂ – контролирование на уровне воспроизведения	Общее решение данного уравнения $y = uv = \left(\frac{x^5}{5} + C\right) \cdot \frac{1}{x^2}$

OTBET:
$$y = \frac{x^3}{5} + \frac{C}{x^2}$$

Учебные задания третьего уровня сложности формируют самообразовательные компетенции на уровне применения. Это означает, что отражение, осмысление, алгоритмирование и контролирование осуществляется в три этапа - информация не только узнаётся и воспроизводится, но и применяется в более сложных задачах смешанного типа, требующих осмысления поставленной задачи, предварительно

поняв конечный результат. Приведем пример задачи третьего уровня сложности.

Найти частное решение уравнения $y + 6y + 13y = 3\cos 5x$, удовлетворяющее начальным условиям: y(0) = 2, y'(0) = 3.

Таб. 4. Задача третьего уровня сложности

Учебные элементы	Последовательность действий
Y ₁₁ – отражение на уровне	Требуется решить дифференциальное уравнение 2-го порядка с правой частью
узнавания	f(x) = x
Y ₁₂ - отражение на уровне	Обозначим искомое решение через y . Тогда $y = y + y^*$, где y — общее решение
воспроизведения	уравнения $y'' + 6y' + 13y = 0$
Y ₁₃ – отражение на уровне применения	Составим характеристическое уравнение $k^2 + 6k + 13 = 0$, $D = -16$
Y ₂₁ – осмысление на уровне узнавания	$k_1 = -3 + 2i, \ k_2 = -3 - 2i$
Y ₂₂ – осмысление на уровне воспроизведения	Следовательно, $\overline{y} = e^{-3x} (C_1 \cos 2x + C_2 \sin 2x)$ — общее решение уравнения без пра-
уровие воспроизведения	вой части.
Y ₂₃ – осмысление на	По виду правой части $f(x) = 3\cos 5x$ находим число $r = \alpha + \beta i = 0 + 5i = 5i$, (случай
уровне применения	2, табл. 2). Такого числа среди корней характеристического уравнения нет, поэтому
	$y^* = a\cos 5x + b\sin 5x;$
Y ₃₁ – алгоритмирование на уровне узнавания	Найдем $(y^*) = a(-\sin 5x) \cdot 5 + b\cos 5x \cdot 5$ и $(y^*) = a(-\cos 5x) \cdot 25 + b(-\sin 5x) \cdot 25$
Y ₃₂ – алгоритмирование	Подставим эти значения в данное уравнение и потребуем, чтобы оно обратилось в тож-

	·
на уровне воспроизведения	дество
Y ₃₃ – алгоритмирование	$-25a\cos 5x - 25b\sin 5x + 6(-5a\sin 5x + 5b\cos 5x) + 13(a\cos 5x + b\sin 5x) \equiv 3\cos 5x$
на уровне применения	или $(-12a+30b) \cdot \cos 5x + (-12b-30a) \cdot \sin 5x \equiv 3\cos 5x$.
Y ₄₁ – контролирование на	Сравнивая слагаемые, содержащие $\cos 5x$ и $\sin 5x$, получим
уровне узнавания	$\begin{cases} -12a + 30b = 3 \\ -12b - 30a = 0 \end{cases} \Rightarrow \begin{cases} b = -\frac{30}{12}a = -\frac{5}{2}a \\ -12a + 30\left(-\frac{5}{2}a\right) = 3 \end{cases} \Rightarrow \begin{cases} b = -\frac{5}{2}a \\ -12a - 75a = 3 \end{cases} \Rightarrow a = -\frac{1}{29}, b = \frac{5}{58} \end{cases}$
Y ₄₂ – контролирование на уровне воспроизведения	Поэтому $y^* = -\frac{1}{29}\cos 5x + \frac{5}{58}\sin 5x$,
Y ₄₃ – контролирование на уровне применения	$y = y + y^* = e^{-3x} (C_1 \cos 2x + C_2 \sin 2x) - \frac{1}{29} \cos 5x + \frac{5}{58} \sin 5x$ — общее решение данного
	уравнения.

Other:
$$y = e^{-3x} (C_1 \cos 2x + C_2 \sin 2x) - \frac{1}{29} \cos 5x + \frac{5}{58} \sin 5x$$

Задачи четвёртого уровня сложности (творчества) включают в себя творческое действие, элемент исследования, трансформацию или перенос знаний. Уровень формируемых компетенций соответствует исследовательскому. Приведем пример задачи четвертого уровня сложности. Дана система дифференциальных уравнений.

$$\begin{cases} \frac{dx}{dt} = -x + 5y \\ \frac{dy}{dt} = x + 3y \end{cases}$$

С помощью характеристического уравнения найти ее общее решение.

Таб. 5. Задача четвертого уровня сложности

Учебные элементы	Последовательность действий
Y_{11} – отражение на уровне	Требуется решить систему дифференциальных уравнений.
узнавания	
Y ₁₂ – отражение на	Пусть $x = \alpha \cdot e^{kt}$, $y = \beta \cdot e^{kt}$,
уровне воспроизведения	
Y_{13} – отражение на уровне	Подставим эти значения в систему:
применения	$\begin{cases} \alpha e^{kt} k = -\alpha e^{kt} + 5\beta e^{kt} \\ \beta e^{kt} k = \alpha e^{kt} + 3\beta e^{kt} \end{cases} \Rightarrow \begin{cases} \alpha k = -\alpha + 5\beta \\ \beta k = \alpha + 3\beta \end{cases} \Rightarrow \begin{cases} (-1-k)\alpha + 5\beta = 0 \\ \alpha + (3-k)\beta = 0 \end{cases}$
	$\int \beta e^{kt} k = \alpha e^{kt} + 3\beta e^{kt} \longrightarrow \int \beta k = \alpha + 3\beta \longrightarrow (\alpha + (3-k)\beta) = 0$
Y ₁₄ – отражение на	Получим линейную систему уравнений относительно $lpha$ и eta . Чтобы эта система
уровне творчества	имела ненулевые (нетривиальные) решения, ее определитель должен быть равен
	нулю
$Y_{_{21}}$ – осмысление на	Рассчитаем определитель
уровне узнавания	$\begin{vmatrix} -1-k & 5 \end{vmatrix}$
	$\begin{vmatrix} -1-k & 5 \\ 1 & 3-k \end{vmatrix} = 0, \ (-1-k)(3-k) - 5 = 0, \ k^2 - 2k - 8 = 0$
Y_{22} – осмысление на	Это уравнение называется характеристическим и имеет два корня.
уровне воспроизведения	Найдем его корни
	$k_{1,2} = \frac{2 \pm \sqrt{4 + 32}}{2} = \frac{2 \pm 6}{2}$
	2 2
	$k_1 = -2, k_2 = 4$
Y_{23} – осмысление на	Для определения $lpha$ и eta решим систему при $k=k_{1,2}$
уровне применения	$k=2$ $\begin{cases} \alpha+5\beta=0 \\ -\infty=5\beta \end{cases}$
	$k = -2 \qquad \begin{cases} \alpha + 5\beta = 0 \\ \alpha + 5\beta = 0 \end{cases} \Rightarrow \alpha = -5\beta$
$Y_{\scriptscriptstyle 24}$ – осмысление на	Полагаем β =1, получим α =-5.
уровне творчества	
Y_{31} – алгоритмирование	Тогда первое частное решение имеет вид $\int x_1 = -5e^{-2t}$
на уровне узнавания	Тогда первое частное решение имеет вид $\begin{cases} x_1 = -5e^{-2t} \\ y_1 = e^{-2t} \end{cases}$

Y_{32} – алгоритмирование на уровне воспроизведения	Аналогично $k=4$ $\begin{cases} -5\alpha + 5\beta = 0 \\ \alpha - \beta = 0 \end{cases} \Rightarrow \beta = \alpha$
Y_{33} – алгоритмирование на уровне применения Y_{34} – алгоритмирование	Полагаем α =1, тогда β =1.
на уровне творчества	Второе частное решение $\begin{cases} x_2 = e^{4t} \\ y_2 = e^{4t} \end{cases}$ Общим решением системы будет пара функций x и y :
Y ₄₁ – контролирование на уровне узнавания	$\begin{cases} x = C_1 x_1 + C_2 x_2 \\ y = C_1 y_1 + C_2 y_2 \end{cases}$
Y_{42} – контролирование на уровне воспроизведения	Учитывая, что $\begin{cases} x_1 = -5e^{-2t} \\ y_1 = e^{-2t} \end{cases}, \begin{cases} x_2 = e^{4t} \\ y_2 = e^{4t} \end{cases}$, получим систему:
Y_{43} – контролирование на уровне применения	$\begin{cases} x = -5C_1e^{-2t} + C_2e^{4t} \\ y = C_1e^{-2t} + C_2e^{4t} \end{cases}$, где C_1 и C_2 – произвольные постоянные.
Y_{44} – контролирование на уровне творчества	общее решение системы $\begin{cases} x = -5C_1e^{-2t} + C_2e^{4t} \\ y = C_1e^{-2t} + C_2e^{4t} \end{cases}$

Ответ: общее решение имеет вид: $\begin{cases} x = -5C_1e^{-2t} + C_2e^{4t} \\ y = C_1e^{-2t} + C_2e^{4t} \end{cases}$

Описанная информационно-дидактическая база учебного комплекса по курсу высшей математики предназначена для студентов как очной, так и заочной форм обучения. Она успешно апробирована в Самарском государственном техническом университете и Самарском государственном университете путей сообщения для организации самообразовательной деятельности студентов, что позволяет реко-

мендовать её применение в других учебных заведениях.

В заключении отметим, что матричная модель познавательной деятельности студентов может применяться для систематизации учебного материала любой учебной дисциплины, что обеспечивает возможность организации самообразовательной деятельности студентов с гарантированным результатом.

DIDACTIC DATA SYSTEM IN STUDENTS' SELF-EDUCATION

© 2014 R.N.Chernitsyna°

Samara State Transport University

This article describes an innovative approach to organization of the self-educational activity of students of technical universities by means of modular presentation of didactic data. The backbone factor in making up modules is the matrix model of cognitive activity.

Keywords: students' self-education, cognitive and active matrix, module of academic discipline.

⁰

[°] Ruzilya Nyabiullovna Chernitsyna, senior teacher of Department of Advanced Mathematics. E-mail: <u>v-abc@mail.ru</u>