УДК 621,81; 621,869

РАСЧЁТ СКОЛЬЖЕНИЯ В МЕЖВАЛЬНЫХ РОЛИКОВЫХ ПОДШИПНИКАХ ГТД

© 2014 В.В. Макарчук¹, Е.П. Жильников²

¹ОАО "ЕПК Самара", Россия, г. Самара

²Самарский государственный аэрокосмический университет им. академика. С.П. Королёва (национальный исследовательский университет)

Поступила в редакцию 23.01.2014

В работе приводятся методика и результаты расчётов скольжения в высокоскоростных межвальных роликовых подшипниках. Приводятся сравнения результатов экспериментальных исследований проскальзывания роликовых подшипников на стенде, имитирующем условия работы подшипников опор авиационных ГТД, с расчётами по компьютерной модели межвального роликового подшипника. *Ключевые слова:* Подшипники роликовые, скольжение, изнашивание.

Проскальзывание комплекта тел качения и связанные с ним дефекты рабочих поверхностей являются наиболее распространенной причиной потери работоспособности межвальных подшипников авиационных газотурбинных двигателей [1].

В работе В.И. Акифьева и А.И.Данильченко [2] предложена методика расчёта проскальзывания высокоскоростного роликоподшипника. Однако расчёт кинематики подшипника вы-полняется из предположения, что силы трения в контактах роликов с кольцами определяются на базе эластогидродинамики, без учета шероховатости поверхностей. Вместе с тем подшипники авиационных двигателей работают, как правило, в условиях, когда наблюдается не полное разделение рабочих поверхностей сплошным смазочным слоем. В этом случае, как показано в [3], силы трения будут определяться как свойствами эластогидродинамического смазочного слоя, так и взаимодействием вершин микронеровностей шероховатых поверхностей.

Нами разработана методика расчёта кинематики и скольжения в высокоскоростном межвальном роликовом подшипнике с учётом шероховатости рабочих поверхностей деталей подшипника [4].

Геометрические характеристики и радиальные зазоры подшипника в рабочих условиях будут зависеть от рабочих температур деталей, расширения под действием центробежных сил и посадочных натягов. При этом величины посадочных натягов в свою очередь зависят от температурного и центробежного расширения деталей.

Диаметральный зазор в подшипнике в рабочих условия изменяется в зависимости от посадочных натягов колец, температурного, а также

Макарчук Владимир Владимирович, кандидат технических наук, исполнительный директор дивизиона специальных подшипников. центробежного расширения колец подшипника и деталей подшипникового узла.

Увеличение наружного диаметра центрирующей поверхности сепаратора определяется температурным расширением и центробежным расширения вращающегося сепаратора. Тогда зазор "плавания" сепаратора $g_{n\pi}$ в рабочих условиях будет равен разности диаметров центрирующих поверхностей.

Экспериментальные исследования показывают существенное влияние формы контакта торцов роликов и направляющих бортиков на проскальзывание в роликовых подшипниках. В настоящей работе рассмотрим стандартный вариант – контакт плоских торцов ролика и направляющего бортика.

На кинематику подшипника оказывает влияние также момент трения торца ролика в контакте с гнездом сепаратора. Рассмотрим также простейший вариант сепаратора в виде кольца с гнездами для роликов.

Геометрические характеристики контактов бомбинированных роликов с беговыми дорожками колец рассмотрены в [4]. В настоящей работе рассмотрим характеристики контактов колец с роликами, образующая которых описывается радиусом.

По рекомендациям [4] расчёт толщин эластогидродинамических смазочных слоев в контактах выполняется по формуле

$$h_0 = 1,864 P_S^{0,723} P_U^{0,558} P_N^{0,167} R_{np} / K_p$$
,
где $K_p = 1 + P_T^{0,65} \lg (0,9 P_S^{0,114} P_U^{0,285} P_N^{0,085})$

Безразмерные параметры в приведенных формулах определяются соотношениями

$$\begin{split} P_{S} &= \mu_{0} U_{\Sigma} / (E_{np} R_{np}); \ P_{U} &= \alpha E_{np}; \\ P_{N} &= E_{np} R_{np} \Delta l / F_{m}(i); \ P_{T} &= \mu_{0} \beta / \lambda_{c} \;. \end{split}$$

Жильников Евгений Петрович, кандидат технических наук, профессор. E-mail: okm@ssau.ru

Здесь $\mu_0 = \mu_0(t_c)$ – динамическая вязкость смазки; $\alpha = \alpha(t_c)$ – пьезокоэффициент вязкости смазки; $\lambda_c = \lambda_c(t_c)$ – коэффициент теплопроводности смазки; β – коэффициент зависимости вязкости от температуры; E_{np} – приведенный модуль упругости в контакте; $F_m(i)/\Delta l$ – нагрузка на единицу длины в среднем сечении линии контакта; t_c – температура смазки в зоне контакта; U_{Σ} скорость качения в зоне трения.

Степень жидкостного трения, характеризующая наличие металлического контакта микронеровностей шероховатых поверхностей, определится критерием, предложенным Т. Тальяном:

$$\lambda = h_0 \Big/ \sqrt{R_{aw}^2 + R_{a1}^2}$$

Здесь R_{aw} – среднее арифметическое отклонение микронеровностей поверхности ролика. В качестве R_{a1} принимается среднее арифметическое отклонение микронеровностей поверхности беговой дорожки внутреннего R_{ab} или наружного R_{ah} колец соответственно.

С использованием критерия λ относительная площадь металлического контакт микронеровностей вычисляется по формуле [3] $\eta = 0.25 - \Phi(\lambda)/2$.

Здесь $\Phi(\lambda)$ – интеграл вероятности.

Коэффициент трения в контакте с учетом металлического контакта определим суммой $f = f_{\text{мет}} \eta + f_{\text{см}} (1 - \eta).$

Коэффициент трения f_{mem} в контактах микронеровностей принимается по рекомендациям [5].

Коэффициент трения, определяемый сдвигом смазочного слоя, рассчитывается по отношению $f_{cm} = W \Delta l / F_m(i)$.

Здесь W – сила трения, отнесенная к единице длины линии контакта, определяемая по формуле

$$W = 2\mu_0 U_S J/h_0 \pm p_0 h_0.$$

Выражение для интеграла Ј имеет вид

$$J = b_m \Phi(x_\alpha) \exp(\alpha p_0) \sqrt{\pi/\alpha p_0}$$

где $\Phi(x_{\alpha})$ – интеграл вероятности, в котором предел интегрирования определяется по форму-

ле
$$x_{\alpha} = \sqrt{2\alpha p_0}$$
 .

При расчётах для контакта с внутренним кольцом принимаем $p_0 = \sigma_s(i)$, для контакта с наружным кольцом – $p_0 = \sigma_{\mu}(i)$.

В формуле для расчёта *W* знак "+" принимается для поверхности, имеющей большую величину окружной скорости.

В приведенных расчётах вязкость смазки зависят от температуры. В этой связи расчёт коэффициента трения выполняется итерационным методом. Температура смазки принимается равной температуре соответствующего кольца. Определяются вязкость смазки, толщина смазочного слоя и коэффициент трения. С использованием формулы Блока определяется приращение температуры в зоне трения:

$$\Delta t = 0.83 f \left(F_m(i) / \Delta l \right) U_S / \left(\sqrt{b_m(i)} \times \left(\sqrt{\lambda_n \gamma_n c_n V_n} + \sqrt{\lambda_w \gamma_w c_w V_w} \right) \right).$$

Здесь λ_n и λ_w – коэффициенты теплопроводности, γ_n и γ_w – плотность, c_n и c_w – удельная теплоемкость материалов колец подшипника и роликов соответственно; V_n и V_w – скорости поверхностей беговых дорожек колец и роликов; U_S скорость скольжения.

Уточнённое значение температуры смазки определяется суммированием

$$t_{cv} = t_n + 2\Delta t/3 \, .$$

Расчёт повторяется до сходимости с заданной точностью принятого и уточнённого значений температуры смазки.

После уточнений температуры смазки и коэффициента трения определяется сила трения скольжения в контакте

$$F_f = fF(i),$$

где F(i) – нагрузка в контакте ролика с внутренним или наружным кольцом.

При расчете сил трения в контакте торца ролика с направляющим бортиком наружного кольца учитываем, что между торцами ролика и направляющего бортика предусмотрен зазор Δ_{δ} . Величина зазора $\hat{\Delta}_{\delta p}$ в рабочих условиях определяется с учётом температурного расширения.

Принимаем, что между каждым из торцов ролика и гнезда сепаратора устанавливается смазочный слой толщиной

$$h_{\tilde{o}} = \Delta_{\tilde{o}p} / 2$$
.

При вращении ролика касательные напряжения в слое смазки определяются по формуле Ньютона $\tau = \mu_0 V_{so} / h_{\tilde{o}}$, где $V_{s\tilde{o}}$ – скорость скольжения.

При расчётах вязкость смазки принимаем в зависимости от температуры наружного кольца подшипника.

Скорость скольжения $V_{s\delta}$ определяем для среднего сечения площадки контакта. При этом, если скорость торца бортика V_{δ} больше скорости ролика $V_{w\delta}$, то сила трения в контакте является ведущей для ролика, иначе – тормозящей и имеющей отрицательный знак.

Усилие взаимодействия роликов с перемычкой сепаратора определяется суммой

$$F_S(i) = \pm F_{f_{\mathcal{B}}} \pm F_{f_{\mathcal{H}}} \pm 2F_{f_{\mathcal{O}}}.$$

и бортиком. Знак "+" выбирается, если скорость поверхности ролика меньше скорости соответствующей поверхности колец в контакте.

С полученным значением усилия взаимодействия определяется напряжение в контакте и полуширина площадки контакта.

Расчёт толщины эластогидродинамического смазочного слоя и силы трения в контакте выполняется как для контакта ролика с кольцом. Приращение температуры в зоне трения определяем при одной не движущейся относительно источника тепловыделения поверхности.

Момент трения между торцами ролика и гнезда сепаратора определяем, принимая, что между каждым из торцов ролика и гнезда сепаратора в рабочих условиях устанавливается смазочный слой толщиной, равный половине зазора между торцами.

При расчётах вязкость смазки принимаем в зависимости от средней температуры подшипника.

Расчёт контакта сепаратора с центрирующей поверхностью бортика наружного кольца выполним как узкого подшипника скольжения [6].

Усилие прижатия сепаратора к центрирующей поверхности определим по формуле

$$F_{RS} = F_{cs} + \sqrt{F_{SB}^2 + F_{S\Gamma}^2}$$

Здесь F_{cs} – центробежная сила при смещении сепаратора.

Составляющие усилия прижатия роликами по координатным осям определяются суммированием проекций усилий взаимодействия роликов с перемычкой сепаратора:

$$F_{SB} = \sum_{i=1}^{z} \left(F_s(i) \sin(\varphi) - F_{fs}(i) \cos(\varphi) \right);$$

$$F_{S\Gamma} = \sum_{i=1}^{z} \left(F_s(i) \cos(\varphi) + F_{fs}(i) \sin(\varphi) \right).$$

Определяются вязкость смазки, толщина смазочного слоя и коэффициент трения при температуре, равной температуре наружного кольца подшипника.

Приращение температуры в зоне трения определяем при одной не движущейся относительно источника тепловыделения поверхности.

После уточнений температуры смазки и коэффициента трения определяется момент трения скольжения сепаратора по центрирующей поверхности.

При расчёте кинематики ролика скорости поверхностей колец (рис.1) в обращенном движении (при остановленном сепараторе) определяются по формулам:

$$V_{e} = d_{ep} (\omega_{0} - \omega_{e})/2$$
 – для внутреннего кольца;

Рис. 1. Схема скоростей поверхностей межвального подшипника

$$V_{_{_{H}}} = D_{_{_{H}p}} \left(\omega_{_{_{H}}} - \omega_{_{0}} \right) / 2$$
 – для наружного кольца.

Ведущим в межвальном подшипнике является наружное кольцо. В этой связи поверхность ролика будет иметь проскальзывание некоторой величины относительно кольца. Тогда принимаем $V_w = V_{_H}(1 - \varepsilon_w)$, где ε_w - относительная величина проскальзывания ролика в контакте с наружным кольцом. При этом угловая скорость вращения ролика относительно собственной оси будет равна $\omega_w = 2 V_w / D_{wp}$.

Скорости скольжения ролика в контактах с кольцами будут равны:

 $V_{se} = V_w - V_e - для$ внутреннего кольца; $V_{sh} = V_h - V_w - для$ наружного кольца.

На рис. 2 приведена схема сил, действующих на ролик в нагруженной зоне.

Здесь F_S и F_{fS} – нормальное усилие и сила трения в контакте ролика с перемычкой сепаратора; F_c – центробежная сила ролика.

Условие равновесия сил в радиальном направлении определяется выражением

$$F_{\mu} = F_{g} + F_{fs} + F_{c} \, .$$

Здесь F_{g} , F_{H} – усилия в контактах ролика с внутренним и наружным кольцами.

В связи с малостью величины силы трения F_{fS} уравнение равновесия в радиальном направлении можно привести к виду

$$F_{_{\mathcal{H}}} = F_{_{\mathcal{B}}} + F_{_{\mathcal{C}}}$$

Это упрощение позволяет решать задачу о распределении нагрузки по телам качения без учёта сил трения в контактах.

Силы трения F_{fo} и F_{fS} определяются, как показано ранее. Центробежная сила ролика определяется по формуле:

$$F_c = m_w \left(D_{\mu p} - D_{w p} \right) \omega_0^2 / 2$$

Как показано ранее, все силы трения опреде-

Рис. 2. Схема сил в контактах ролика в нагруженной зоне

ляются скоростями скольжения в контактах, которые в свою очередь определяются скоростью вращения ролика относительно собственной оси.

Третьим уравнением равновесия является уравнение моментов

$$\sum T(\varepsilon_{w}) \equiv (F_{f\mu} - F_{f\theta} - F_{fs}) D_{wp} / 2 + F_{f\delta} (D_{wp} - (D_{\mu p} - D_{\delta 1}) / 2) - T_{sc} - T_{\kappa \mu} - T_{\kappa \theta} = 0.$$

Здесь моменты сопротивления качению ролика определим по приближенным зависимостям $T_{\kappa \mu} = f_{\kappa}F_{\mu}$ и $T_{\kappa g} = f_{\kappa}F_{g}$, где f_{κ} – коэффициент трения качения.

Разделив на радиус ролика, получим

$$\begin{split} \sum T(\varepsilon_w) &\equiv F_{f\mu} - F_{f\theta} - F_{fs} + 2F_f \left(1 - \left(D_{\mu p} - D_{61}\right)/2D_{wp}\right) - 2\left(T_{sc} + T_{\kappa \mu} + T_{\kappa \theta}\right)/D_{wp} = 0. \end{split}$$

Полученное уравнение является функцией одной переменной \mathcal{E}_{w} . Его решение выполняется итерационным методом Ньютона. При этом производную функции заменяем отношением приращений функции и аргумента.

В результате получаем величину угловой скорости вращения ролика ω_w и усилие F_S – нагрузки в контакте ролика с перемычкой сепаратора.

Рассматривается также кинематика ролика в не нагруженной зоне.

Таким образом, в межвальном подшипнике все ролики являются "ведущими" по отношению к сепаратору. В то же время в подшипнике с вращающимся внутренним и не вращающимся наружным кольцами ролики в разгруженной зоне являются "тормозящими" и "толкаются" сепаратором. Это объясняет установленное экспериментально небольшое по величине скольжение сепаратора в межвальном подшипнике. Однако при этом наблюдается повышенное скольжение в контактах ролика с кольцами, что может привести к повышенному изнашиванию.

Расчёт сопротивления движению сепаратора в воздушно-масляной среде подшипника выполним по рекомендациям [7].

Температуру воздушно-масляной среды примем равной средней температуре подшипника

$$t_{\rm GM} = \left(t_{\rm g} + t_{\rm H}\right)/2 \, .$$

Масло в подшипнике не полностью заполняет весь свободный объем. В этой связи расчётное значение плотности воздушно-масляной среды рекомендуется в зависимости от объемной доли смазки *О_{дсм}* в полости подшипника по формуле

$$\gamma_{cp} = \gamma_{cM} O_{\partial cM}^2 / (0, 4 + 0, 6 \cdot O_{\partial cM}).$$

Характер движения сепаратора в воздушномасляной среде определяется числом Рейнольдса, которое в данном случае вычисляется по формуле

$$\operatorname{Re}=R_c^2\,\omega_s/\nu\ .$$

Момент сопротивления движению сепаратора в воздушно – масляной среде рекомендуется определять по формуле:

$$\Gamma_{ts} = C_n \gamma_{cp} \omega_s^2 \left(R_c^5 - r_c^5 + 2{,}5B_s \left(R_c^4 + r_c^4 \right) \right).$$

Здесь: R_c и r_c – радиусы боковой поверхности сепаратора, характеризующего сопротивление вращению его в масляной среде; B_s – ширина наружной поверхности сепаратора; C_n – коэффициент, зависящий от числа Рейнольдса.

Как показано выше, усилия взаимодействия роликов с перемычками сепаратора являются "ведущими", обеспечивающими вращение сепаратора. Величина момента сил взаимодействия роликов с перемычками сепаратора определится по формуле

$$T_{S} = \sum_{i=1}^{z} \left(F_{S}(i) \left(D_{\mu p} - D_{w p} \right) / 2 - F_{f s} D_{w p} / 2 \right).$$

Кроме того "ведущим" для сепаратора межвального подшипник является момент от силы трения сепаратора в контакте с центрирующими поясками вращающегося наружного кольца. Его величина определяется по формуле:

$$T_{s\delta} = fF_{RS}D_{s1}.$$

Здесь F_{RS} – усилия прижатия сепаратора и f – коэффициент трения в контакте, определяемые, как показано ранее.

Сопротивление вращению сепаратора межвального подшипника будет только от момента трения T_{ts} от перемешивания воздушно-масляной среды в полости подшипника. Величины всех моментов T_S , $T_{s\delta}$ и T_{RS} зависят от угловой скорости вращения сепаратора.

Величину угловой скорости сепаратора в свою очередь можно определить по формуле

$$\omega_0 = \omega_{00} (1 - \varepsilon_0).$$

Здесь \mathcal{E}_0 – коэффициент скольжения а \mathcal{W}_{00} - теоретическое (при отсутствии скольжения) значение угловой скорости вращения сепаратора, величина которого определяется по известной формуле

$$\omega_{00} = (d_{sp}\omega_s + D_{\mu p}\omega_{\mu})/(2(D_{\mu p} - D_{w p})).$$

Принимаем условие $\omega_0 \leq \omega_{_H}$. Тогда с использованием выражений для ω_0 и $\omega_{_{00}}$ получим

$$\varepsilon_0 \geq \frac{(\omega_{\scriptscriptstyle \theta} - \omega_{\scriptscriptstyle H})(1 - D_{\scriptscriptstyle WP}/D_{\scriptscriptstyle HP})}{2\omega_{\scriptscriptstyle 00}}$$

Условие равновесия при равномерном вращении сепаратора будет иметь вид:

$$\Phi(\varepsilon_0) \equiv T_S + T_{s\delta} - T_{RS} = 0.$$

Получено уравнение являющееся функцией одной переменной \mathcal{E}_0 . Его решение выполняется итерационным методом Ньютона. При этом производную функции заменяем отношением приращений функции и аргумента.

В результате получаем величину угловой скорости вращения сепаратора ω_0 , величину скольжения \mathcal{E}_0 и усилие и температуры в контактах роликов с кольцами и сепаратором.

Исследование проскальзывания выполним для межвального подшипника 55-2672919Р5 изделия "99В".

При расчетах скольжения сепаратора принята минимальная радиальная нагрузка $F_r = 50 H$. Перекос колец принят равным нулю. Скорости вращения колец приняты соответствующими режимам работы подшипника в двигателе.

Температура наружного кольца принята равной $43^{\circ}C$, внутреннего — $47,3^{\circ}C$. Монтажный радиальный зазор в подшипнике принят равным $g = 0,043 \,$ мм. На рис. 3 и 4 приведены зависимости скольжения сепаратора от разности частот вращения наружного и внутреннего колец (скольжения роторов) при постоянной частоте вращения наружного или внутреннего колец.

При этом постоянная частота вращения наружного кольца (рис. 3) принята равной $n_{_H}$ =13067 об/мин, а частота вращения внутреннего кольца (рис. 4) соответственно – $n_{_g}$ =8152 об/мин.

Зависимость на рис. З показывает, что скольжение сепаратора увеличивается с увеличением скольжения роторов. Эта зависимость монотонная, так как при постоянной частоте вращения наружного кольца с увеличением частоты вращения внутреннего кольца уменьшается не только скольжение роторов, но и рабочее значение радиального зазора вследствие центробежного расширения внутреннего кольца.

Зависимость на рис. 4 не монотонная. При постоянной частоте вращения внутреннего кольца с увеличением частоты вращения наружного кольца увеличивается рабочее значение радиального зазора от центробежного расширения наружного кольца. Вследствие этого уменьшается число роликов в зоне нагружения, что должно привести к отставанию сепаратора, т.е. к увеличению проскальзывания. Одновременно увеличивается скольжение роторов. Для случая, когда скорость вращения наружного кольца больше скорости вращения внутреннего, это может, как показали результаты эксперимента, привести к увеличению скорости вращения сепаратора.

Следовательно, уменьшается скольжение (увеличивается отрицательное значение проскальзывания).

Таким образом, зависимость скольжения сепаратора от частоты вращения наружного кольца имеет сложный характер.

На рис. 5 приведена зависимость скольжения сепаратора от одно-временного увеличения частот вращения внутреннего и наружного колец при постоянной разности скоростей.

Рис. 3. Зависимость проскальзывания от скольжения роторов при $n_{\mu} = 13067 \, o \delta / M u h$

Рис. 4. Зависимость проскальзывания
от скольжения роторов при \mathcal{N}_{g} =8152
об/мин

Результаты расчётов показывают, что скольжение сепаратора зависит как от величины скольжения роторов, но и от величин скоростей вращения колец.

На рис. 6 приведена зависимость скольжения сепаратора от радиальной нагрузки при температуре наружного кольца 33°С и частотах вращения колец: $n_{g} = 5180 \, o 6/мин$ и $n_{H} = 11313 \, o 6/$ мин. Результаты расчётов показывают известное уменьшение скольжения сепаратора с увеличением радиальной нагрузки на подшипник.

На рис. 7 приведены результаты испытаний подшипника 55-2672919Р5 при различных значениях радиального зазора при смазке маслом ИПМ – 10 [8]. Величины проскальзывания сепаратора приведены в зависимости от частоты вращения наружного кольца. При этом частоты вращения внутреннего кольца соответствовали режимам работы подшипника в изделии.

Рис. 5. Зависимость проскальзывания от частоты вращения наружного кольца при $n_{_{H}} - n_{_{B}} = 4300 \, o \delta / ми h$

Получено уменьшение проскальзывания с выходом оборотов колец на режим полного газа. Это противоречит общепринятым представлениям об увеличении проскальзывания с увеличением частоты вращения подшипника. Однако по нашему мнению в межвальных подшипниках проскальзывание зависит не от абсолютных значений скоростей вращения внутреннего и наружного колец, а от разности их скоростей (от "скольжения роторов").

Экспериментальные зависимости проскальзывания в подшипнике от разности скоростей вращения колец при нагрузке F_r=50 H и различных значениях радиального зазора приведены на рис. 8. Видно увеличение проскальзывания с увеличением "скольжения роторов".

Приведенные результаты экспериментов показали, что на всех режимах испытаний частота вращения сепаратора была выше эпициклической, рассчитанной без учета сил трения в контак-

Рис. 6. Зависимость скольжения сепаратора от радиальной нагрузки

Рис. 7. Зависимость проскальзывания комплекта роликов в подшипнике при F =50 H от частоты вращения и величины радиального зазора

Рис. 8. Зависимость проскальзывания комплекта роликов от разности частот вращения колец при различных значениях радиального зазора

тах и сопротивления вращению сепаратора.

На рис. 9 приведены результаты расчёта проскальзывания сепаратора на режимах испытаний при радиальном зазоре в сборе 0,043 *мм* и радиальной нагрузке 50 *H*.

При выполнении расчётов температуры смазки принимались по экспериментальным данным. Для сравнения там же приведены экспериментальные значения проскальзывания комплекта роликов. Результаты расчётов имеют удовлетворительное соответствие с экспериментальными в связи с многофакторностью зависимости проскальзывания: от радиальной нагрузки, радиального зазора, как от скоростей вращения колец, так и от "сколь жения" роторов, температуры не только наружного, но и внутреннего колец, температуры смазки, ее свойств, объема и способа подачи в подшипник и другое. К сожалению, многие факторы сложно оценить и учесть в расчётах.

Вместе с тем результаты экспериментов и теоретических расчётов позволяют сделать некоторые выводы о работоспособности межвальных подшипников.

Прежде всего, установлено, что термин "проскальзывание" для межвальных подшипников является условным, так как скорость вращения сепаратора оказывается не ниже, а выше теоретической (эпициклической). Это объясняется тем, что в межвальном подшипнике большинство роликов (даже в разгруженной зоне) являются "ведущими" так как прижимаются значительными по величине центробежными силами к вращающемуся наружному кольцу. Теоретический анализ показывает, что вследствие этого скольжение роликов относительно наружного кольца мини-

Рис. 9. Зависимость проскальзывания комплекта роликов от разности частот

вращения колец при $g = 43 \, \text{мкм}$ и $F_r = 50 \, \text{H}$

мально и близко к нулю. В то же время наблюдается значительное по величине скольжение роликов относительно внутреннего кольца.

Это говорит о высокой теплонапряженности в контактах роликов с внутренним кольцом и, как следствие, возможности значительного изнашивания и заедания.

Уменьшение скольжения сепаратора и изнашивания на внутреннем кольце может быть обеспечено не только подбором оптимальной величины радиального зазора, но и предварительным нагревом масла, подаваемого в подшипник.

СПИСОК ЛИТЕРАТУРЫ

- Кузнецов Н.Д. Обеспечение надежности современных авиадвигателей // Проблемы надежности и ресурса в машиностроении. М.: Наука, 1986. С.51-68.
- Акифьев В.И. Разработка методики расчета роликовых подшипников опор ГТД с учетом проскальзы-

вания: Дисс. ... канд. техн. наук. Самара, Самарск. гос. аэрокосм. ун-т, 1998. 165 с., ил.

- Балякин В.Б., Жильников Е.П., Самсонов В.Н., Макарчук В.В. Теория и проектирование опор роторов авиационных ГТД. Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. – 254 с.: ил.
- Макарчук В.В. Разработка методов расчета и проектирования высокоскоростных межвальных роликовых подшипников: дисс. ... канд. техн. наук. Самара, Самарск. гос. аэрокосм. ун–т, 2009. 165 с.
- Крагельский И.В., Добычин М.Н., Комбалов В.С. Основы расчетов на трение и износ. М: Машиностроение, 1997. 526 с.: ил.
- Жильников Е.П., Самсонов В.Н. Трение и изнашивание в узлах авиационной техники: учеб. пособие. Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. 144 с.: ил.
- Силаев Б.М. Трибология деталей машин в маловязких смазочных средах: монография.Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2008. 264 с.
- Исследование проскальзывания межвального подпипника 55 -2672919Р5 изделия 99В: Технический отчет/ Руковод.: Г.М. Косинов, Н.И. Петров/ ЦИАМ Москва, 2002. 18 с.

CALCULATION OF SKIDDING IN INTERSHAFT ROLLER BEARINGS OF GAS TURBINE ENGINES

© 2014 V.V. Makarchuk¹, E.P. Zhilnikov²

¹JSC ZAP (Aviation Bearing Plant), Samara ²Samara State Aerospace University named after Academician S.P. Korolyov (National Research University)

The study provides methods and results of calculations of sliding in high-speed intershaft roller bearings. It presents comparison of results of experimental research of skidding of roller bearings at a test bench, imitating operating conditions of rolling bearings in supports of aircraft gas turbine engines with calculations based on the computer model of an intershaft roller bearing. *Key words*: Roller bearing, sliding, wear

Vladimir Makarchuk, Candidate of Technical Science, the Chief Executive of Special Bearings Division. Evgeniy Zhilnikov, Candidate of Technical Science, Professor at the Desing Basics machines Department. E-mail: okm@ssau.ru