УДК 538.975

СВОЙСТВА ПЛЕНОК НИТРИДА ТИТАНА, ПОЛУЧЕННЫХ МЕТОДОМ МАГНЕТРОННОГО РАСПЫЛЕНИЯ

© 2014 Ю.Н. Юрьев¹, К.С. Михневич¹, В.П. Кривобоков¹, Д.В. Сиделёв¹, Д.В. Киселева¹, В.А. Новиков²

¹ Национальный исследовательский Томский политехнический университет ² Национальный исследовательский Томский государственный университет

Поступила в редакцию 28.11.2014

Путем магнетронного распыления титановой мишени в среде азота и аргона получены пленки нитрида титана (TiN) поликристаллической структуры (111), (200) и (220), обладающие твердостью 9,7-22,6 ГПа и упругостью 153,2-395,7 ГПа. Электрическое сопротивление исследуемых образцов в диапазоне 0,15-1,24 мОм см. Представлены зависимости фазового состава, микроструктуры, морфологии и физико-механических свойств TiN покрытий от расстояния между плоскостью мишени и подложкой (d_{s-t}) и скорости потока N₂ в рабочую камеру.

Ключевые слова: нитрид титана, магнетронное распыление, тонкие пленки, реактивное осаждение

Большой научно-практический интерес к пленкам TiN вызван уникальным сочетанием их свойств: высокие значения показателей твердости и упругости, температуростойкости и химической инертности, высокие электро- и теплопроводность [1-3]. Тонкие пленки TiN используются для создания диодов Шоттки с малым падением напряжения при прямом включении в быстродействующих интегральных схемах для пассивации поверхности алюминия, в качестве барьерных слоев, предотвращающих диффузию Al в Si, защитных масок при травлении фоторезиста в кислородной плазме [3]. Для осаждения тонких пленок TiN (1 нм - 1 мкм) наилучшим образом подходит метод магнетронного распыления, который позволяет получать покрытия без капельной фракции с высокими функциональными характеристиками при скоростях осаждения, сравнимых с методом дугового испарения. При магнетронном распылении температурное воздействие на подложку незначительно.

Юрьев Юрий Николаевич, заведующий лабораторией. E-mail: yurjev@tpu.ru

Михневич Ксения Сергеевна, магистрант. E-mail: mikhnevichks@mail.ru

Кривобоков Валерий Павлович, доктор физикоматематических наук, профессор, заведующий кафедрой водородной энергетики и плазменных технологий. E-mail: krivobokov@tpu.ru

Сиделёв Дмитрий Владимирович, инженер лаборатории № 23. E-mail: sidelevdv@tpu.ru

Киселева Дарья Васильевна, студентка

Новиков Вадим Александрович, кандидат технических наук, старший научный сотрудник лаборатории наноэлектроники и нанофотоники. E-mail: novikovvadim@mail.ru Для обеспечения стабильности реактивных процессов осаждения бинарных соединений металлов (TiN, TiO₂ и др.) выгодно использовать импульсные магнетронные распылительные системы (MPC) дуального типа [4, 5]. При этом достигается существенное повышение производительности плазменной установки.

Цель работы: исследование свойств плёнок нитрида титана, нанесённых с помощью дуальной магнетронной распылительной системы, в зависимости от скорости потока азота в рабочую камеру и от расстояния между плоскостью мишени и подложкой (ds-t). Настоящая работа посвящена исследованию физико-механических свойств пленок TiN, полученных при помощи дуальной MPC в среде Ar и N₂.

Экспериментальная часть. Исследования проводили на ионно-плазменной установке серии «Яшма» [5] при остаточном давлении в рабочей камере 5·10⁻³ Па. Для осаждения пленок TiN был использован дуальный магнетрон с титановыми катодами марки BT1-0 (200х94 мм²) и среднечастотный импульсный источник питания переменного тока (66 кГц). Была выбрана замкнутая конфигурация магнитного поля МРС [5, 6]. Осаждение производилось в режиме ограничения мощности (3 кВт) при поддержании постоянным значение потока аргона (табл. 1). Материал подложки - полированные пластины монокристаллического кремния (ПБЦ 0.032.015 ТУ). Очистка поверхности подложек производилась пучком ионов при рабочих параметрах источника питания: U=2500 В и I=0,25 А в течение 1 минуты. Толщина пленок TiN – 0,4 мкм. Для оценки влияния плазмы магнетронного разряда на процесс формирования пленок TiN и их физико-механические свойства расстояние между мишенью и подложкой (d_{s-t}) варьировалось: 100 и 50 мм. Скорость осаждения пленок TiN контролировалась при помощи кварцевого измерителя толщины «Микрон-5».

Номер образца	1-1	1-2	1-3	1-4	1-5	1-6	2-1	2-2	2-3	2-4	2-5
d_{s-t} , мм	100					50					
<i>Q</i> (N ₂), см ³ /мин	15	23	26	33	40	52	15	23	26	33	52
<i>Q</i> (Ar), см ³ /мин	31			0	31			0			

Таблица 1. Условия осаждения пленок TiN

Рентгеноструктурные исследования покрытий были проведены на дифрактометре Shimadzu XRD-7000S в Cu-K α излучении (30 кВ, 30 мА). Микрофотографии поверхности изучали методом атомно-силовой микроскопии (Solver HV). Микроиндентирование пленок TiN было произведено с помощью нанотвердомера Nano Hardness Tester при нагрузке 10 мН. Удельное электрическое сопротивление образцов определяли при помощи четырехзондовой схемы измерений методом амперметра-вольтметра при комнатной температуре (рабочий ток -105 мкА). Аналитические исследования были проведены на оборудовании центра коллективного пользования Томского политехнического университета.

Результаты работы и обсуждение. Производительность дуальной МРС в зависимости от скорости потока азота Q (N₂) при различных значениях d_{s-t} показана на рис. 1. Ввиду несбалансированности магнитного поля магнетрона происходит стравливание растущей пленки ионным потоком плазменного разряда. Наблюдается падение скорости осаждения пленок ТіN в среднем на 20% при приближении плоскости подложки к мишени на 50 мм. Снижение производительности системы при повышении Q (N₂) обусловлено «отравлением» титанового катода слоем TiN_{x| x=0...1} и меньшим коэффициентом распыления мишени ионами азота. Влияние потока реактивного газа на скорость осаждения пленок бинарных соединений металлов детально рассмотрено нами ранее в работах [5, 7].

Рис. 1. Влияние скорости потока азота на производительность процесса нанесения пленок TiN при различных *d_{s-i}*: 1 – 100 мм; 2 – 50 мм

Результаты рентгеноструктурных исследований опытных образцов представлены на рис. 2. Согласно представленным графикам, пленки TiN имеют поликристаллическую структуру с ориентацией по кристаллографическим направлениям (111), (200), (220). Пики интенсивностей (311) и (222) проявляются слабо.

Рис. 2. Рентгеновские дифрактограммы пленок TiN: а – 100 мм; б – 50 мм

Ориентация роста пленок по одному из кристаллографических направлений сопряжена с вариацией энергии распыленных частиц и ионов, падающих на подложку [8, 9]. Увеличение энергии осаждаемых частиц стимулирует формирование покрытий нитрида титана по следующей схеме: $TiN(200) \rightarrow TiN(111) \rightarrow TiN(220)$. Кристаллографическое направление (220) становится преобладающим в нитридном покрытии, когда удельные потери энергии осаждаемых частиц становятся значительными. Пленки TiN, полученные при *d_{s-t}*=100 мм, в большей степени ориентированы по осям (111) и (200). При приближении подложки к мишени (50 мм), становятся значительными пики интенсивности (220). Различие дифракционных спектров тонких пленок TiN при различном d_{s-t} свидетельствует об ином энергетическом состоянии частиц, падающих на подложку, и разнице в их количестве. Формирование пленок TiN с преобладающей ориентацией (111) происходит в газовой среде N2, без подачи Ar. Изменение скорости потока азота в рабочую камеру стимулирует снижение интенсивности рефлексов (200) и (220) для расстояния «мишень-подложка» 100 и 50 мм, соответственно. Из данных рентгеновской дифракции получены значения параметров кристаллической решетки экспериментальных образцов 4,22...4,25 Å, которые хорошо коррелируют с данными для пленок TiN_{x|x~1}[9].

АСМ-фотографии поверхности исследуемых образцов показаны на рис. 3. Определено, что морфология поверхности зависит от расстояния «мишень-подложка». При удаленном расположении подложки от плоскости мишени, поверхность покрытия имеет большое число конусных пиков. В случае приближения подложки к мишени формируется более сглаженная структура, снижается шероховатость поверхности R_a . Для выявления причин изменения морфологии необходимо принять во внимание распределение силовых линий магнитного поля дуальной МРС и данные рентгеноструктурного анализа. По нашему мнению, при d_{s-t}=50 мм формирование нитридного покрытия происходит при более интенсивном ионном воздействии на конденсирующееся покрытие, что стимулирует вытравливание межзеренной структуры и распыление пиков на растущей поверхности. Результаты микроскопии хорошо согласуются с результатами рентгеновской дифракции.

Рис. 3. АСМ-фотографии поверхности пленок TiN: a – образец 1-1; б – образец 2-1

Механические параметры экспериментальных образцов представлены в табл. 2. По данным микроиндентирования установлено, что полученные методом реактивного магнетронного распыления пленки обладают показателями твердости H и упругости E, характерными для TiN [10]. Явной зависимости механических свойств покрытий от потока N₂ не наблюдается.

Таблица	2.	Механические	свойства	пленок	TiN

$Q(\mathbf{N}_2),$	$d_{s-t}=10$	0 мм	<i>d_{s-t}=</i> 50 мм		
см ³ /мин	Н, ГПа	Е, ГПа	Н, ГПа	Е, ГПа	
15	13,5	159,8	12,1	194,4	
22	20,7	395,7	20,7	250,9	
26	16,1	235,1	8,6	153,2	
33	22,6	309,9	17,7	256,4	
40	16,4	244,4	-	-	
52	9,7	179,4	12,2	190,9	

Уменьшение расстояния «мишеньподложка» стимулирует снижение показателей механических свойств покрытий. По всей видимости, при $d_{s-t}=50$ мм помимо усиления плотности потока ионов, повышается и тепловое воздействие на подложку. В силу последнего обстоятельства имеет место эффект термического отжига структурных дефектов. В свою очередь, это приводит к изменению положения адатомов структуры покрытия (из областей с повышенной плотностью атомов) и соответствующему снижению микронапряжений в пленках (рис. 4). Происходит формирование покрытия с менее плотными локальными областями структуры.

Более высокая интенсивность рефлексов (200) наблюдается для пленок TiN, полученных при *d_{s-t}*=100 мм. Авторы работы [11] показали, что нитрид титана с преимущественной ориентацией (200) обладает улучшенными механическими

свойствами. Такие пленки характеризуются более высокими значениями энергии деформации, запасенной в структуре покрытия. Результаты измерений удельного электрического сопротивления исследуемых пленок показаны на рис. 5.

Рис. 4. Микронапряжения в исследуемых пленках TiN: а – 100 мм; б – 50 мм

Рис. 5. Влияние d_{s-t} на удельное электросопротивление образцов TiN: 1 - 100 мм; 2 - 50 мм

В ряде исследований [2, 9, 12] установлено, что электросопротивление зависит от степени совершенства кристаллической структуры покрытия. При высокой концентрации дефектов происходит интенсивное рассеивание электронов проводимости. Общая тенденция электрических свойств исследуемых нами покрытий состоит в снижении электропроводности пленок ТіN при повышении скорости потока N₂. Ряд авторов указывают на взаимосвязь показателей электросопротивления и ориентации роста покрытий по кристаллографическим осям [2, 9]. Пленки TiN с более высокими значениями *I*(200)/*I*(111) и *I*(220)/*I*(111) характеризуются улучшенными электрическими характеристиками. Нитридные покрытия, полученные при d_{s} -_t=50 мм, имеют более высокие показатели по электропроводности (0,15-0,23 мОм см), чем в системе с удаленной подложкой. Основная причина таких различий, видимо, обусловлена меньшим количеством дефектов в этих покрытиях.

Выводы: по данным рентгеновской дифракции полученные нами образцы TiN обладают поликристаллической структурой (111), (200) и (220). Морфология поверхности сильно зависит от расстояния «мишень-подложка». При уменьшении расстояния d_{s-t} увеличивается интенсивность ионного воздействия на подложку, приводящего к сглаживанию поверхности. Твердость покрытий составила 9,7-22,6 ГПа, модуль упругости 153,2-395,7 ГПа. Приближение подложки к мишени не приводит к повышению показателей механических свойств: происходит перестройка структуры покрытия, снижаются микронапряжения в пленках. Улучшенными электрическими характеристиками обладают образцы TiN с меньшим числом дефектом (полученные при $d_{s-t} = 50$ мм при меньшем значении потока N₂).

СПИСОК ЛИТЕРАТУРЫ:

- 1. *Martinez, G.* Effect of Thickness on the Structure, Composition and Properties of Titanium Nitride Nano-Coatings / *G. Martinez* et al. // Ceramics International. 2014. v. 4. p. 5757-5764.
- Meng, Li-Jian. Characterization of Titanium Nitride Films Prepared by D.C. Reactive Magnetron Sputtering at Different Nitrogen Pressures / Li-Jian Meng, M.P. dos Santos // Surface and Coatings Technology. 1997. V. 90. P. 64-70.
- Чапланов, А.М. Структурные и фазовые превращения в тонких пленках титана при облучении азотводородной плазмой / А.М. Чапланов, Е.Н. Щербакова // Журнал технической физики. 1999. Т. 69, № 10. С. 102-108.
- Берлин, Е.В. Ионно-плазменные процессы в тонкоплёночной технологии / Е.В. Берлин, Л.Н. Сейдман. – М.: Техносфера, 2010. 528 с.
- Yurjev, Y.N. Technological Peculiarities of Deposition Anti-Reflective Layers in Low-E Coatings / Y.N. Yurjev, D.V. Sidelev // Journal of Physics: Conference Series. 2013. V. 479. № 1. Article Number - 012018. P. 1-4.
- 6. *Musil, J.* Discharge in Dual Magnetron Sputtering System / *J. Musil, P. Baroch* // IEEE Transactions on Plasma Science. 2005. V. 33, № 2. P. 338-339.
- 7. Михневич, К.С. Исследование свойств пленок TiN, полученных с помощью дуальной МРС при различных парциальных давлениях азота и конфигурациях магнитного поля / К.С. Михневич, Ю.Н. Юрьев, О.С. Тупикова // Известия вузов. Физика. 2014. Т. 57, № 3/3. С. 207-210.
- Oh, U.C. Effects of Strain Energy on the Preferred Orientation of TiN Thin Films / U.C. Oh, Ho Je Jung // J. Appl. Phys. 1993. V. 74, № 3. P. 1692-1696.
- 9. *Nishat, A.* Study on Structural, Morphological and Electrical Properties of Sputtered Titanium Nitride Films under Different Argon Gas Flow / *A. Nishat* et al. // Materials Chemistry and Physics. 2012. № 134. P. 839-844.

- 10. Костин, Е.Г. Осаждение пленок ТіN и ТіО₂ в обращенном цилиндрическом магнетроне методом реактивного распыления / Е.Г. Костин, А.В. Демчишин // Технология и конструирование в электронной аппаратуре. 2008. № 4. С. 47-51.
- 11. *Pelleg, J.* Reactive-Sputter-Deposited TiN Films on Glass Substrates / *J. Pelleg, L.Z. Zevin, S. Lungo //* Thin Solid Films. 1991. V. 197. P. 117-128.
- 12. Jeyachandran, Y.L. Properties of Titanium Nitride Films Prepared by Direct Current Magnetron Sputtering / Y.L. Jeyachandran et al. // Materials Science and Engineering A. 2007. № 445-446. P. 223-236.

THE PROPERTIES OF TITANIUM NITRIDE FILMS, OBTAINED BY MAGNETRON SPUTTERING

Y.N. Yuryev¹, K.S. Mikhnevich¹, V.P. Krivobokov¹, D.V. Sidelyov¹, D.A. Kiselyova¹, V.A. Novikov²

¹ National Research Tomsk Polytechnic University ² National Research Tomsk State University

The titanium nitride (TiN) thin films of polycrystalline structure (110), (200) and (220) with hardness 9.7-22.6 GPa and elastic modulus 153.2-395.7 GPa were obtained by means of magnetron sputtering of titanium cathode in argon and nitrogen. The electrical resistance of the samples is in the range of 0.15-1.24 m Ω ·cm. The effects of phase composition, microstructure, morphology and physical-mechanical properties of TiN on d_{s-t} and N₂ flow rate are presented.

Key words: titanium nitride, magnetron sputtering, thin films, reactive deposition

Yuriy Yuryev, Chief of the Laboratory. E-mail: yurjev@tpu.ru Kseniya Mikhnevich, Master. E-mail: mikhnevichks@mail.ru Valeriy Krivobokov, Doctor of Physics and Mathematics, Professor, Head of the Hydrogen Power and Plasma Technologies Department. E-mail: krivobokov@tpu.ru Dmitriy Sidelyov, Engineer at the Laboratory № 23. E-mail: sidelevdv@tpu.ru Dariya Kiselyova, Student Vadim Novikov, Candidate of technical Sciences, Senior Research Fellow at the Laboratory of Nanoelectronics and Nanophotonics. E-mail: <u>novikovvadim@mail.ru</u>

Сдано в набор 01.12.2014 г. Подписано к печати 22.12.2014 г. Формат бумаги 60х80¹/₈. Офсетная печать. Усл.печ. л. 18,0 Усл.кр-отт.10,5 тыс. Уч-изд.л. 18,5 Тираж 500 экз. Зак. ____

Учредители: Самарский научный центр Российской академии наук, Президиум СамНЦ РАН

Адрес издателя: 443001, Самара, Студенческий пер., За Отпечатано в типографии СамНЦ РАН. 443001, Самара, Студенческий пер., За