УДК 542.548.:546.44

ОПРЕДЕЛЕНИЕ ВЫХОДОВ ⁸⁹Sr И ⁹⁰Sr ПРИ ОБЛУЧЕНИИ SrCO₃ В НЕЙТРОННОЙ ЛОВУШКЕ РЕАКТОРА СМ

@ 2014 Р.А. Кузнецов¹, В.А. Тарасов¹, Е.Г. Романов¹, П.С. Буткалюк¹, И.В. Целищев¹, Д.В. Козлов²

¹ ОАО "ГНЦ НИИАР", г.Димитровград ² Научно-исследовательский технологический институт им. С.П.Капицы Ульяновского государственного университета

Поступила в редакцию 16.12.2014

Приведены результаты расчетно-экспериментального моделирования реакторного накопления ⁸⁹Sr при облучении изотопно-обогащенного карбоната ⁸⁸Sr. Облучение в нейтронной ловушке реактора CM в течение 25-30 суток позволяет получить ⁸⁹Sr с удельной активностью 0,5-0,6 Ки/г, доля примесных радионуклидов стронция составляет (0,6-1)·10⁻⁵% (⁹⁰Sr) и (4-6)·10⁻²% (⁸⁵Sr). *Ключевые слова:* высокопоточный реактор CM, ⁸⁹Sr, ⁹⁰Sr, нейтронные сечения, карбонат стронция.

введение

Препарат ⁸⁹SrCl₂ широко применяется в ядерной медицине для паллиативной терапии костных метастазов. В ОАО "ГНЦ НИИАР" создан и используется более 15 лет технологический процесс получения радионуклида⁸⁹Sr, основанный на пороговой реакции ⁸⁹Y(n,p)⁸⁹Sr, протекающей на быстрых нейтронах. Используемый для облучения реактор БОР-60 в настоящее время переориентируется на решение материаловедческих задач ядерной энергетики, что ограничивает его доступность для крупномасштабной наработки радионуклидов. Альтернативный подход для получения стронция-89 – облучение изотопно-обогащенного ⁸⁸Sr в высокопоточном реакторе CM (см. рис. 1).

Одновременно с целевым ⁸⁹Sr в материале мишени нарабатывается радионуклид ⁹⁰Sr (рис. 1), а присутствие в стартовом материале изотопа ⁸⁴Sr (даже в незначительном количестве) приводит к образованию примеси радионуклида ⁸⁵Sr. Содержание примесей радиоактивных изотопов стронция в препарате стронция-89 не должно превышать (относительно активности основного радионуклида ⁸⁹Sr) 2.10⁻⁴% и 1.10⁻³% для ⁹⁰Sr и ⁸⁵Sr, соответствен-

Кузнецов Ростислав Александрович, кандидат химических наук, директор отделения радионуклидных источников и препаратов. E-mail: orip@niiar.ru

Тарасов Валерий Анатольевич, заместитель директора отделения радионуклидных источников и препаратов. E-mail: orip@niiar.ru

Романов Евгений Геннадьевич, кандидат технических наук, начальник лаборатории. E-mail: orip@niiar.ru

E-mail:kozlovdv@ulsu.ru

но. В отличие от других примесей, отделение изотопов стронция от целевого ⁸⁹Sr химическими методами после облучения невозможно. Следовательно режимы облучения должны обеспечивать наработку радионуклидов стронция на уровне, соответствующем требованиям к препарату.

Как правило, расчетные модели кинетики накопления как целевого радионуклида, так и примесных радионуклидов, образующихся при облучении стартового материала в реакторе, основываются на ядерно-физических данных, доступных из различных библиотек (ENDF/B, JEF, JEFF, JENDL, RUSFONDи др.). Вместе с тем, во многих случаях необходимо знание эффективных сечений ядерных реакций, учитывающих характеристики спектров нейтронов в конкретных позициях облучения, особенности режимов облучения и др. Оценка эффективных сечений проводится, как правило, на основании измерения выхода радионуклидов, образующихся при облучении специально подготовленных образцов.

В рамках настоящей работы проводилась оценка выхода радионуклидов при облучении образцов природного стронция и стронция, обогащенного по нуклиду ⁸⁸Sr, в нейтронной ловушке реактора CM, обеспечивающей высокую плотность потока тепловых нейтронов. Оценка проводилась расчетным способом и экспериментально.

РАСЧЕТНЫЕ ОЦЕНКИ

Для определения нейтронно-физических характеристик (НФХ) в облучаемых объемах был проведен прецизионный расчет по программе MCNP [1], использующей метод Монте-Карло. Была задана трехмерная модель реакторной установки (РУ СМ) с реальной загрузкой каналов отражателя, ячеек активной зоны и центральной нейтронной ловушки.

Буткалюк Павел Сергеевич, старший научный сотрудник. E-mail: orip@niiar.ru

Целищев Иван Васильевич, начальник управления. E-mail: orip@niiar.ru

Козлов Дмитрий Владимирович, кандидат физико-математических наук, начальник лаборатории.

Рис. 1. Схема трансмутации ядер при облучении стронция, обогащенного по изотопу ⁸⁸Sr, нейтронами ядерного реактора

В качестве регистрируемых нейтронных функционалов были избраны: плотность потока нейтронов в четырёх энергетических группах; скорости реакции (n, γ) на изотопах цепочки, позволяющие проверить используемые при расчёте трансмутации ядерные константы; скорость реакции (n, γ) на ⁵⁹Со для определения температуры нейтронного газа:

 $T_{n.g.} = 293.6 \cdot \pi / 4 \cdot (37.2 \cdot F / R)^2,$

где F- плотность потока тепловых нейтронов, Rскорость реакции (n, γ) на ⁵⁹Со в тепловой группе.

Результаты моделирования условий облучения представлены в табл. 1, где приведены значения НФХ, усреднённые по объему образцов карбоната стронция в каждой из ампул. Моделирование превращений ядер при облучении нейтронами проводилось с использованием программы ChainSolver [2], позволяющей учитывать эффекты резонансного самоэкранирования в облучаемом материале, а также фактический график работы реактора с детальным заданием уровня мощности. Программа позволяет варьировать значения ядерных констант, определяющих скорости превращения ядер при облучении нейтронами. Моделируемая цепочка трансмутации нуклидов представлена на рис. 2. Литературные данные о сечениях ядерных реакций, использованные для расчета выходов продуктов активации стронция приведены в табл. 2.

Значения активностей изотопов стронция на

Параметр	Ампула №1	Ампула №2	Ампула №3	Ампула №4
Φ (E<0,5 3B), cm ⁻² c ⁻¹	1,39•10 ¹⁵	1,47•10 ¹⁵	1,69•10 ¹⁵	1,69•10 ¹⁵
Φ (0,5 \Im B <e<100 <math="">\ImB), cm⁻²c⁻¹</e<100>	1,06•10 ¹⁴	9 , 57 •10 ¹³	1,33•10 ¹⁴	1,27•10 ¹⁴
Ф (100 эВ <Е<100 кэВ), см ⁻² с ⁻¹	1,27•10 ¹⁵	1,17•10 ¹⁵	1,01•10 ¹⁵	1,02•10 ¹⁵
Ф (E>100 кэВ), см ⁻² с ⁻¹	1,77•10 ¹⁵	1,86•10 ¹⁵	1,35•10 ¹⁵	1,33•10 ¹⁵
Температура нейтронного газа, К	459	458	480	483
Время облучения, эфф. суток	18,25	18,25	21,39	21,39

Таблица 1. Условия облучения экспериментальных стронциевых ампул

Рис. 2. Цепочка трансмутации, заданная в программе ChainSolver

Таблица 2. Сечения ядерных реакций, происходящих при облучении изотопов стронция нейтронами (значения, использованные для расчета выходов продуктов активации стронция, выделены подчеркиванием)

			-			
	Сечение реакции Резонансный		Сечения для реакций с нейтронами			
I I	(n,ү) при	интеграл	спектра	деления,	TT	
пуклид	энергии	реакции (n, ү),	реакции (n, γ), барн		источник	
	0,0253 Эв,	барн	(12.44)	(\mathbf{n},\mathbf{n})		
	барн		(11,7)	(II,p)		
	<u>0,95</u>	<u>11,31</u>	-	-	ChainSolver [2]	
⁸⁴ Sr					S. F. Mughabghab et al	
51	1,28	10,00	-	-	2006[3]	
	0,82	11,18	<u>0,072</u>	4,01•10 ⁻³	ENDF/B-VII.1 [4]	
⁸⁵ Sr	21,76	<u>166,21</u>	<u>0,043</u>	0,012	JEFF-3.0/A[4]	
⁸⁸ Sr	0,0580	0,0650	2,36•10 ⁻³	4,94•10-6	ChainSolver	
	0,0087	0,0248	3,37•10-3	1,18•10-5	ENDF/B-VII.1	
	0,0058	0,0237	1,93•10 ⁻³	1,19•10-5	JENDL-4.0[4]	
89 S-	0,42	-	2,44•10-3	2,80•10-6	ChainSolver	
51	0,42	<u>0,40</u>	$2,70 \cdot 10^{-3}$	5,64•10 ⁻⁶	CENDL-3.1[4]	
⁹⁰ S+	0,90	-	<u>4,20•10⁻³</u>	1,08•10-6	ChainSolver	
51	<u>0,90</u>	<u>0,48</u>	5,94•10 ⁻³	7,09•10 ⁻⁶	JEFF-3.1.1[4]	
⁸⁹ Y	1,28	<u>1,00</u>	<u>6,26•10⁻³</u>	<u>2,0•10⁻⁴</u>	ChainSolver	
⁹⁰ Y	3,30	2,58	5,42•10-3	-	ENDF/B-VII.1	
	3,50	4,65	<u>1,77•10⁻²</u>	4,20•10-4	JEF-2.2[4]	
⁹¹ Y	<u>1,40</u>	-	1,22•10 ⁻²	1,04•10-5	ChainSolver	
	1,40	2,77	1,25-10-2	1,45•10-5	ENDF/B-VII.1	

момент окончания облучения, полученные в результате прогнозных расчетов, приведены в табл. 3.

Кинетика процесса накопления изотопов стронция при облучении показана на рис. 3.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для изготовления опытных образцов использовали карбонат стронция природного изотопного состава и карбонат стронция, обогащенный по изотопу ⁸⁸Sr. Изотопный состав материалов (табл. 4) определяли масс-спектральным анализом, выполненным при помощи масс-спектрометра МИ1201В стрехленточным термоионизационным источником ионов и электронным умножителем ВЭУ-2А.

Подготовка стартового материала к облучению заключалась в изготовлении таблеток прессованием с последующим спеканием в трубчатой печи при 730 °С. Таблетки использовались для формирования сердечника ампул, представляющих собой трубки из нержавеющей стали 12Х18Н10Т (Ø 8,9х0,5 мм, длина L = 51 мм) с концевыми деталями. Параметры облучаемых ампул приведены в табл.5.

После загрузки стартового материала ампулы заполнялись гелием и герметизировались аргонодуговой сваркой. В реактор ампулы загружались в составе специального пенала, который представляет собой стальную трубку Ш10х0,3 мм с концевыми элементами и перфорацией на боковой поверхности для протекания теплоносителя через внутренний объём. Позиционирование ампул в пенале осуществлялось с использованием алюминиевых трубок (рисунок 4). Нижний край ампул №1 и №4 располагался на высоте -0,9 см относительно центральной плоскости активной зоны, нижний край ампулы

Таблица 3. Расчетные значения активности основных продуктов активации стронция на момент окончания облучения

№ ампулы	A(⁸⁹ Sr), Бк	A(⁸⁵ Sr), Бк	A(⁹⁰ Sr), Бк
1	1,93•10 ¹⁰	8,7•10 ⁶	4,1•10 ⁴
2	1,95•10 ¹⁰	1,6•10 ¹⁰	$5,1 \cdot 10^4$
3	2,16•10 ¹⁰	9,9•10 ⁶	6,0•10 ⁴
4	2,28•10 ¹⁰	1,0•10 ⁷	6,6•10 ⁴

Время облучения, сутки

Рис. 3. Зависимости удельной активности изотопов стронция от времени облучения

Таблица	4.	Изотопный	состав	стартового	материала
---------	----	-----------	--------	------------	-----------

Изотоп	Относительное содержание изотопа, атомных %			
	^{nat} SrCO ₃	⁸⁸ SrCO ₃		
⁸⁴ Sr	0,56	0,001±0,001		
⁸⁶ Sr	9,86	0,033±0,001		
⁸⁷ Sr	7,00	0,059±0,001		
⁸⁸ Sr	82,58	99,907±0,001		

Таблица 5. Параметры ампул с карбонатом стронция

Параметр	Ампула №1	Ампула №2	Ампула №3	Ампула №4
Материал таблеток	⁸⁸ SrCO ₃	^{nat} SrCO ₃	⁸⁸ SrCO ₃	⁸⁸ SrCO ₃
Масса материала в сердечнике, г	1,60	2,52	1,62	1,66
Диаметрсердечника, мм	7,05	6,80	7,05	6,40
Длинасердечника, мм	18,35	22,95	16,9	15,6
Плотность материала в сердечнике, г/см ³	2,22	3,02	2,46	3,27
Концентрация ядер ⁸⁸ Sr в мишени, см ⁻³	9,03•10 ²²	1,23•10 ²²	1,00•10 ²²	1,33•10 ²²

№ 2 и №3 – на высоте -6,0 см.

Пеналы с ампулами облучали в центральной нейтронной ловушке реактора СМ. Ампулы № 1,2 облучались в течение двух малых кампаний реактора, энергонаработка реакторной установки составила 18,25 эфф. суток. Ампулы № 3,4 облучались в течение трёх малых кампаний реактора, энергонаработка реактора составила 21,39 эфф. суток.

После облучения ампулы подвергались механической разделке, таблетки карбоната стронция растворялись в азотной кислоте. Растворы нитрата стронция отфильтровывались через фильтр "зеленая лента" и от них отбирались аликвоты

Рис. 4. Схема размещения облучаемых образцов в пенале для облучения

для измерения активности радионуклидов стронция (суммарная и удельная активность 89 Sr, относительная активность 85 Sr, относительная активность 90 Sr).

Для измерения активности радионуклида ⁸⁹Srприменяли жидкостно-сцинтилляционный спектрометр "QANTULUS", в качестве сцинтиллятора использовали сцинтиллятор марки OptiPhaseHiSafe.

Содержание радионуклида ⁸⁵Sr определяли с помощью гамма-спектрометра на основе полупроводникового Ge(Li)-детектора типа ДГДК-B150с энергетическим разрешением 3,0 кэВ по линии 1,3 МэВ. Обработку гамма-спектров проводили при помощи стандартного программного обеспечения фирмы "ГринСтар" с алгоритмом для анализа сложных мультиплетов.

Большое количество радиоактивных примесей в облученных образцах делает невозможным прямое определение удельной активности ⁸⁹Sr и доли ⁹⁰Sr. Поэтому для измерения указанных параметров аликвотные части растворов облученного материала подвергали очистке от примесей методом экстракционной хроматографии. Для этого растворы облученных образцов пропускали через колонки с сорбентом Sr.specresin (TRISKEMInternational, Франция). Колонки промывали азотной кислотой с концентрацией 4 моль/л и десорбировали стронций бидистиллированной водой. От очищенных растворов отбирали аликвоты, которые использовались для определения удельной активности ⁸⁹Sr и доли ⁹⁰Sr.

Определение удельной активности выполняли по следующей методике.

Аликвоту раствора упарили досуха, остаток после упаривания растворили в 3 мл дистиллированной воды, перенесли в мерные колбы объемом 25 мл, добавили 15 мл этиленгликоля, 3 мл раствора NaOHc концентрацией 0,05 моль/л, перемешали и охладили в течение 15 мин в бане со льдом. Затем добавили по 3,0 мл 0,08 % раствора мурексида в 80% этиленгликоле, перемешали, довели водой объем раствора в колбе до метки и вновь охладили в бане со льдом в течение 15 мин.

Измерение оптической плотности полученных растворов проводили на спектрофотометре BeckmanDU 530 относительно раствора сравнения при л= 510 нм в кварцевой кювете объемом с длиной оптического пути 1,0 см. Концентрацию стронция в растворе определяли с помощью калибровочного графика. Удельную активность в момент окончания облучения рассчитывали по формуле:

$$A_{yo} = \frac{A_{u_{3M}}}{3,7 \cdot 10^4 \cdot C(Sr)} \cdot 2^{\frac{\Delta t}{T_{1/2}}}$$

где А_{ул} – удельная активность стронция, Ки/г;

С (Sr) – концентрация стронция, мкг/мл;

 $A_{_{H3M}}$ – измеренная объемная активность, Бк/мл; Δ t – время с момента окончания облучения, сут; $T_{_{1/2}}$ – период полураспада ⁸⁹Sr, сут

Для определения доли радионуклида 90Sr отбирали аликвоты очищенных растворов, содержащих не менее 2.10⁸ Бк⁸⁹Sr. Аликвоты выдержали в течение 7суток для накопления ⁹⁰Y, который является дочерним продуктом распада⁹⁰Sr. После этого провели выделение ⁹⁰Y методом экстракционной хроматографии в системе Д2ЭГФК/ тефлон – HNO₂. Методика основана на извлечении солей иттрия сорбентом из азотной кислоты с концентрацией 0,5 моль/л и последующем элюировании азотной кислоты с концентрацией 6 моль/л. Всего проводили два цикла очистки, которые позволяют получить коэффициент очистки иттрия от стронция ~10⁶. Активность ⁹⁰Ү в полученном растворе измеряли методом жидкостно-сцинтилляционной спектроскопии.

СРАВНЕНИЕ РАСЧЕТНЫХ И ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

В табл. 6 обобщены расчетные и экспериментальные значения удельной активности ⁸⁹Sr, соотношения активностей ⁸⁵Sr:⁸⁹Sr и ⁹⁰Sr:⁸⁹Sr.

ула	Соотношения активностей ⁸⁵ Sr: ⁸⁹ Sr, %		Соотношения активностей ⁹⁰ Sr: ⁸⁹ Sr, %		Удельная активность ⁸⁹ Sr, Ки/г	
IW	Расчетные	Экспериментальные	Расчетные	Экспериментальные	Расчетные	Экспериментальные
A	оценки	данные	оценки	оценки данные		данные
N⁰1	$4,7\cdot10^{-2}$	5,8·10 ⁻²	2,14•10 ⁻⁴	6,1•10 ⁻⁵	0,52	0,562
<u>№</u> 2	-	-	$2,66 \cdot 10^{-4}$	~4•10 ⁻⁵	0,43	0,473
<u>№</u> 3	$4,6\cdot 10^{-2}$	4,6.10-2	$2,78 \cdot 10^{-4}$	9,4•10-5	0,61	0,581
<u>№</u> 4	4,4.10-2	4,4.10-2	$2,89 \cdot 10^{-4}$	$1,04 \cdot 10^{-4}$	0,62	0,678

Таблица 6. Сравнение расчетных и экспериментальных данных

Приведенные в табл. 6 данные показывают хорошее совпадение расчетных и экспериментальных значений для удельной активности ⁸⁹Sr, а также для соотношения активностей ⁸⁵Sr: ⁸⁹Sr. Это говорит не только о надежности применяемой системы ядерно-физических констант, но и, что более важно, о корректном определении нейтронно-физических характеристик в объеме облучаемого материала;

Большие отличия (завышение в ~3 раза) расчетных значений соотношения активностей ⁹⁰Sr: ⁸⁹Sr от экспериментальных объясняются недостоверными данными по сечению ядерной реакции ⁸⁹Sr(n, γ)⁹⁰Sr.

Дальнейшее совершенствование расчетной модели связано с определением эффективного сечения реакции ⁸⁹Sr(n, γ)⁹⁰Sr (переход к одногрупповому представлению скорости реакции). Работа выполнена при поддержке Минобрнауки России (договор от "12" февраля 2013 г. № 02.G25.31.0015).

СПИСОК ЛИТЕРАТУРЫ

- MCNP A General Monte Carlo N-Particle Transport Code, Version 4C, Editor Briesmeister J.F., Report LA-13709-M, 2000. Los Alamos, USA.
- Программа ChainSolver, Romanov, E.G.2003, A tool to calculate nuclear transmutations in a neutron flux, IAEA 1404 code. URL: http://www.oecd-nea.org/ tools/abstract/detail/iaea1404 (дата обращения 12.11.2014).
- Mughabghab S.F. Atlas of Neutron Resonances, Resonance Parameters and Thermal Cross Sections Z=1-100, 5th Edition, National Nuclear DataCenter BNL Upton, USA, 2006.
- Программа JANIS 3.4, a Java-based nuclear data display program, NEA 1760 code. URL: http:// www.oecd-nea.org/tools/abstract/detail/nea-1760/ (дата обращения 12.11.2014).

EVALUATION OF ⁸⁹Sr AND ⁹⁰Sr YIELD FOR SrCO₃ IRRADIATIONS IN SM REACTOR NEUTRON TRAP

@ 2014 R.A. Kuznetsov¹, V.A.Tarasov¹, E.G. Romanov¹, P.S. Butkalyuk¹, I.V. Tselishev¹, D.V. Kozlov²

¹Joint Stock Company "State Scientific Center – Research Institute of Atomic Reactors", Dimitrovgrad ²Research Institute of Technology named after S.P. Kapitsa of Ulyanovsk State Technical University

The results of numerical simulation and experimental studies of ^{89}Sr production by irradiation of ^{88}Sr -enrihed carbonate in a nuclear reactor are shown. ^{89}Sr samples with specific activity of 0.5-0.6Ci/g are produced by use of 25-30 days irradiation in SM reactor neutron trap. Impurities are estimated to be of value (0.6-1.0) $\cdot 10^{-5}\%$ for ^{90}Sr μ (4.0-6.0) $\cdot 10^{-2}\%$ for ^{85}Sr .

Key words: high-flux reactor SM, 89Sr, 90Sr, neutron cross-sections, strontium carbonate

of Isotope Department. E-mail: orip@niiar.ru

Valery Tarasov, Deputy Director of Isotope Department. E-mail: orip@niiar.ru

E mail: orip@niiar.ru

Ivan Tselishev, Laboratory Head. E-mail: orip@niiar.ru Dmitry Kozlov, Candidate of Physics and Mathematics, Head of Laboratory of Materials. E-mail: kozlovdv@ulsu.ru

Rostislav Kuznetsov, Candidate of Chemistry, Director

Evgenii Romanov, Candidate of Technics, Head of Isotope Production Laboratory. E-mail: orip@niiar.ru

Pavel Butkalyuk, Senior Researcher of Isotope Department.