УДК 621.373.8

ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР СИНЕГО СПЕКТРА ПРИ НЕЛИНЕЙНО-ОПТИЧЕСКОМ ПРЕОБРАЗОВАНИИ ИЗЛУЧЕНИЯ YAG:Nd-ЛАЗЕРА НА ДЛИНЕ ВОЛНЫ 1.34 МКМ

© 2015 А.О.Щукина¹, М.Н.Ершков¹, А.В.Гаврилов¹, С.А.Солохин¹, С.Н.Сметанин²

¹ Ковровская государственная технологическая академия им. В.А. Дегтярева ² Институт общей физики им. А.М. Прохорова РАН, г.Москва

Поступила в редакцию 05.02.2015

Теоретически и экспериментально исследована генерация лазерного излучения синего спектрального диапазона, полученная путем нелинейного преобразования частоты YAG:Nd-лазера на длине волны 1.34 мкм. Синее излучение на длине волны 0.446 мкм получено методом генерации третьей гармоники при сложении излучений основной (1.34 мкм) и второй (0.67 мкм) гармоник YAG:Nd-лазера. Выходная энергия импульса синего лазера составляет 5 мДж при длительности 50 нс и эффективности преобразования 7 %.

Ключевые слова: синее излучение, YAG:Nd-лазер, генерация суммарной частоты.

Лазерные системы, позволяющие реализовать генерацию излучения в сине-голубой области спектра, в настоящее время представляют значительный интерес для решения различных практических задач. Синее излучение (λ ~ 450 нм) попадает в минимум поглощения воды [1], что позволяет эффективно использовать его в системах специального назначения: подводная локация и связь, геодезические исследования континентального шельфа, системы подводного видения [2]. В настоящее время особый интерес представляют компактные твердотельные лазерные системы на основе кристаллических активных и нелинейных сред, обеспечивающих генерацию излучения с высокой энергией и малой длительностью импульса, а также обладающих высокой стабильностью и эффективностью работы. Для получения синего излучения применяется метод генерации второй гармоники квазитрехуровневых лазеров, таких как Nd:GdVO₄, Nd:YAG, Nd:YAlO_z [3, 4], излучающих на длине волны в области 0.9 мкм. При этом получить излучение с высокими энергетическими параметрами отдельного импульса достаточно затруднительно, что связано с низкой эффективностью квазитрехуровневой схемы генерации, необходимостью применения источников накачки высокой мощности, сложностью реализации режимов моду-

Щукина Анна Олеговна, студентка 5 курса.

E-mail: anna_shukina92@mail.ru

ляции добротности. Перспективным подходом для реализации мощного лазера синего спектра является метод генерации третьей гармоники излучения неосновного перехода ${}^4F_{_{3/2}} \rightarrow I_{_{13/2}}$ Nd-лазеров на длине волны примерно 1.3 мкм [5]. Работа данных лазеров происходит по четыре-хуровневой схеме, что повышает эффективность генерации и позволяет при меньших энергозатратах получить более мощное излучение.

В настоящей работе представлены результаты теоретического и экспериментального исследования генерации синего излучения на $\lambda_{3\omega} = 0.446$ мкм, реализованной методом генерации суммарной частоты при сложении в кристалле DKDP основной ($\lambda_{\omega} = 1.34$ мкм) и второй ($\lambda_{2\omega} = 0.67$ мкм) гармоник излучения YAG:Nd -лазера.

Генерация третьей гармоники методом суммарной частоты в кристалле DKDP возможна при выполнении условий соответствующего скалярного *еое*-синхронизма для складываемых основной и второй гармоник. Угол синхронизма для данного взаимодействия составляет $\theta_c = 47.2^{\circ}$. С целью определения оптимальных условий нелинейно-оптического преобразования излучения YAG:Nd-лазера было выполнено моделирование генерации синего излучения, основанное на численном решении системы укороченных уравнений для вещественных амплитуд взаимодействующих волн [6]:

$$\frac{\partial a_1}{\partial z} + \delta_1 a_1 + \sigma_1 a_2 a_3 \sin \psi = 0$$

$$\frac{\partial a_2}{\partial z} + \delta_2 a_2 + \sigma_2 a_1 a_3 \sin \psi = 0$$
(1)
$$\frac{\partial a_3}{\partial z} + \delta_3 a_3 - \sigma_3 a_1 a_2 \sin \psi = 0$$

$$\frac{\partial \psi}{\partial z} - \Delta k + (\sigma_1 \frac{a_2 a_3}{a_1} + \sigma_2 \frac{a_1 a_3}{a_2} - \sigma_3 \frac{a_1 a_2}{a_3}) \cos \psi = 0,$$

где a_1, a_2, a_3 – амплитуды напряженности поля

Ершков Михаил Николаевич, доцент кафедры «Лазерная физика и технология». E-mail: ershkovm@yandex.ru Гаврилов Андрей Валентинович, кандидат физико-математических наук, доцент, проректор по учебной работе и развитию. E-mail: gavrilovlft@bk.ru

Солохин Сергей Александрович, кандидат физико-математических наук, доцент, заведующий кафедрой «Лазерная физика и технология». E-mail: SolokhinS@gmail.com Сметанин Сергей Николаевич, кандидат физико-математических наук, доцент, старший научный сотрудник. E-mail: ssmetanin@bk.ru

основной, второй и третьей гармоник, определяемые через соответствующие интенсивности; $\delta_1, \delta_2, \delta_3$ – коэффициенты линейного поглощения ($\delta_1 = 0.025 \text{ см}^{-1}$, $\delta_2 = \delta_3 = 0.005 \text{ см}^{-1}$); $\sigma_1, \sigma_2, \sigma_3$ – коэффициенты нелинейной связи ($\sigma_1 = 5.0 \cdot 10^{-6} \text{ B}^{-1}$, $\sigma_2 = 9.6 \cdot 10^{-6} \text{ B}^{-1}$, $\sigma_3 = 1.5 \cdot 10^{-6} \text{ B}^{-1}$); $\psi = \phi_1 + \phi_2 - \phi_3 + \Delta k z$ – обобщенная фаза (ϕ_1, ϕ_2, ϕ_3 – начальные фазы оптических гармоник, $\Delta k = k_1 + k_2 - k_3$ – волновая расстройка).

Расчет производился в квазистатическом приближении при гауссовой временной форме импульса складываемых оптических гармоник:

$$I(t) = I_0 \exp\left[-\left(\frac{2t}{\tau_i}\right)^2\right], \qquad (2)$$

где длительность импульса τ_i по уровню e^{-1} задавалась равной 20 нс, 50 нс и 100 нс. Значения интенсивности в максимуме импульса каждой из гармоник на входе в кристалл (при z = 0) определялись из соотношения:

$$I_{0}(\omega) = \frac{4(1 - \Delta_{2\omega})E_{i}}{\pi d^{2} \int_{-\infty}^{+\infty} \exp\left[-\left(\frac{2t}{\tau_{i}}\right)^{2}\right] dt};$$
(3)

$$I_0(2\omega) = \frac{4\Delta_{2\omega}E_i}{\pi d^2 \int_{-\infty}^{+\infty} \exp\left[-\left(\frac{2t}{\tau_i}\right)^2\right] dt},$$
 (4)

здесь E_i – суммарная энергия складываемых излучений, $\Delta_{2\omega}$ – относительная доля энергии второй гармоники (задается в диапазоне от 0 до 1), диаметр пучка *d* принимался равным 0.5 см, длина кристалла L = 6 см. Расчет производился при значениях $E_i = 0.1$ Дж, 1 Дж и 2 Дж, где наибольшее значение соответствует порогу лучевой стойкости кристалла DKDP при длительности импульса 20 нс ($I_{nop} = 0.5$ ГВт/см² [7]). В ходе выполненного расчета были найдены зависимости интенсивности третьей гармоники и эффективности преобразования от относительной доли энергии второй гармоники при заданных уровнях суммарной энергии. Результаты численного моделирования представлены на рис. 1 и рис. 2.

Из результатов, представленных на рис. 1 и рис. 2, следует, что при увеличении суммарной энергии складываемых излучений наибольшие значения интенсивности третьей гармоники и эффективности преобразования достигаются при меньших длительностях импульса, что связано с

Рис. 2. Эффективность преобразования в третью гармонику $\mathcal{E}_{3\omega}$ в зависимости от относительной доли энергии второй гармоники $\Delta_{2\omega}$: *a)* $E_i = 0.1 \, \text{Дж}; 6$) $E_i = 1 \, \text{Дж}; 6$) $E_i = 2 \, \text{Дж} (1 - \tau_i = 20 \, \text{нс}; 2 - \tau_i = 50 \, \text{нс}; 3 - \tau_i = 100 \, \text{нс})$

общим увеличением суммарной интенсивности складываемых излучений. При этом максимальные значения параметров генерации достигаются при определенных оптимальных значениях параметра $\Delta_{2\omega}$: при $E_i = 0.1$ Дж $\Delta_{2\omega}^{\text{opt}} = 50\%$, при $E_i = 1$ Дж и $E_i = 2$ Дж $\Delta_{2\omega}^{\text{opt}} = 65\%$. Для оптимальных значений $\Delta_{2\omega}$ были построены графики максимальных значений $I_{3\omega}^{\max}$ (рис.3, *a*) и $\varepsilon_{3\omega}^{\max}$ (рис.3, *б*) в зависимости от суммарной энергии Е, при различных длительностях импульса. Зависимость I^{max} является практически линейной и при заданных параметрах расчета наибольшее значение интенсивности третьей гармоники достигает 200 МВт/см². Зависимости $\mathcal{E}_{2\omega}^{\max}$ имеют вид насыщающихся кривых, характер насыщения которых определяется степенью истощения энергии взаимодействующих гармоник. Расчеты показывают, что при сложении интенсивных гармоник с меньшей длительностью импульса наблюдается практически полная перекачка энергии (с учетом пассивных потерь) взаимодействующих волн в энергию третьей гармоники. Наибольшее значение эффективности преобразования составило 83 %.

Экспериментальные исследования генерации синего лазера на $\lambda_{3\omega} = 0.446$ мкм при последовательном нелинейно-оптическом преобразовании излучения YAG:Nd-лазера на $\lambda_{\omega} = 1.34$ мкм проводились на установке, оптическая схема которой представлена на рис.4. Установка состоит из трех основных элементов: задающего генератора, лазерного усилителя и нелинейно-оптического преобразователя частоты. Задающий генератор состоит из YAG:Nd-активного элемента размером Ø6.3×100 мм и V-образного резонатора, образованного плоскими зеркалами $3_1 - 3_3$. Применение в резонаторе дополнительного селек-

I MBT/CMZ

тирующего зеркала З₂ (коэффициент отражения на $\lambda_{\omega} = 1.34$ мкм – $R_{1.3} > 99\%$, на $\lambda = 1.064$ мкм – $R_{1.064} < 1\%$) позволило исключить развитие генерации на основном переходе ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ с длиной волны $\lambda = 1.064$ мкм. Коэффициенты отражения концевого З₁ и выходного З₃ зеркал генератора на $\lambda_{\omega} = 1.34$ мкм составляли соответственно 100% и 50% (для обоих зеркал $R_{1.064}$ < 1%). Длина резонатора составила около 40 см.

Для реализации режима модуляции добротности применили электрооптический затвор на основе ячейки Поккельса, состоящей из кристалла LiTaO₃ и призмы Глана. Зеркала З₄ с R_{1.34}> 99% направляли излучение генератора в однопроходной лазерный усилитель. Усилитель состоял из двух YAG:Nd-активных элементов АЭ, и АЭ, Ø6.3×130 мм, торцы которых дополнительно разводились на небольшой угол относительно оси генератора. Все оптические элементы генератора и усилителя были просветлены на $\lambda = 1.064$ мкм. В лазере использовалась ламповая накачка активных элементов с энергией импульса до 60 Дж, длительностью 250 мкс и частотой следования 2 Гц. Нелинейно-оптический преобразователь состоял из двух последовательно установленных кристаллов: для генерации второй гармоники на $\lambda_{2\omega} = 0.67$ мкм использовался кристалл LiNbO₃ (8×10×20 мм); генерация суммарной частоты на $\lambda_{3\omega} = 0.446$ мкм была реализована в кристалле DKDP (Ø20×60 мм). Торцы кристаллов не имели просветляющих покрытий на длины волн взаимодействующих излучений. С целью повышения интенсивности складываемых гармоник в кристалле DKDP использовали собирающую линзу с фокусным расстоянием 1 м. Перетяжка сфокусированного пучка формировалась на расстоянии примерно 50 см за выходным торцем кристалла

Рис. 3. Максимальные интенсивность $I_{_{3\omega}}^{\max}$ (*a*) и эффективность преобразования $\mathcal{E}_{3\omega}^{\max}$ (*б*) в зависимости от суммарной энергии складываемых излучений E_i при оптимальных значениях $\Delta_{_{2\omega}}^{\text{opt}}$ (1 - τ_i = 20 нс; 2 - τ_i = 50 нс; 3 - τ_i = 100 нс)

Рис. 4. Оптическая схема экспериментальной лазерной установки

DKDP. Для измерения энергии излучения использовался измеритель мощности и энергии Ophir. Временные параметры измерялись с помощью лавинного фотодиода ЛФД-2А и цифрового осциллографа Agilent 350 MGz.

В ходе выполненных экспериментов были получены зависимости выходных энергетических параметров излучения оптических гармоник и эффективностей преобразования от энергии накачки. Графики соответствующих зависимостей представлены на рис. 5. Порог генерации на $\lambda_{\omega} = 1.34$ мкм наблюдался при энергии накачки 24 Дж на лампу. Во всем диапазоне энергий накачки режим генерации являлся близким к одномодовому, длительность импульса оставалась постоянной и составляла 50 нс. При энергиях накачки более 50 Дж наблюдалось насыщение энергии излучения на выходе генератора и усилителя. Максимальная энергия импульса на выходе генератора на $\lambda_{\omega} = 1.34$ мкм составила 30 мДж. После прохождения усилителя энергия импульса увеличилась до 130 мДж.

В результате удвоения частоты в кристалле LiNbO₃ была получена генерация излучения красного спектра на $\lambda_{2\omega} = 0.67$ мкм. Максимальная энергия импульса второй гармоники составила

Рис. 5. Зависимости параметров генерации от энергии накачки E_p : а) энергия излучения на λ_{ω} = 1.34 мкм (1 – генератор, 2 – усилитель); б) энергия излучения оптических гармоник

 $(1 - \text{на } \lambda_{2\omega} = 0.67 \text{ мкм}, 2 - \text{на } \lambda_{3\omega} = 0.446 \text{ мкм}$ (схема без линзы), 3 – на $\lambda_{3\omega} = 0.446 \text{ мкм}$ (схема с линзой); в) эффективность преобразования:

1 – во вторую гармонику, 2 – в третью гармонику (схема без линзы), 3 – в третью гармонику (схема с линзой)

29 мДж. С учетом отражений на непросветленных гранях LiNbO₃ эффективность преобразования во вторую гармонику составила 30 %. При сложении излучений основной и второй гармоник в кристалле DKDP наблюдалась генерация синего излучения на $\lambda_{3\omega}$ = 0.446 мкм. В схеме преобразования без линзы максимальное значение энергии третьей гармоники и эффективности преобразования составили $E_{3\omega}^{\max}$ = 2.7 мДж и $\mathcal{E}_{3\omega}^{\text{max}} = 3.5 \%$. С целью повышения параметров генерации излучение основной и второй гармоник фокусировали в кристалл DKDP с помощью собирающей линзы, применение которой позволило повысить суммарную интенсивность складываемых излучений в кристалле. В результате энергия синего излучения достигла $E_{3\omega}^{\text{max}} = 5.3 \text{ мДж}$ при эффективности преобразования $\mathcal{E}_{3\omega}^{\text{max}} = 7 \%$. Пиковая мощность импульса составила 105 кВт. Увеличение параметров генерации синего лазера возможно при более оптимальном сложении излучений на λ_{ω} = 1.34 мкм и $\lambda_{2\omega}$ = 0.67 мкм, а также за счет увеличения общей энергии складываемых излучений.

Таким образом, в работе выполнено исследование генерации твердотельного синего лазера при нелинейно-оптическом преобразовании излучения YAG:Nd-лазера на длине волны неосновного перехода 1.34 мкм в кристалле DKDP. В результате выполненного численного анализа определены условия, позволяющие реализовать генерацию третьей гармоники YAG:Nd-лазера на $\lambda_{3\omega} = 0.446$ мкм с высокими значениями интенсивности и эффективности преобразования при нелинейном сложении основной (1.34 мкм) и второй (0.67 мкм) гармоники YAG:Nd-лазера. Экс-

периментально реализована генерация синего излучения с энергией в импульсе 2.7 мДж при эффективности преобразования 3.5 %. Применение дополнительной фокусировки складываемых излучений позволило повысить энергию третьей гармоники до 5.3 мДж и эффективность преобразования до 7%.

Работа выполнена при поддержке Минобрнауки России, госзадание № 2014/67.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hale G.M., Querry M.R.* Optical constants of water in the 200 nm to 200 µm wavelength region // Appl. Opt. 1973. № 12. P. 555-563.
- Карасик В.Е. Орлов В.М. Лазерные системы видения: учебное пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. 352 с.
- Квазитрехуровневый Nd:GdVO₄-лазер на λ = 456 нм с диодной накачкой / Ю.Д. Заварцев, А.И.Загуменный, Ф. Зероук, С.А. Кутовой, В.А. Михайлов, В.В. Подрешетников, А.А. Сироткин, И.А. Щербаков // Квантовая электроника. 2003. Т.33, №7. С. 651-654.
- Pulsed blue-light generation by the frequency doubling of the ⁴F_{3/2} to ⁴I_{9/2} transition in Nd:YAG and Nd:YAIO₃ / *Y. Luts, D. Rytz, C. Gaudillat* // Appl. Phys. B. 2000. № 70, P. 479-482.
- Generation of 7.6-W blue laser by frequency-tripling of a Nd:YAG laser in LBO crystals / *Peng Haibo, Hou Wei, Chen Yahui, Cui Dafu, Xu Zuyan //* OPTICS EXPRESS. 2006. Vol. 14, No. 9. P. 6543-6549.
- Дмитриев В.Г., Тарасов Л.В. Прикладная нелинейная оптика. 2-е изд., перераб. и доп. М.: ФИЗМАТ-ЛИТ, 2004. 512 с.
- Нелинейно-оптические кристаллы. Свойства и применение в квантовой электронике: справочник / Г.Г. Гурзадян, В.Г. Дмитриев, Д.Н. Нигосян. М.: Радио и связь, 1991. 160 с.

SOLID-STATE BLUE LASER BY NONLINEAR FREQUENCY CONVERSION OF 1.34 µm YAG:Nd LASER RADIATION

© 2015 A.O. Schukina¹, M.N. Ershkov¹, A.V. Gavrilov¹, S.A. Solokhin¹, S.N. Smetanin²

¹ Kovrov State Technological Academy named after V.A. Degtyarev ² Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow

Solid-state blue-laser generation by nonlinear frequency conversion of the 1.34- μ m YAG:Nd-laser is theoretically and experimentally investigated. The 0.446- μ m blue radiation is obtained by frequency-tripling technique as the frequency doubling (0.669 μ m) with the sum-frequency oscillation (1.34 μ m + 0.67 μ m). The blue laser pulse output energy of 5 mJ with 50-ns duration and 7 % conversion efficiency is obtained. *Key words*: blue radiation, Nd:YAG-laser, sum-frequency oscillation.

Anna Schukina, Student. E-mail: anna_shukina92@mail.ru Mikhail Ershkov, Associate Professor at the Laser Physics and Technology Department. E-mail: ershkovm@yandex.ru Andrei Gavrilov, Candidate of Physics and Mathematics, Associate Professor, Vice-Rector on Educational Work and Development. E-mail: gavrilovlft@bk.ru Sergei Solokhin, Candidate of Physics and Mathematics, Associate Professor, Head at the Laser Physics and Technology Department. E-mail: SolokhinS@gmail.com Sergei Smetanin, Candidate of Physics and Mathematics, Associate Professor, Senior Research Fellow. E-mail: ssmetanin@bk.ru