УДК 621.762

ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ И РЕНТГЕНОСПЕКТРАЛЬНЫЙ АНАЛИЗ СТРУКТУРЫ КОМПОЗИЦИОННОГО МАТЕРИАЛА «МЕДЬ - КАРБОСИЛИЦИД ТИТАНА»

© 2015 А.А. Сметкин, Н.Д. Оглезнев, А.С. Иванов, О.П. Морозов, О.В. Доливец, К.А. Мазуренко

Пермский национальный исследовательский политехнический университет

Поступила в редакцию 26.03.2015

Методами сканирующей электронной микроскопии, рентгеноспектрального и рентгенофазового анализа изучена структура спеченного композиционного материала Cu-12 об.% Ti₃SiC₂ электродинструмента. Представлен фазовый, химический состав экспериментальных образцов, и указаны особенности локального микроанализа при оценке их состава.

Ключевые слова: электрод-инструмент, медь, карбосилицид титана, сканирующая электронная микроскопия, рентгеноспектральный анализ, химический состав

На современном этапе развития материаловедения актуальной остается задача создания материалов с расширенным диапазоном рабочих температур, лучшими механическими и трибологическими характеристиками, так как они являются основным фактором, способствующим развитию науки и техники. Материалы вида «медь-карбосилицид титана» являются перспективными системами для изготовления электродов-инструментов для электроэрозионной прошивки [1, 2] с улучшенными по сравнению с электродами эксплуатационными мелными свойствами. Используемые в настоящее время композиционные материалы (КМ) на основе меди с дисперсными добавками окислов, боридов, нитридов и бора, исчерпали свои возможности в повышении рабочих температур [3]. В ряде работ зарубежных исследователей показаны результаты исследований КМ на основе меди и карбида титана, карбоалюминида титана, углеродных волокон [4, 5]. Перспективным представляется КМ с карбосилицидом титана, поскольку Ti₃SiC₂ обладает одновременно свойствами керамики и металла. Карбосилицид титана Ti₃SiC₂ обладает уникальным комплексом физико-механических свойств за счет слоистого строения

Доливец Олеся Владимировна, студентка

кристаллической решетки, которое позволяет охарактеризовать его как наноструктурное слоистое соединение. Тернарное соединение обладает стойкостью к повреждениям, знакопеременным нагрузкам, ударам и вибрации. Удельное электросопротивление плотных образцов составляет 0,003 Ом м, что на три порядка выше, чем у титана, однако значительно ниже, чем у большинства керамических материалов [6, 7]. Замечательной особенностью карбосилицида титана является независимость его удельного электросопротивления от температуры [6]. Улучшение эксплуатационных свойств материалов вида «медь-карбосилицид титана» достигается за счет электрофизических свойств и дисперсной капиллярной слоистой структуры карбосилицида титана.

Цель работы: исследование структуры композиционного материала Cu-Ti₃SiC₂ и выявление особенностей электронно-микроскопических исследований в анализе структур KM.

Методики эксперимента и исследований. Для изготовления образцов из композиционных материалов использованы порошки меди ПМС-1 (ГОСТ 49-60-75), карбосилицида титана, полученного методом реакционного спекания. Смесь порошков меди и карбосилицида титана в соотношении Cu-12 об.% Ti_3SiC_2 (Cu/12TSC) смешивали в смесителе со смещенной осью вращения в течение 4 часов. Затем на гидравлическом прессе П-125 прессовали образцы размером 6х6х50 мм при давлении 600 МПа и отжигали в вакуумной печи при температуре 700 С. Далее проводили повторное прессование при 600 МПа. Прессовку окончательно спекали

Сметкин Андрей Алексеевич, кандидат технических наук, доцент кафедры «Материалы, технологии и конструирование машин». E-mail: solid@pm.pstu.ac.ru Оглезнев Никита Дмитриевич, аспирант

Иванов Александр Сергеевич, кандидат технических наук, доцент кафедры «Металловедение, термическая и лазерная обработка металлов». E-mail: osa@pm.pstu.ac.ru

Морозов Олег Павлович, студент

Мазуренко Кристина Анатольевна, студентка

в вакуумной печи при температуре 1100 С в течение 2 часов. Подготовка шлифов выполнена по известным методикам, травление проводили в соляной кислоте. Плотность композиционных материалов определяли на образцах размерами $6\times6\times50$ мм согласно ГОСТ 18898-89. Исследование структуры выполнено с помощью сканирующего электронного микроскопа Tescan Vega 3 SEM (Tescan), совмещенного с энергодисперсионным спектрометром X-Max 50 (Oxford Instruments). Фазовый состав определяли на дифрактометре XRD-6000 (Shimadzu) в λ -Си излучении.

Результаты и их обсуждение. Рентгенофазовый анализ полученных образцов Cu-12 об.% Ti_3SiC_2 со средней плотностью 7.45 г/куб.см показал наличие фаз Cu, Ti₃SiC₂, Ti₅Si₃ и небольших количеств TiSi₂, TiC, SiC. Анализ изменений концентраций элементов фаз в объеме образцов позволил выявить особенности взаимодействия компонентов, обусловленные условиями консолидации. Для лучшего понимания строения КМ учтем особенности электронно-микроскопического и локального рентгеноспектрального анализа, поскольку элементы изображения и результаты химического состава формируются не с поверхности, а на определенной глубине образца в зависимости от условий анализа.

Важным аспектом в электронно-микроскопических исследованиях КМ является корректная интерпретация СЭМ-изображений, результатов локального микроанализа и элементного картирования, поскольку КМ содержит химические элементы существенно различные по природе и свойствам. Известно, что СЭМизображения и локальный микроанализ формируются при определенных условиях движения первичных электронов и генерации рентгеновского излучения [8, 9]. Поэтому на первом этапе исследования структуры КМ Си/12TSC выполнена оценка глубины проникновения первичных электронов и генерации рентгеновских лучей.

В литературе известны несколько определений величины пробега, но чаще применимым, наряду с формулой Бете, является выражение Канайи-Окаямы [8]:

$$R = \frac{2.76 \cdot 10^{-2} \cdot A \cdot E_0^{1.67}}{Z^{0.899} \cdot \rho}$$
, MKM (1)

где A – средняя атомная масса, E_0 – энергия электрона возбуждения, Z – средний атомный номер, ρ – плотность материала.

Согласно (1) рассчитана длина пробега электрона для исследуемой системы, характеризующая зависимость области взаимодействия в материале от энергии первичного пучка (табл. 1).

	Таблица 1. Длина	а пробега электрон	а для Cu-Ti ₃ SiC ₂ пр	ри ускоряющем нап	ряжении 20 кЕ
--	------------------	--------------------	--	-------------------	---------------

Элемент	0	Si	S	Cl	Ti	Fe	Cu
длина пробега электрона, мкм	7,09	4,62	5,26	3,60	2,69	1,56	1,42

Особенностью получения изображения во вторичных электронах, т.е. электронах, эмитированных с образца с энергией менее 50 эВ и возникших в результате взаимодействия первичных электронов со слабо связанными электронами проводимости, является их малая глубина выхода. Источниками вторичных электронов в образце являются падающие электроны зонда и отраженные электроны. Глубина выхода вторичных электронов представляет лишь малую долю длины пробега первичного пучка и для металлов составляет ~ 1% [10]. Таким образом, изображение формируется только их тех вторичных электронов, которые образуются на расстоянии от поверхности, равном средней глубине выхода.

Структура Cu/12TSC согласно результатам СЭМ представляет медную матрицу с включениями частиц карбосилицида титана размером от 10 до 40 мкм и грубодисперсные агломераты размером 70-130 мкм. Структура фаз с карбосилицидом титана представляет собой характерные для чистого Ti_3SiC_2 ламели, а также, судя по материалу контраста на электронно-микроскопических снимках, присутствуют соединения на основе титана, кремния и углерода в виде карбидов и силицидов. На рис. 1 и в табл. 2 представлены СЭМ-изображение и результаты рентгеноспектрального анализа на выделенном фрагменте зерна карбосилицида титана в медной матрице.

Измерение концентрации легких элементов с атомным номером Z<11 представляет собой достаточно сложную задачу. Поскольку такие элементы производят «мягкое» рентгеновское излучение, то это объясняет отсутствие в спектральном анализе значений концентраций для углерода, хотя на картах распределения его отчетливо видно (рис. 2). Мягкие рентгеновские лучи более легко абсорбируются, следовательно, любая неточность в табличных массовых коэффициентах поглощения усугубляется сильным поглощением рентгеновских лучей.

Рис. 1. Результаты анализа элементного состав Cu -12 об.%Ti₃SiC₂

В общем случае, глубину генерации рентгеновского излучения в образце можно оценить по уравнению Андерсена-Хаслера [9]:

$$R = \frac{0.064 \cdot (E_0^n - E_{_{kp}}^n)}{\rho},$$
_{MKM} (2)

где n=1,68, ρ - плотность материала, E_0 – энергия электрона возбуждения, $E_{\rm kp}$ – энергия характеристического излучения элемента. Результаты оценки представлены в табл. 3.

Исходя из полученных данных следует, что микрорентгеноспектральный анализ позволяет определить углерод качественно. Полученные карты элементов в КМ отражают неоднородный характер распределения в первую очередь по кремнию и меди (рис. 4). К представленному распределению по углероду следует относиться как к наиболее легкому элементу из композиции и учитывать особенности глубины генерации рентгеновского излучения. Карта распределения по углероду сформирована с глубины порядка 4 мкм, т.е примерно также как и для кремния, но энергия характеристического излучения у углерода практически в 6 раз меньше, чем у кремния.

Элемент	Ti	Cu	Si	0	Cl
содержа- ние, вес.%	67,28	18,81	10,99	2,52	0,40

Таблица 2. Химический состав зерна карбосилицида титана в медной матрице

Таблица 3. Глубина зоны генерации рентгеновского излучения для Cu – 12 об.% Ti₃SiC₂ при ускоряющем напряжении 20 кВ

Элемент Линия спектра	0	С	Si	S	Cl	K	Ti	Fe	Cu
K _a	6,85	4,34	4,14	4,62	3,00	10,91	1,98	1,06	0,86
L _a							2,16	1,24	1,09

Также из карт распределения очевидна неоднородность по составу зерна карбосилицида титана. Как правило, тип структуры во многом определяется технологическими режимами получения. Это объясняет крупные включения карбосилицида титана в меди. СЭМ-изображение шлифа во вторичных электронах при ускоряющем напряжении 20 кВ представлены на рис. 3.

Из локального микроанализа шлифов следует, что агломераты карбосилицида титана в медной матрице состоят из различных фаз (рис. 3, табл. 4). Спектры в точках 1-3, судя по материалам контраста, соответствуют одному типу зерен и по фазовому составу они очень близки силицидам титана Ti_5Si_3 (табл. 4). Наличие углерода в зернах силицида, обнаруженное на карте распределения, свидетельствует о том, что силицид может быть твердым раствором внедрения углерода. Спектры 4-6 соответствуют карбосилициду титана с атомами замещения меди, так как кремний очень подвижен и медь способна замещать его в решетке тернарного соединения. Спектры 7-9, вероятно соответствуют карбиду титана Ti_xC_x, поскольку наблюдается порядка 90% титана, а углерод не определяется количественно, и других компонентов, с которыми титан мог бы образовывать соединение, в этих спектрах практически нет. Остальные спектры, полученные на краях зерен, интерпретировать крайне сложно из-за условий травления и влияния на область анализа медной матрицы.

Рис. 2. Карты распределения элементов в спеченном образце Cu -12 об.% Ti_3Si

Название	0	Cr	S	Cl	K	Ti	Fe	Cu
спектра								
спектр 1		25,84				70,77	0,74	2,66
спектр 2		25,45				70,34	0,68	3,53
спектр 3		25,51				71,53	0,74	2,23
спектр 4		8,88				68,79		22,33
спектр 5		8,79				68,83		22,38
спектр б		8,45				69,05		22,50
спектр 7		0,41		0,63		92,82		6,14
спектр 8		0,78		0,48		90,11		8,62
спектр 9		2,66		0,25		86,46		10,64
спектр 10		6,63		0,74		68,51		24,12
спектр 11	3,51	6,19	0,25	0,50		20,87	0,23	68,45
спектр 12	3,21	4,11	0,51	0,69	0,23	26,45		64,79

Таблица 3. Химический состав образца Cu-12 об.% Ti₃SiC₂

Рис. 3. СЭМ- изображение спеченного травленного образца Cu-12 об.%Ti₃SiC₂ с указанным в точках локальным микроанализом

Также наблюдается наличие примесей в области зерна карбосилицида титана. Во многом это связано со способом изготовления образцов. Присутствие железа в спектрах 1-3, 11 обусловлено намолом при обработке в мельницах Ti_3SiC_2 и шихты Cu-Ti_3SiC_2 с использованием стальных мелющих тел. Наличие хлора в спектрах 7-12 связано с травлением соляной кислотой шлифов экспериментальных образцов.

Выводы: проведены электронно-микроскопические исследования и локальный микроанализ спеченной порошковой композиции Cu-12 об.% Ti₃SiC₂. При ускоряющем напряжении 20 кВ отражает структурное состояние материала с глубины от 1,56 до 4.62 мкм. Анализ химического состава композита реализуется на глубине генерации рентгеновского излучения (вставить) при том же ускоряющем напряжении. Структура KM Cu-12 об.% Ti₃SiC₂ представляет медную матрицу с включениями частиц карбосилицида титана размером от 10 до 40 мкм и грубодисперсные агломераты размером 70-130 мкм. Фазовый состав экспериментальных образцов электрод-инструмента соответствует Cu, Ti_3SiC_2 , Ti_5Si_3 и небольшому количеству TiSi_2, TiC, SiC. Карты элементов показывают на неоднородный характер их распределения по Si и Cu, поскольку при спекании кремний очень подвижен и медь способна замещать его в решетке тернарного соединения. Выявленные в материале включения железа обусловлены технологией обработки порошковых смесей при обработке шихты с использованием стальных мелющих тел.

СПИСОК ЛИТЕРАТУРЫ:

- Оглезнев, Н.Д. Исследование износостойкости электродов-инструментов из композиционных материалов для электроэрозионной обработки // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. 2014. Т. 16. №3. С. 54-69.
- Андреева, А.В. Основы физикохимии и технологии композитов: учеб. пособие для вузов. – М.: ИПРЖР, 2001. 192 с.

- 3. *Ngai, T.L.* Effect of sintering temperature on the preparation of Cu-Ti₃SiC₂ metal matrix composite. Original Research Article / *T.L. Ngai, W. Zheng, Y. Li* // Progress in Natural Science: Materials International. 2013. V. 23, № 1. P. 70-76.
- 4. *Zhang, J.* Microstructure, mechanical, and electrical properties of Cu–Ti₃AlC₂ and in situ Cu–TiC_x composites / J. Zhang, Y.C. Zhou // Materials Research Society. 2008. V. 23, № 4. P. 924-932.
- 5. *Каченюк, М.Н.* Получение композиционных материалов на основе карбосилицида титана методом механосинтеза: Автореф. дис. канд. техн. наук. Пермь, 2008. 18 с.
- Barsoum, M.W. The M_{n+1}AX_n phases: a new class of solids: thermodynamically stable nanolaminates // Prog. Sol. State Chem. 2000. №28. P. 201-208.
- El Saeed, M.A. Optimization of the Ti₃SiC₂ MAX phase synthesis / M.A. El Saeed, F.A. Deorsola, R.M. Rashad // International Journal of Refractory Metals and Hard Materials. 2012. V. 35. P. 127-131.
- Kanaya, K. Penetration and energy loss theory of electrons in solid targets / K. Kanaya, S. Okayama // J. Phys. D. 1972. №5. P. 43-58.
- 9. *Goldstein, J.* Scanning electron microscopy and X-ray microanalysis. Third Edition / *J. Goldstein, D. Newbur, P. Echlin* et al. Kluwer, 2003. 689 p.
- Гоулдстейн, Дж. Растровая электронная микроскопия и рентгеновский микроанализ: в 2-х книгах. Книга 2. Пер. с англ. / Дж. Гоулдстейн, Д. Ньюбери, П. Эчлин и др. – М.: Мир, 1984. 303 с.

ELECTRONIC-MICROSCOPIC RESEARCH AND X-RAY SPECTRAL ANALYSIS OF STRUCTURE OF "COPPER – TITANIUM CARBIDE SILICIDE" COMPOSITE MATERIAL

© 2015 A.A. Smetkin, N.D. Ogleznev, A.S. Ivanov, O.P. Morozov, O.V. Dolivets, K.A. Mazurenko

Perm National Research Polytechnical University

Methods of scanning electronic microscopy, the X-ray spectral and X-ray phase analysis it was studied the structure of sintered composite material Cu-12% vol. Ti₃SiC₂ electrode tool. The phase, chemical composition of experimental samples is presented, and features of local microanalysis at the assessment of their structure are specified.

Key words: electrode tool, copper, titanium carbide silicide, scanning electronic microscopy, X-ray spectral analysis, chemical composition

Alexander Smetkin, Candidate of Technical Sciences, Associate Professor at the Department "Materials, Technologies and Machines Design". E-mail: solid@pm.pstu.ac.ru Nikita Ogleznev, Post-graduate Student; Alexander Ivanov, Candidate of Technical Sciences, Associate Professor at the Department "Metallurgical Science, Thermal and Laser Processing of Metals". E-mail: osa@pm.pstu.ac.ru; Oleg Morozov, Student Olesya Dolivets, Student Kristina Mazurenko, Student