УДК 621.396: 621.371.3

ВЛИЯНИЕ ДИФФУЗНОСТИ ИОНОСФЕРЫ НА ОПТИМАЛЬНУЮ РАБОЧУЮ ЧАСТОТУ ДЕКАМЕТРОВОЙ РАДИОЛИНИИ

© 2016 В.П. Пашинцев, А.Ф. Чипига, В.А. Шевченко, Д.П. Киселев

Северо-Кавказский федеральный университет, г. Ставрополь

Статья поступила в редакцию 30.10.2016

Получены оценки влияния уровня диффузности ионосферы на изменение оптимальной рабочей частоты декаметровой радиолинии относительно ее максимально и наименьшей применимой частоты.

Ключевые слова: ионосфера, электронная концентрация, диффузность, интенсивность неоднородностей, декаметровая радиолиния, частота

Известно [1-4], что для организации декаметровой (ДКМ) радиосвязи при нормальном состоянии среднеширотной ионосферы рекомендуется работать на оптимальной рабочей частоте (ОРЧ), близкой к максимально применимой (МПЧ). В условиях диффузности ионосферы рабочую частоту ДКМ радиолинии следует выбирать ниже традиционных значений (обычно ОРЧ составляет (0,9-0,8) от МПЧ) и ближе к наименьшей применимой частоте (НПЧ) [2]. Однако конкретные рекомендации по выбору ОРЧ в диапазоне между МПЧ и НПЧ при увеличении уровня диффузности ионосферы до сих пор не разработаны.

Цель работы: анализ влияния роста уровня диффузности ионосферы на изменение оптимальной рабочей частоты относительно максимально и наименьшей применимой частот односкачковой ДКМ радиолинии.

Оценка уровня диффузности ионосферы. Диффузность ионосферы определяется как расплывчатость максимума ионизации, которая обуславливает рассеянное отражение ДКМ волны и, как следствие, – появление многолучевости и интерференционных замираний принимаемых сигналов [3]. В Толковом словаре по радиофизике она определяется как явление, связанное с интенсивным образованием неоднородностей электронной концентрации (ЭК) различных масшитабов в области F ионосферы, приводящее к

рассеянию радиоволн и изменению формы зондирующих радиосигналов. Согласно [4] диффузность ионосферы обусловлена тем, что на плавное изменение по высоте (*h*) средней ЭК $\overline{N(h)}$ накладываются пространственные неоднородности ЭК $\Delta N(h, \rho)$, где $\rho = (x, y)$. Поэтому диффузность в слое F ионосферы наблюдается на высотно-частотной характеристике (ВЧХ) станции вертикального зондирования ионосферы (СВЗИ) в виде ее расплывчатости (утолщения) линии ВЧХ, которая возрастает по мере приближения частоты вертикального отражения ($f_{\rm s}$) волны к критической ($f_{\rm kp}$). Уровень диффузности принято оценивать в баллах по 4-бальной шкале или по трем градациям уширения ВЧХ вблизи $f_{\rm kp}$.

В [5] обосновано, что уровень диффузности ионосферы целесообразно оценивать не в баллах, а по величине интенсивности (β) мелкомасштабных неоднородностей (MMH) ЭК ионосферы. Известна [6] методика определения в односкачковой ДКМ радиолинии оптимальной рабочей частоты (ОРЧ) по критерию максимального превышения сигнала над помехой в точке приема, при которой обеспечивается наибольшая надежность (вероятность) связи с достоверностью не хуже допустимой. Она разработана на основе учета зависимости глубины быстрых замираний в ДКМ радиолинии от выбора рабочей частоты (РЧ). При этом установлена зависимость параметра распределения глубины быстрых замираний (*т* – параметра Накагами) от интенсивности ММН ионосферы (). Однако в [6] не учитывалась возможность роста интенсивности ММН ионосферы (β) на порядок и, следовательно, существенного изменения ОРЧ относительно МПЧ и НПЧ в односкачковой ДКМ радиолинии в условиях диффузности ионосферы.

Интенсивности ММН ионосферы обычно [4-6] определяется как отношение

Пашинцев Владимир Петрович, доктор технических наук, профессор кафедры информационной безопасности автоматизированных систем. E-Mail: pashintsevp@mail.ru

Чипига Александр Федорович, кандидат технических наук, профессор, директор института информационных технологий и телекоммуникаций. E-mail: iitt.ncfu@gmail.com

Шевченко Вячеслав Анатольевич, доцент кафедры информационной безопасности автоматизированных систем

Киселев Данил Павлович, аспирант. E-Mail: dkiselev@ncfu.ru

 $\beta = \sigma_{\Delta N}(h) / \overline{N(h)}$ величины среднеквадратического отклонения (СКО) флуктуаций ЭК $\Delta N(h, \rho)$

в ММН ионосферы $\sigma_{\Delta N}(h) = \left[\Delta N(h, \rho)^2\right]^{0.5}$ к среднему значению ЭК $\overline{N(h)}$ на некоторой высоте h. При этом на любой высоте ионосферы, включая высоту максимума ионизации $h = h_m$, интенсивность ММН остается неизменной: $\beta = \sigma_{\Delta N}(h)/\overline{N(h)} = \sigma_{\Delta N}(h_m)/\overline{N(h_m)} = \text{const.}$ Способ определения интенсивности ММН ЭК $\beta = \sigma_{\Delta N}(h_m)/\overline{N(h_m)}$ по результатам построения ВЧХ СВЗИ обоснован и реализован в патенте РФ [7]

Очевидно, что для достижения поставленной в статье цели необходимо установить зависимость изменения ОРЧ в односкачковой ДКМ радиолинии по мере возрастания интенсивности ММН ЭК ионосферы от обычных значений $\beta = 10^{-3}$ в нормальной среднеширотной ионосфере до $\beta = 10^{-2}$ в условиях ее возмущений типа диффузности [8].

Зависимость оптимальной рабочей частоты от диффузности ионосферы. Известно [3], что условием осуществления ДКМ связи с достоверностью и надежностью не хуже допустимых значений является превышение $P_c / P_n \ge K_{H}^2$ отношения мощности сигнала к мощности помех на входе приемника (ПРМ) над минимально необходимым значением. Это условие можно записать в виде $E_c^1 / E_n^1 \ge T$ превышения отношения единичной напряженности поля сигнала к удельной напряженности поля сигнала к удельной напряженности поля помех в точке приема над техническим фактором (*T*). Поскольку указанные напряженности (в отличие от технического фактора *T*) зависят от выбора РЧ (f_0), это условие можно записать в децибелах как

$$E_{\rm c}^{\rm l}(f_0) / E_{\rm n}^{\rm l}(f_0) - T \ge 0, \qquad (1)$$

где $T = K_{\rm H} K_{\rm 63} K_{\rm M3} \sqrt{B / 0,25 P_{\rm I} G_{\rm I} \eta_{\rm I} D_{\rm 2}}$. (2)

Здесь K_{μ} – наименьший необходимый коэффициент защиты, определяемый видом работы; K_{63} – коэффициент защиты от быстрых (интерференционных) замираний; K_{M3} – коэффициент защиты от медленных замираний; B – полоса пропускания приемника; P_1 – мощность передаваемого сигнала; G_1 и η_1 – коэффициент усиления и КПД фидера передающей антенны; D_2 – коэффициент направленного действия приемной антенны. Отметим, что значение РЧ, при котором выполняется равенство $E_{\rm c}^{\rm l}(f_0)/E_{\rm rr}^{\rm l}(f_0)-T=0$ согласно [2] соответствует НПЧ: $f_0 = f_{\rm rr}$.

Чтобы определить ОРЧ, следует учесть, что в ДКМ радиолинии коэффициент защиты от быстрых замираний (БЗ) К баз должен зависеть от выбора РЧ (f_0), поскольку известно [1, 2], что при выборе РЧ вблизи МПЧ возрастает рассеяние и глубина замираний принимаемого сигнала. Это согласно (2) обуславливает наличие частотной зависимости технического фактора: У $K_{_{\mathrm{fig}}}(f_0) \sqcup T(f_0)$. Поэтому ОРЧ можно определить по критерию максимального превышения отношения сигнал/помеха $E_c^1(f_0) / E_n^1(f_0)$ в точке приема над техническим фактором $T(f_0)$ в результате решения уравнения

$$E_{\rm c}^{\rm l}(f_0) / E_{\rm n}^{\rm l}(f_0) - T(f_0) = \max, \qquad (3)$$

где $T(f_0) = K_{\rm H} K_{\delta 3}(f_0) K_{\rm M3} \sqrt{B / 0,25 P_1 G_1 D_2}.$
(4)

Известно [1, 3, 4, 6, 8], что обычно наблюдаемые в односкачковой ДКМ радиолинии райсовские или рэлеевские распределения быстрых замираний удовлетворительно аппроксимируются *m*-распределением Накагами в интервале $1 \le m < \infty$. В этом случае коэффициент защиты от быстрых замираний K_{63} можно определить как [1]

$$K_{\delta_3} = 2m \left[\left(2P_{\text{out gon}} \right)^{-1/m} - 1 \right] / \left[-2\ln \left(2P_{\text{out gon}} \right) \right], \quad (5)$$

где $P_{\text{ош доп}}$ - допустимое значение вероятности ошибочного приема сигналов. Анализ (5) показывает, что по мере увеличения глубины замираний (т.е. приближения *m* к значению 1, соответствующему релеевским замираниям) коэффициент защиты от них возрастает.

В свою очередь, параметр Накагами *m* в односкачковой ДКМ радиолинии полностью определяется дисперсией флуктуаций фазового фронта отраженной волны σ_{φ}^2 на выходе неоднородной ионосферы, величина которой зависит от используемой РЧ (f_0) и уровня диффузности ионосферы (β) согласно выражениям [6]:

$$m = [1 - \exp(-2\sigma_{\varphi}^{2})]^{-1}, \qquad (6)$$

rge $\sigma_{\varphi}^{2} = 2r_{0}L_{2} [\pi f_{0}(h_{x})\beta/c\sec^{2}\varphi_{0}]^{2}. (7)$

Здесь r_0 – наибольший размер ионосферных неоднородностей (м); L_3 - эквивалентный однородный путь ДКМ волны в слое F ионосферы (м); $f_0(h_{\rm A})$ – рабочая частота ДКМ волны с действующей высотой $h_{\rm A}$ отражения от ионосферы (Гц); *с* – скорость света в вакууме (м/с); φ_0 – угол падения волны на нижнюю границу отражающего слоя ионосферы; β – интенсивность ММН ЭК ионосферы.

На практике выбор РЧ (f_0) в ДКМ радиолинии осуществляется на основе измерения действующей высоты отражения ($h_{\rm g}$) вертикально направленной волны с частотой $f_{\rm g}$:

$$f_0(h_{\rm I}) = f_{\rm B}(h_{\rm I}) \sec \varphi_0, \qquad (8)$$

где секанс угла падения волны на нижнюю границу отражающего слоя вычисляется по заданной дальности связи (r) с учетом кривизны Земли ($R_{_3} \approx 6370$ км) как

sec
$$\varphi_0 \approx \{1 + r^2 / 4[h_{\mu}(f_{\rm B}) + (r^2 / 8R_{\rm 3})]^2\}^{0.5}$$
. (9)

Зависимость $h_{\rm g}(f_{\rm B})$ действующей высоты отражения от частоты вертикальной волны обычно определяется по ВЧХ СВЗИ, а при параболической модели распределения ЭК в отражающем слое ионосферы ее можно рассчитать по формуле

$$h_{\mu}(f)_{\mu} = h_0 + \left(\frac{z_m f_{\mu}}{2f_{\kappa p}}\right) \ln \left[\frac{\left(1 + f_{\mu} / f_{\kappa p}\right)}{\left(1 - f_{\mu} / f_{\kappa p}\right)}\right] (10)$$

где h_0 – нижняя граница слоя; $z_m = h_m - h_0$ – высота максимума ионизации h_m относительно нижней границы h_0 слоя; $f_{\kappa p} = \left[80, 8\overline{N(h_m)} \right]^{0.5}$ – критическая частота ионосферы.

Следует отметить, что используемый для вычисления σ_{φ}^2 в (7) эквивалентный однородный путь ДКМ волны L_3 в слое F также зависит от частоты вертикально направленной волны $f_{\rm B}$, отражающейся на высоте $h_{\rm H}$, как

$$L_{5} = \left[h_{\pi}(f_{B}) - h_{0}\right] \left\{1 + \left(\frac{f_{\kappa p}}{f_{B}}\right)^{2} - \frac{Z_{M}}{h_{\pi}(f_{B}) - h_{0}}\right\} \times \left\{\sec^{2}\varphi_{0} - 0, 5\left[1 + \left(\frac{f_{\kappa p}}{f_{B}}\right)^{2} - \frac{Z_{M}}{h_{\pi}(f_{B}) - h_{0}}\right]\right\}^{0.5}.$$
(11)

Методика определения ОРЧ односкачковой ДКМ радиолинии. Согласно выражениям (7, 8) дисперсия флуктуаций фазового фронта σ_{φ}^2 отраженной ДКМ волны на выходе неоднородной ионосферы прямо пропорционально зависит от значения РЧ ($f_0(h_{\rm g}) = f_{\rm B}(h_{\rm g}) \sec \varphi_0$) и интенсивности ММН ЭК ионосферы (β) и ее можно рассчитать по двум формулам:

$$\sigma_{\varphi}^{2}(f_{0},\beta) = 2r_{0}L_{s}\left[\frac{\pi f_{0}(h_{\pi})\beta}{c\sec^{2}\varphi_{0}}\right]^{2} =$$

$$= 2r_{0}L_{s}\left[\frac{\pi f_{B}(h_{\pi})\beta}{c\sec\varphi_{0}}\right]^{2},$$
(12)

где sec φ_0 и L_2 определяются согласно выражениям (9-11). Второе равенство (12) наглядно отражает физическую причину возрастания $\sigma_{a}^{2} \sim f_{\rm B}(h_{\rm H})\beta$ по мере увеличения уровня диффузности и
оносферы $\beta=\sigma_{_{\!\!\Delta\!N}}(h)\big/\overline{N(h)}$ и частоты вертикально направленной волны $f_{\scriptscriptstyle \rm B}$ с действующей высотой отражения $h_{\rm \tiny n}$. Поскольку последняя близка к истинной высоте отражения волны $h_{\pi} \approx h_{or}$, то частота отражения вертикально направленной волны описывается выражением $f_{\rm B} = \left\lceil 80, 8\overline{N(h_{\rm or})} \right\rceil^{0.5}$. Поэтому произведение *f*_•*β* в (12) пропорционально величине СКО флуктуаций ЭК MMH ионосфе-В ры $\sigma_{_{\Lambda N}}(h)$ = N(h)eta, которое возрастает по мере приближения *h* к высоте максимума ионизации h,, где наблюдаются наибольшие средние значения ЭК $\overline{N(h_m)} \ge \overline{N(h)}$ и их флуктуации $\sigma_{\Delta N}(h_m) = \overline{N(h_m)}\beta \ge \sigma_{\Delta N}(h) = \overline{N(h)}\beta.$

При повышении уровня диффузности ионосферы β произведение $f_{\rm B}\beta \sim f_0\beta \sim \overline{N(h)}\beta$ будет еще больше, что приведет к дальнейшему росту σ_a^2 .

Согласно выражениям (6, 7) параметр Накагами, характеризующий глубину замираний в односкачковой ДКМ радиолинии, через величину $\sigma_{\varphi}^2(f_0,\beta)$ зависит от выбора РЧ (f_0) и уровня диффузности ионосферы (β):

$$m(f_0,\beta) = \left\{1 - \exp\left[-2\sigma_{\phi}^2(f_0,\beta)\right]\right\}^{-1}.(13)$$

Анализ выражений (12, 13) позволяет объяснить тот известный [1-4] факт, что при выборе в ДКМ радиолинии РЧ вблизи МПЧ $f_0 \approx f_{\rm M} = 0.9 f_{\rm kp} \sec \varphi_0 = 0.9 \Big[80.8 \overline{N(h_m)} \Big]^{0.5} \sec \varphi_0$ произведение $f_0(h_{\rm R})\beta \sim \sigma_{\varphi}^2$ возрастает и обуславливает рост σ_{φ}^2 и уменьшение параметра $m(f_0,\beta) \sim 1/\sigma_{\varphi}^2(f_0,\beta)$, т.е. увеличение глубины замираний принимаемых сигналов.

В свою очередь, параметр $m(f_0,\beta)$ согласно (5) определяет коэффициент защиты от быстрых замираний

$$K_{63}(f_0,\beta) = \frac{2m(f_0,\beta)(2P_{\text{out gon}})^{-1/m(f_0,\beta)} - 1}{\left[-2\ln(2P_{\text{out gon}})\right]}$$
(14)

В соответствии с (14) выражение (4) для технического фактора односкачковой ДКМ радиолинии можно представить в следующем виде

$$T(f_{0},\beta) = K_{_{\rm H}}K_{_{\bar{0}3}}(f_{0},\beta)K_{_{\rm M3}}\sqrt{B/0,25P_{1}G_{1}D_{2}} = K_{_{\bar{0}3}}(f_{0},\beta)T_{_{\rm M3}},$$
(15)

где $T_{_{\rm HM3}} = K_{_{\rm H}}K_{_{\rm M3}}\sqrt{B/0,25P_1G_1D_2}$ - составляющая технического фактора $T(f_0,\beta)$, не зависящая от выбора РЧ и диффузности ионосферы.

На основе (15) можно при заданном уровне диффузности ионосферы (β) определить ОРЧ как частоту ($f_0 = f_{opq}$), на которой обеспечивается максимальное превышение отношения сигнал/помеха $E_c^1(f_0) / E_n^1(f_0)$ в точке приема над техническим фактором (15) $T(f_0, \beta)$ в результате решения уравнения (3):

$$E_{\rm c}^{\rm l}(f_0) / E_{\rm n}^{\rm l}(f_0) - T(f_0,\beta) = \max$$
. (16)

Приведем пример определения ОРЧ односкачковой ДКМ радиолинии на основе расчета зависимости $T(f_0)$ технического фактора от выбора РЧ согласно (15) при фиксированном уровне диффузности ионосферы $\beta = const$. Для определения согласно (12) величины $\sigma_{a}^{2}(f_{0},\beta)$ необходимо предварительно рассчитать $h_{\pi}(f_{\rm B})$ и sec φ_0 по формулам (10), (9). Приведенные ниже примеры расчета $h_{_{\rm I}}(f_{_{\rm B}})$ и sec $\varphi_{_0}$ произведепри следующих исходных ны данных: $z_{\rm m} = 10^5$ m, $f_{\rm kp} = 4$ $h_0 = 2, 5 \cdot 10^5 \,\mathrm{M},$ МГц, $f_{\rm b}/f_{\rm kd} = 0,1...0,9$, r = 2000 km, $R_{\rm a} \approx 6370$ km. Далее по формулам (11) и (8) проведены расчеты эквивалентного однородного пути ДКМ волны в слое F ионосферы L_{2} и рабочей частоты ДКМ волны $f_{\scriptscriptstyle 0}(h_{\scriptscriptstyle
m I})$ с действующей высотой $h_{\scriptscriptstyle
m J}$ отражения от ионосферы. На этой базе при заданных значениях $r_0 = 5 \cdot 10^2$ м, $c = 3 \cdot 10^8$ м/с и типовой интенсивности неоднородностей среднеширотной ионосферы $\beta = 5 \cdot 10^{-3}$ произведен расчет согласно (12) величины $\sigma_a^2(f_0,\beta)$. Далее в соответствии с выражениями (13, 14) производится расчет параметра $m(f_0, \beta) \sim 1/\sigma_{\omega}^2(f_0, \beta)$ и коэффициента $K_{63}(f_0,\beta)$ при $P_{out not} = 3 \cdot 10^{-3}$. Расчет $T(f_0)$ по формуле (15) проведен при значениях $K_{\rm H} \approx 10$ дБ, $K_{\rm M3} \approx 11$ дБ, B = 0,3 кГц, $P_1 = 1$ кВт, $G_1 = 3$, $D_2 = 2$. Полученная частотная зависимость $T(f_0,\beta)$ при $\beta = 5 \cdot 10^{-3}$ представлена на рис. 1 штрихпунктирной линией.

Рис. 1. Результаты вычисления оптимальной рабочей, максимально и наименьшей применимой частот в односкачковой декаметровой радиолинии при интенсивности неоднородностей ионосферы $\beta = 5 \cdot 10^{-3}$.

Здесь же пунктирной линией представлена типовая [3, 6] частотная зависимость $E_{\rm c}^{\rm l}(f_0)/E_{\rm n}^{\rm l}(f_0)$ и пунктирной линией - разность

 $E_{\rm c}^{\rm l}(f_0)/E_{\rm n}^{\rm l}(f_0)-T(f_0)$ для диапазона рабочих частот от f_0 =1 МГц до МПЧ ($f_{\rm M}$). Эти зависимости при традиционно определяемой МПЧ

 $(f_{\rm M} = 0,9f_{\rm kp} \sec \varphi_0 \approx 8,6 {\rm M}$ Гц) позволяют по точке пересечения графиков $E_{\rm c}^{\rm l}(f_0) / E_{\rm n}^{\rm l}(f_0)$ и $T(f_0)$ найти значение НПЧ $(f_{\rm H} \approx 1,9 {\rm M}$ Гц) и по точке достижения максимума функции (16) их разности $E_{\rm c}^{\rm l}(f_0) / E_{\rm n}^{\rm l}(f_0) - T(f_0,\beta) = {\rm max}$ определить значение ОРЧ $(f_{\rm opy} \approx 5,9 {\rm M}$ Гц).

Полученные результаты позволяют разработать методику определения ОРЧ односкачковой ДКМ радиолинии по критерию обеспечения максимального превышения отношения сигнал/помеха, которая сводится к следующим этапам:

1. Расчет дисперсии флуктуаций фазового фронта $\sigma_{\phi}^{2}(f_{0},\beta)$ отраженной ДКМ волны на выходе неоднородной ионосферы в зависимости от значений РЧ (f_{0}) и интенсивности ММН ЭК ионосферы (β) в соответствии с выражениями (7-12).

2. Расчет параметра Накагами $m(f_0,\beta) \sim 1/\sigma_{\varphi}^2(f_0,\beta)$, характеризующего глубину замираний в односкачковой ДКМ радиолинии, согласно выражению (13).

3. Расчет коэффициента защиты от быстрых замираний в односкачковой ДКМ радиолинии согласно функциональной зависимости (14) $K_{53}(f_0,\beta) = \Psi[m(f_0,\beta)].$

4. Расчет технического фактора односкачковой ДКМ радиолинии согласно произведению (15) $T(f_0, \beta) = K_{6_3}(f_0, \beta) \cdot T_{_{M3}}$.

5. Определение частотной зависимости отношения $E_{\rm c}^{\rm l}(f_0)/E_{\rm n}^{\rm l}(f_0)$ единичной напряженности поля сигнала $E_{\rm c}^{\rm l}(f_0)$ к удельной напряженности поля помех $E_{\rm n}^{\rm l}(f_0)$ в точке приема.

6. Определение рабочей частоты ($f_0 = f_{opy}$), на которой обеспечивается максимальное превышение отношения сигнал/помеха $E_c^1(f_0) / E_\pi^1(f_0)$ над техническим фактором $T(f_0, \beta)$ при заданном уровне диффузности ионосферы (β), на основе решения уравнения (16) $E_c^1(f_0) / E_\pi^1(f_0) - T(f_0, \beta) = \max$.

Анализ влияния диффузности ионосферы на ОРЧ односкачковой ДКМ радиолинии. Покажем, что выбор ОРЧ в односкачковой ДКМ радиолинии существенно зависит от интенсивности ММН ЭК ионосферы, которая в средних широтах может изменяться в широких пределах [8]: от $\beta = 10^{-3}$ до 10^{-2} . Результаты вычисления разности $E_c/E_n(f_0) - T(f_0)$ по приведенной выше методике определения ОРЧ для граничных значений интенсивности ММН ЭК $\beta = 10^{-3}$ и 10^{-2} (а также $\beta = 5 \cdot 10^{-3}$) представлены на рис. 2.

Рис. 2. Результаты вычисления оптимальной рабочей частоты ДКМ радиолинии при трех значениях интенсивности неоднородностей ионосферы: $\beta = 10^{-3}$; $5 \cdot 10^{-3}$; 10^{-2}

Из рис. 2 видно, что при увеличении интенсивности ММН ЭК ионосферы ($\beta = 10^{-3}...10^{-2}$) значения НПЧ и МПЧ не изменяются ($f_{\rm M} \approx 8,6$ МГц, $f_{\rm H} \approx 1,9$ МГц), тогда как оптимальная рабочая частота (при которой достигается наилучшая надежность ДКМ радиосвязи) понижается ($f_{\rm opul} \approx 8,2$ МГц; $f_{\rm opu2} \approx 5,9$ МГц; $f_{\rm opu3} \approx 4,9$ МГц).

Аналогично рис. 2 по разработанной методике можно построить более детальные графики зависимостей ОРЧ от интенсивности ММН ЭК ионосферы. На их основе можно построить графики изменения отношений МПЧ / ОРЧ и ОРЧ / НПЧ при возрастании интенсивности ММН ЭК ($\beta = 10^{-3} \dots 10^{-2}$) ионосферы (рис. 3).

Анализ рис. З показывает, что по мере увеличения уровня диффузности (интенсивности ММН ЭК) ионосферы от $\beta = 10^{-3}$ до 10^{-2} величина ОРЧ в односкачковой ДКМ радиолинии снижается по отношению к МПЧ с традиционных значений $f_{\rm орч} \approx 0.9 f_{\rm M}$ до $f_{\rm орч} \approx 0.57 f_{\rm M}$ и повышается по отношению к НПЧ с обычных значений $f_{\rm орч} \approx f_{\rm H} / 0.2$ до $f_{\rm орч} \approx f_{\rm H} / 0.4$.

Рис. 3. Изменение соотношений между оптимальной рабочей и максимально применимой частотой, а также оптимальной рабочей и наименьшей применимой частотой в ДКМ радиолинии при возрастании интенсивности неоднородностей ионосферы

Выводы:

1. Разработана 6-этапная методика определения оптимальной рабочей частоты ($f_0 = f_{opq}$) односкачковой ДКМ радиолинии по критерию обеспечения максимального превышения отношения сигнал/помеха $E_c^1(f_0)/E_n^1(f_0)$ на входе приемника над техническим фактором $T(f_0, \beta)$ при заданном уровне диффузности ионосферы (β).

2. В результате анализа влияния роста диффузности ионосферы было установлено, что по мере увеличения интенсивности мелкомасштабных неоднородностей ионосферы на порядок (от $\beta = 10^{-3}$ до 10^{-2}) величина оптимальной рабочей частоты в односкачковой ДКМ радиолинии снижается по отношению к максимально применимой частоте почти в 2 раза и во столько же раз повышается по отношению к наименьшей применимой частоте (рис. 3).

СПИСОК ЛИТЕРАТУРЫ:

 Комарович, В.Ф. Случайные помехи и надежность КВ связи / В.Ф. Комарович, В.Н. Сосунов. – М.: Связь, 1977. 136 с.

- Слюсарев, П.В. Электромагнитная доступность радиоизлучений и антенные устройства. – Л.: ВАС, 1978. 108 с.
- Мешалкин, В.А. Поля и волны в задачах разведзащищенности и радиоэлектронной защиты систем связи / В.А. Мешалкин, Б.В. Сосунов, В.В. Филиппов. – СПб.: ВАС, 1993. 332 с.
- Черенкова, Л.Е. Распространение радиоволн / Л.Е. Черенкова, О.В. Чернышов. – М.: Радио и связь, 1984. 272 с.
- Пашинцев, В.П. Метод определения величины интенсивности неоднородностей по данным ионосферного зондирования / В.П. Пашинцев, А.В. Омельчук, С.А. Коваль, Ю.И. Галушко // Двойные технологии. 2009. №1 (46). С. 38-41.
- Пашинцев, В.П. Определение оптимальной рабочей и наименьшей применимой частоты декаметровой радиолинии с учетом глубины быстрых замираний / В.П. Пашинцев, С.А. Тишкин, А.И. Иванников, М.Э. Солчатов // Электросвязь. 2001. №12. С. 16-19.
- Пашинцев, В.П. Способ определения величины интенсивности неоднородностей ионосферы по данным вертикального зондирования / В.П. Пашинцев, Ю.И. Галушко, С.А. Коваль и др. // Патент РФ №2403592 от 10.11.2010. Бюл. № 31.
- 8. *Альперт, Я.Л.* Распространение электромагнитных волн и ионосфера. – М.: Наука, 1972. 563 с.

INFLUENCE OF IONOSPHERE DIFFUSION ON OPTIMUM WORKING FREQUENCY OF THE DECAMETER RADIO-FREQUENCY LINE

© 2016 V.P. Pashintsev, A.F. Chipiga, V.A. Shevchenko, D.P. Kiselyov

North Caucasus Federal University, Stavropol

Impact assessments of diffusion level of ionosphere on change of optimum working frequency of decameter radio-frequency line concerning it as maximum and lowest aplicable frequency are received.

Key words: ionosphere, electronic concentration, diffusion, intensity of non-uniformity, decameter radiofrequency line, frequency

Vladimir Pashintsev, Doctor of Technical Sciences, Professor at the Automated Information Security Systems Department. E-Mail: pashintsevp@mail.ru; Alexander Chipiga, Candidate of Technical Sciences, Professor, Director of the Institute of Information Technologies and Telecommunications. E-mail: iitt.ncfu@gmail.com; Vyacheslav Shevchenko, Associate Professor at the Automated Information Security Systems Department; Danil Kiselyov, Post-graduate Student. E-Mail: dkiselev@ncfu.ru