УДК 004.9:[681.5.08+622.276]

РАСЧЕТНАЯ МОДЕЛЬ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ВОЛОКОННО-ОПТИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ УСТРОЙСТВ

© 2016 А.А. Вишневский, В.Х. Ясовеев

Уфимский государственный авиационный технический университет

Статья поступила в редакцию 01.06.2016

В статье рассматриваются возможности и особенности использования моделирования метрологических характеристик при проектировании волоконно-оптических датчиков давления и температуры для использования в нефтегазовой сфере.

Ключевые слова: волоконно-оптические измерительные устройства, расчетная модель, метрологическое обеспечение, погрешности.

Актуальны следующие основные задачи метрологических исследований алгоритмов и технологических режимов:

 - формирование структурной схемы модели для расчета суммарных метрологических характеристик каналов измерительной системы по нормированным погрешностям входящих внешних измерительных компонент;

 - расчет по модели и исходным нормированным данным суммарных инструментальных погрешностей (границ их интервалов) контроля базовых глубинных параметров волоконнооптического устройства измерения давления и температуры (далее – ВОУИДиТ);

 обработка имеющейся статистики по характеристикам для расчета параметров ВОУИДиТ и определение их метрологических показателей, требуемых для дальнейших вычислений;

- исследование возможных инструментальных (аппаратных) погрешностей (границ их интервалов) алгоритмов вычисления (моделирования) давления и температуры, а также снижения погрешности, принятие ряда исходных величин с помощью экспертной оценки.

В результате должна быть выведена предварительная оценка основных метрологических характеристик ВОУИДиТ применительно к его базовым алгоритмам снижения погрешности, что является целью данных метрологических исследований.

РАСЧЕТНАЯ МОДЕЛЬ, НОРМИРОВАНИЕ И ОПРЕДЕЛЕНИЕ РЕЗУЛЬТИРУЮЩИХ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ВОУИДиТ

Для проведения метрологической оценки рассматриваем как базовое ВОУИДиТ для глубинных (внутрискважинных) измерений мультисенсорный скважинный инструмент типа МСИ-0 Phoenix фирмы Schlumberger [5] (табл. 1).

Расчетную модель измерительную схему (далее - ИС) для метрологических исследований на основе ГОСТ Р 8.596-2002 целесообразно представить в виде схемы на рис. 1. Типовая ИС содержит сложный измерительный канал ИС, образуемый измерительным компонентом (датчиком и преобразователем соответствующего параметра), связующим компонентом (каналом передачи данных по силовому кабелю от измерительного компонента на поверхность в АСУТП) и вычислительным компонентом (контроллером сложного ИК-средства контроля глубинных параметров). Данный сложный канал является готовым внешним изделием, используемым для ввода измерительной информации.

В составе схемы модели выделяется комплексный компонент ИС, образуемый связующим и вспомогательным компонентами. Связующий компонент представляет радиоканал передачи данных с контроллера сложного ИК (мультисенсорный скважинный инструмент типа МСИ-0), расположенного в СУ УЭЦН (системе управления электроцентробежным насосом) скважины кустовой площадки, на АРМ (автоматизированном рабочем месте), расположенном в диспетчерской ЦДНГ (цеха добычи нефти и газа).

АРМ согласно ГОСТ Р 8.596-2002 является вспомогательным компонентом ИС, обеспечивающим нормальное функционирование ИС в части визуализации (отображения) физических значений контролируемых параметров.

Для определения результирующих обобщенных метрологических характеристик каналов ИС введем ряд априорных допущений и условий в соответствии с РД 153-340-11.201-97 «Методика определения обобщенных метрологических характеристик измерительных каналов АСУТП. РАО «ЕЭС России»:

- погрешности ИС являются случайными величинами, распределенными по закону

Александр Анатольевич Вишневский, аспирант кафедры информационно-измерительной техники.

E-mail: host_of_peace@list.ru

Васих Хаматович Ясовеев, доктор технических наук, профессор, заведующий кафедрой информационноизмерительной техники. E-mail: yasov@mail.ru

Сложный ИКИС

Комплексный компонент ИС

Рис. 1. Структурная схема расчетной модели погрешности ИС

Таблица 1. Виды метрологических характеристик сложного измерительного канала

Вид сложного	ктеристики					
измерительного	слох	кного измерительного ка	змерительного канала			
канала	Измеряемые	Диапазон измерения	Предел допускаемой			
	параметры		основной			
			приведенной			
			погрешности			
Мультисенсорный	Давление	035 МПа	0,1			
скважинный	Температура	0150°C	1,0			
инструмент Phoenix						
(тип МСИ-0)						

равномерной плотности, т. е. внутри интервала, ограниченного предельными значениями погрешностей;

- все значения погрешностей равновероятны;

- доверительную вероятность контроля принимаем *P* = 0,95.

Тогда, согласно РД 153-340-11.201-97, нижняя и верхняя границы интервала, в котором с вероятностью P = 0,95 находится суммарная погрешность δ для реальных условий эксплуатации (допускаемый предел) определяется по формуле:

$$\delta = \pm 1,96(\sigma [\Delta i^2 + \sigma_{\rm KK}^2)/2, \qquad (1)$$

где σ_{кк}– среднее квадратическое отклонение (СКО) основной приведенной погрешности комплексного компонента ИС;

∆і – предел систематической составляющей основной погрешности.

Данная погрешность в силу особенностей цифровой передачи и обработки измерительного канала относится к ничтожно малой погрешности, и ею можно пренебречь.

В соответствии с РД 153-340-11.201-97:

$$[\Delta i] = \Delta i \sqrt{3}$$

Тогда

$$\delta = \pm 1,96/1,73 * \Delta^3 \approx \pm 1,13\Delta i.$$
 (2)

Рассчитанные по формуле (2) округленные значения δ, приведены в табл. 2.

Следует отметить, что они носят максимально возможный (предельный) характер для данного типа блока погружной телеметрии.

Обработка осуществлялась для 2 параметров применительно к ВОУИДиТ.

В качестве задач обработки приняты:

- выборка предельных (минимаксных) значений параметров;

 определение математических ожиданий параметров;

 определение дисперсий и средних квадратических отклонений.

Для исключения данных по остановленным скважинам из массива данных скважинного фонда ЦДНГ, определения диапазонов изменения параметров, их математических ожиданий и стандартных отклонений использовался программный пакет Statistica 6.0. Результаты обработки представлены в табл. 3, в которой также указаны полученные значения приведенных (относительных) частных производных, рассчитанных с помощью пакета Mathcad 14. Принятые для Mathcad обозначения параметров и формулы вычислений приведены в табл. 3.

Частные производные (коэффициенты влияния) в формуле расчета погрешности измерения рассчитывались с использованием пакета Mathcad 14.

	Таблица 2	2. I	Рассчитанные	значения с	уммарных	погрешное	стей для	реальных	условий	эксплу	атации
--	-----------	------	--------------	------------	----------	-----------	----------	----------	---------	--------	--------

Значение	Параметры						
	Рпр	Тпр	Тпэд	α	Iy		
±δ,%	0,13	2,13	2,13	2,13	0,06		

Параметры	Глубина	Глубина	Удлине-	Плот-	Обводнен-	Затруб-	Рпр*,
	верхних	спуска	ние	ность	ность В, %	ное	кгс/см2
	дыр	телеметрии	верх-	нефти		давле-	
	перфора-	Нсп, м	них	рнп,		ние	
	ции		дыр,	г/см3		Рзат,	
	Нвд, м		Удлвд,			кгс/см2	
			М				
Минимальное	2440,00	200,00	0,00	0,83	1,00	0,10	40,00
значение Pimin							
Минимальное	3523,00	3163,00	789,90	0,85	99,00	23,00	140,00
значение Pimax							
Математическое	2696,15	1866,12	173,70	0,84	57,28	6,30	3,84
ожидание Мі							
Приведенная	0,77	0,59	0,22	0,99	0,58	0,17	0,17
величина							
Mi/xmax							
Приведенная **	δРз/	δРз/ δНсп=-	δРз/	δРз/	δРз/	-	-
частная	δНвд=	0,07	δУдлвд=	δРнп=0,01	δB=0,01		
производная	0,0792		-0,02				
формулы для Рз							
(коэффициент							
влияния Kl)							
Приведенная **	δНд/	δНд/	δНд/	δНд/	-	δНд/	δНд/
(относительная)	δНвд=0,50	δНсп=0,56	δУдлвд=	δРнп=		δРзат=	δРпр=
частная			-0,02	-0,31		0,82	-0,82
производная							
формулы для Нд							
(коэффициент							
влияния Kl)							

Габлица 3.	Результаты	обработки	данных
------------	------------	-----------	--------

*Рпр определены экспертным путем с учетом известных предельных значений Рз;

**приведение осуществлялось к максимальному значению параметра.

ИССЛЕДОВАНИЕ АЛГОРИТМА РАСЧЕТА ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

Целью метрологических исследований алгоритма является оценка аппаратной погрешности реализации алгоритма в ИПТК (интеллектуальном программно-техническом комплексе). Методическая погрешность в данном исследовании не рассматривается, так как базовые расчетные зависимости выдаются заказчиком на корпоративном уровне.

В соответствии с РД 153-34.0-11.20-97 среднее квадратическое отклонение случайной составляющей инструментальной погрешности реализации алгоритма расчета погрешности P_3 может быть оценено по формуле:

$$\sigma[\delta_{P_3}] = \left(K_{B\mathcal{A}}^2 \sigma^2_{B\mathcal{A}} + K_{C\Pi}^2 \sigma^2_{C\Pi} + K_{y_{\mathcal{A},B\mathcal{A}}}^2 \sigma^2_{y_{\mathcal{A},B\mathcal{A}}} + ... \right)$$

$$\left(... + K_{\rho_{H\Pi}}^2 \sigma^2_{\rho_{H\Pi}} + K_{\rho_B}^2 \sigma^2_{\rho_B} + K_B^2 \sigma^2_{B} \right)^{1/2} + \sigma_{P_{\Pi P}}^{P_{\Pi P}},$$
(3)

где К – коэффициенты влияния соответствующих характеристиик (частные производные), σ – СКО основной приведенной погрешности комплексного компонента ИС.

Нижняя и верхняя границы интервала, в котором находится инструментальная суммарная погрешность алгоритма, согласно РД 153-34.0-11.20-97 оцениваются по формуле:

$$\delta\Delta[P_3] = \pm 1,96\sigma \left[\delta_{P_3}\right]. \tag{4}$$

СКО инструментальных приведенных

Значение	Параметры						
	Нвд	Ноп	Удл.вд	ρИП	В	ρ3	Рзат
σi, %	σВд=5,0	σсн=5,0	σудвд=5,0	σ _{ρип} =10	σ3=10	σ _ρ =10	σРзат=2,0

Таблица 4. Рассчитанные значения среднеквадратических отклонений

погрешностей, вводимых для расчета P_3 параметров, оценивались экспертным путем (табл. 4). Таким образом,

$$\sigma[\delta_{P_3}] = \left(0,08^25^2 + (-0,069)^25^2 + ...\right)$$

$$(-0,22)^25^2 + 0,01^210^2 + 0,01^210^2\right)^{1/2} + 0,2 = 0,72\%,$$

$$\Delta[P_3] = \pm 1,96 \cdot 0,72 = \pm 1,4157\% \approx 1,42\%.$$

выводы

Проведено расчетное моделирование в соответствии с положениями и рекомендациями метрологических нормативно-технических документов.

В результате исследований в рамках принятых допущений, моделей и располагаемой статистики получены приближенные оценки нижних и верхних границ интервалов, в которых с вероятностью 0,95 находятся суммарные инструментальные (аппаратные) погрешности:

- контроля глубинных скважинных параметров на примере мультисенсорного скважинного инструмента Phoenix (типа MCO-O), в частности, по давлению на приеме установки электроцентробежного насоса ± 0.13 %;

- алгоритма расчета забойного давления ±1,42 %.

Предложенная расчетная методика метрологического исследования и обработки статистических данных со скважинного фонда позволяет оценить предельные инструментальные погрешности как при применении другого типа скважинной телеметрии, так и для любых других алгоритмов и технологических режимов.

СПИСОК ЛИТЕРАТУРЫ

- Программно-технический комплекс СОКРАТ для автоматизации контроля и управления кустами скважин в реальном времени / В.В. Жильцов, А.В. Дударев, В.П. Демидов и др. //НТЖ. Автоматизация, телемеханизация и связь в нефтяной промышленности. М.: ОАО «ВНИИОЭНГ», 2005. № 11. С. 25-30.
- Решения и развитие интеллектуальной технологии мониторинга и управления механизированным фондом скважин / В.В. Жильцов, А.В. Дударев, В.П. Демидов и др. //Нефт. хоз-во. 2006. № 10. С. 12-14.
- Конопжински М., Аджайн А. Оптимизация поведения коллектора с помощью скважинно-технических средств с развитыми логико-информационными возможностями // Нефтегазовые технологии. 2004. № 5. С. 8-13.
- Жильцов В.В. Типовые решения интеллектуального мониторинга и адаптивного управления механизированным фондом скважин // Нефтегазовая вертикаль. 2006. № 12. С. 102-103.
- Мультисенсорный скважинный инструмент МСИ: Руководство по эксплуатации. PHOENIX. 2002. 56 с.
- Вишневский А.А. Распределенные волоконно-оптические информационно-измерительные системы давления и температуры для применения в нефтегазовой сфере // Прикаспийский журнал: управление и высокие технологии. 2015. №2 (30). С.193-207.
- Вишневский А.А., Ясовеев В.Х. Интеллектуальный подход к улучшению метрологических характеристик волоконно-оптических систем измерения давления и температуры, предназначенных для нефтегазовой отрасли // Прикаспийский журнал: управление и высокие технологии. 2015. № 3(31). С. 158-167.

METROLOGICAL CHARACTERISTICS CALCULATION MODEL OF FIBER OPTIC MEASURING DEVICES

© 2016 A.A. Vishnevskiy, V.Kh. Yasoveev

Ufa State Aviation Technical University

In the article possibilities and features of using metrological characteristics' simulation during the design of the fiber-optic pressure and temperature sensors for use in the oil and gas sector are considered. *Keywords:* fiber-optical measuring devices, calculation model, metrological support, errors.

Alexandr Vishnevskiy, Postgraduate Student at the Information Measuring Technics Department. E-mail: host_of_peace@list.ru Vasikh Yasoveev, Doctor of Technics, Professor, Head at the Information Measuring Technics Department. E-mail: yasov@mail.ru