УДК 621.791.957.55: 621.89

ОСОБЕННОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ И ТРИБОЛОГИЧЕСКИХ СВОЙСТВ КАРБИДОСОДЕРЖАЩИХ ПОКРЫТИЙ ПРИ ПЛАЗМЕННОЙ НАПЛАВКЕ

© 2016 С.С. Жаткин, А.А. Паркин, В.Г. Климов

Самарский государственный технический университет

Статья поступила в редакцию 20.09.2016

Представлены результаты исследований структуры и износостойкости карбидосодержащих композиционных покрытий Micro-Melt NT-60 и WOKA PTA-6040 после плазменной порошковой наплавки в различных режимах.

Ключевые слова: плазменная наплавка, износостойкость, микроструктура, микротвердость, рентгеноспектральный микроанализ.

Известно, что высокие механические характеристики деталей и изделий часто обеспечивается наличием в них карбидообразуюших элементов и их структурой. В настоящее время известна широкая группа твердых сплавов и композиционных материалов с карбидным содержанием, обладающих высокой твердостью и износостойкостью. В качестве способа формирования износостойких карбидосодержащих покрытий интенсивно применяется технология плазменной наплавки, характеризующаяся минимальным воздействием на заготовку и регулированием толщины наплавленного слоя в широких пределах.

В данной работе представлены результаты исследований влияния структуры плазменнонаплавленных композиционных материалов на основе карбида вольфрама *Micro Melt NT-60* фирмы *CARPENTER* и *WOKA PTA-6040* на износостойкость полученных покрытий.

Состав исходных наплавляемых порошков представлен в табл. 1.

МЕТОДИКИ ЭКСПЕРИМЕНТА

Наплавка на цилиндрические образцы из стали 19ХГНМА диаметром 52 мм и толщиной 15 мм проводилась на плазменной установке *ARC-06B* в защитном газе при токе дуги 70-100 A и расходе порошка 16 г/мин. Диаметр сопла плазмотрона составлял 2,4 мм. Микроструктуру и микроанализ зон плазменной наплавки исследовали на растровом электронном микроскопе *JSM-6390LV/ LGS* фирмы *JEOL*.

Испытания на линейный износ проводились локально в четырех участках кольцевой зоны на-

плавки (рис. 1) [1-2]. Точка 1 соответствует началу, а точка 4 – концу наплавленного кольца. Контртело было изготовлено из стали 40Х (закалка до HRC 46-48) в виде трубки внешним диаметром 6 мм и толщиной стенки 1 мм. Испытания проводились при нормальной нагрузке в 45 кгс в течение 10 минут с частотой вращения шпинделя 600 об/ мин. При испытаниях использовалась алмазная паста АСМ-3/2-НОМГ с алмазным порошком дисперсностью 2-3 мкм.

Рис. 1. Расположение зон трения: 1 – начало наплавки; 4 – конец наплавки

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ АНАЛИЗ

Фотографии структуры зон наплавки порошковых материалов *WOKA PTA-6040* и *Micro-Melt NT-60* представлены на рис. 2.

В наплавленном слое наблюдается зона растворенных карбидов в никеле (в верхней части), а также седиментация карбидов, что наиболее заметно в покрытии WOKA PTA-6040 из-за их более крупных размеров, чем в Micro-Melt NT-60. По данным проведенных измерений средний размер

Жаткин Сергей Сергеевич, кандидат технических наук, доцент кафедры «Литейные и высокоэффективные технологии». E-mail: laser@samgtu.ru, sergejat@mail.ru Паркин Анатолий Алексеевич, кандидат технических наук, профессор кафедры «Литейные и высокоэффективные технологии». E-mail: laser@samgtu.ru Климов Вадим Геннадьевич, аспирант.

Наименование	Содержание, % по массе							
материала	Со	Ni	С	Cr	V	Мо	Si	Карбид вольфрама
Micro-Melt NT-60	0,5	35 (основа)	1,6-2,9	0,35	0,45	0,8	-	60
WOKA PTA-6040	2,2	30 (основа)	3,5-5,3	1,5	0,45	-	0,6	60

Таблица 1. Химический состав WOKA PTA-6040 и Micro-Melt NT-60

Рис. 2. Структура наплавленных покрытий *WOKA PTA-6040* и *Micro-Melt NT-60* в зависимости от тока плазменной дуги

карбидов в покрытии *Micro-Melt NT-60* составлял 70 - 90 мкм, а в *WOKA PTA-6040* - 120 – 170 мкм.

Седиментация протекает активнее при токе дуги 100 А из-за более высокой температуры и меньшей вязкости никеля.

Процесс седиментации оказывает существенное влияние на износостойкость наплавленного материала, что подтверждается данными испытаний на послойный локальный износ покрытия *WOKA PTA-6040* по высоте от верха зоны наплавки (табл. 2).

В целом с ростом тока дуги величина износа в рамках одного уровня трения по высоте наплавки

возрастает, что обусловлено растворением и распадом карбидов вольфрама. При токах дуги 85А и 100 А в верхней части наплавленного валика износ максимальный, т. к. здесь температура нагрева максимальна и поэтому распад исходных карбидов и их растворение в никеле возрастают. Процесс седиментации также обедняет верхние слои зоны наплавки, где температура максимальна, а вязкость расплава минимальна.

В средней части наплавленного валика (отступ от верха валика – 1000мкм) при всех токах дуги износ уменьшился, что связано с уменьшением размеров карбидов вольфрама, увели-

	Верх зоны наплавки		Середина зоны	і наплавки Омим)	Низ зоны наплавки		
	(UTCTYIT JOU WIKWI)		(0101911100		(OTCTYTT 1900 WIRWI)		
Ток	Средняя	Скорость	Средняя	Скорость	Средняя	Скорость	
дуги, А	величина	износа	величина	износа	величина	износа	
	износа, мкм	мкм/час	износа	мкм/час	износа, мкм	мкм/час	
			MKM				
70	25	152	20	120	22	134	
85	31	185	21	128	20	119	
100	35	207	27	159	17	102	

Таблица 2. Величина износа WOKA PTA-6040 по высоте зоны наплавки

чением их концентрации и соответствующей ориентации в результате процесса седиментации.

При токе плазменной дуги 100 А ближе к границе сплавления (низ зоны наплавки) концентрация карбидов (особенно ближе к центру наплавки), максимальна и, соответственно, износ минимальный.

Одной из особенностей наплавки плазменной дугой на торцевую поверхность цилиндрической заготовки является различие в характере нагрева внутреннего и внешнего края наплавляемой дорожки, что обусловлено различием в скоростях их движения при вращении образца и, как следствие, различием во времени нагрева, и, соответственно, температурой нагрева зоны наплавки. Экспериментально установлено, что величина износа существенно отличается по ширине наплавленной дорожки - она значительно больше на ее внутреннем крае, чем на внешнем [3]. В табл. 3 представлены результаты испытаний наплавленного *Micro-Melt NT-60* в различных зонах (рис. 1) при токах плазменной дуги 70А, 85А и 100А.

Более высокий износ по внутреннему краю наплавленной дорожки обусловлен существенным его перегревом по сравнению с внешним краем, приводящему к более интенсивному распаду карбидов здесь. Аналогично с ростом тока дуги до 85-100 А из-за более интенсивного нагрева и распада карбидов происходит значительное увеличение величины износа. При этом снижается разброс его значений по внутреннему и внешнему краю наплавленной дорожки. При токах дуги 85А и 100А (рис. 2) произошло уменьшение плотности карбидов, что привело к увеличению величины износа наплавленных зон.

На износостойкость наплавленного материала оказывает существенное влияние целый ряд параметров, например, микротвердость поверхностного наплавленного слоя, величина ее разброса, концентрация и равномерность распределения карбидных частиц по наплавленному слою. На рис. 3 показаны наиболее характерные структура наплавленного материала *CARPENTER Micro-Melt NT-60* на отдельных участках 4-х зон трения образца в соответствии с рисунком 1 при токах плазменной дуги 70А, 85А и 100А. Зоны трения показаны слева направо от начала к концу наплавки.

Структура наплавленного материла при минимальном износе (рис. 3, а, зона трения 4) состоит из карбидов вольфрама среднего размера при их максимальной концентрации. В зоне №1 (начало наплавки) первичные карбиды вольфрама более крупные, а их концентрация невысокая и износ наплавленного материала здесь максимален.

Закономерность изменения износа от зоны №1 к зоне №4 при токе 85 А противоположна, то есть величина износа материала наплавки незначительно возрастает – от 20 мкм до 25 мкм за 10 минут испытаний, причем синхронно с уменьшением размеров карбидов вольфрама и их концентрации. Последнее обусловлено разогревом подложки в процессе наплавки, возрастанием скорости растворения карбидов в никелевой матрице и, соответственно, уменьшением эффективной поверхности карбидной фазы.

№ зоны трения	И ₁ , мкм	И ₂ , мкм	<И>, мкм	μ	ΔT°C				
<i>I</i> _д =70A									
1	58	29	43,5	0,11	10				
2	29	27	28	0,09	11				
3	15	33	24	0,09	7				
4	8	5	6,5	0,071	8				
			<25,5>						
	$I_{\rm II}=85{\rm A}$								
1	51	20	35,5	0,1	10				
2	50	22	36	0,1	11				
3	55	23	39	0,11	7				
4	58	25	41,5	0,1	8				
			<38>						
$I_{\rm II} = 100 {\rm A}$									
1	62	21	41,5	0,077	8				
2	65	15	40	0,069	6				
3	59	13	36	0,054	5				
4	56	12	34	0,046	8				
			<38>						

Таблица 3. Величина износа Micro-Melt NT-60 в различных зонах трения

Примечание: И₁ – усредненная величина износа внутреннего края наплавленной дорожки, И₂ – усредненная величина износа внешнего края наплавленной дорожки; т - коэффициент трения, ∆Т°С – изменение температуры в зоне трения

Рис. 3. Микроструктура и износ наплавленного материала CARPENTER Micro-Melt NT-60: *а* – ток плазменной дуги -70А; б – 85А; *в* – 100А; слева → направо – зоны трения 1 → 4

Износ наплавленного покрытия от зоны №1 к зоне №4 при токе наплавки 100 А уменьшается – от 21 мкм до 12 мкм за 10 минут испытаний, причем синхронно с увеличением размеров карбидов вольфрама и их концентрации. Данный фактор можно объяснить более интенсивным нагревом материала заготовки, соответственно уменьшением скорости охлаждения наплавленного материала и увеличением выделения и времени роста вторичных карбидов.

В целом в плазменно-порошковых наплавленных покрытиях возникает неравномерное распределение твердой карбидной фазы по объему зоны наплавки, то есть возникают участки наплавленного материала с различной структурой, соответственно, твёрдостью и износостойкостью. Указанный факт установлен и подтвержден экспериментально, табл. 3. Сравнительная характеристика средней величины износа наплавленных материалов представлена в табл. 4.

В обоих случаях с ростом тока дуги средняя величина износа возрастает, но наиболее сильно это наблюдается для *Micro-Melt NT-60*. Повышенный износ последнего может быть обусловлен не только меньшим размером карбидов, но и их твердостью. По результатам измерения микротвердости установлено, что твердость карбидов в наплавленном *WOKA PTA-6040* достигает 2000-2400 кг/мм², в то время как в *Micro-Melt NT-60* ее величина не превышает 800 – 1200 кг/мм². При этом за счет растворения карбидов твердость связки в *WOKA PTA-*6040 составляет 700-900 кг/ мм², а в *Micro-Melt NT-60* 400-500 кг/мм², что соизмеримо с твердостью стальной подложки в зоне

Таблица 4. Сравнительная характеристика средней износостойкости наплавленных покрытий

Глубина шлифа под зону износа 1000 мкм							
	Ток дуги 70 А		Ток дугі	4 85 A	Ток дуги 100 А		
Материал	Средняя	Скорость	Средняя	Скорость	Средняя	Скорость	
	величина	износа,	величина	износа,	величина	износа,	
	износа, мкм	мкм∖час	износа, мкм	мкм∖час	износа,	мкм∖час	
					МКМ		
WOKA PTA-6040	20	120	21	128	27	159	
Micro-Melt NT-60	26	156	38	228	40	240	

Рис. 4. Микроструктура зон плазменной наплавки покрытий *WOKA PTA-6040 (а-в)* и *Micro-Melt NT-60 (г-е)* при токе дуги 100А: *а, г* – верх наплавленного валика; *б, д* – середина наплавленного валика; *в, е* – граница наплавленного покрытия с подложкой

сплавления. Это связано с тем, что карбидные включения в Micro-Melt NT-60 наиболее подвержены распаду и растворению при высоких температурах (рис. 4).

В верхней части зоны наплавки в обоих покрытиях при токе дуги 100 А первичные карбиды распадаются практически полностью. В зоне наплавки *Micro-Melt NT*-60 происходит выделение и формирование, по-видимому, сложнолегированных карбидов в основном реечной формы размером 5-20 мкм. В отличие от *WOKA PTA-6040* в нижних слоях наплавленного валика *Micro-Melt NT*-60 наблюдается более интенсивный распад первичных карбидов не только за счет растворения, но и за счет их внутреннего распада (рис. 3, *д*, *е*).

Рентгеноспектральный микроанализ показал, что наряду с карбидами вольфрама в зоне наплавки могут образовываться сложные карбиды, содержащие железо, поступающее из подложки, а также растворы железо-никель, железо-никель–вольфрам. Вольфрам в никеле растворяется в жидкой фазе в результате распада карбидов вольфрама. С ростом тока плазменной дуги концентрация железа в зоне наплавки возрастает, наличие которого неблагоприятно сказывается на свойствах наплавленного покрытия. Результаты микроанализа в целом также подтверждают процесс седиментации карбидов вольфрама.

выводы.

На основе проведенных исследований по плазменной наплавке покрытий *WOKA PTA*-6040 и

Micro-Melt NT-60 фирмы CARPENTER установлено:

С ростом тока дуги от 70 до 100 А в процессе наплавки протекает седиментация карбидов к границе сплавления с подложкой, обуславливающая неравномерный износ наплавленного слоя по его высоте. Наиболее выраженная седиментация наблюдается в наплавленном WOKA PTA-6040 из-за большего размера карбидов и их массы.

Испытания на абразивный износ показали, что износостойкость наплавленного покрытия на основе *WOKA PTA*-6040 выше, чем покрытия из *Micro-Melt NT-60* за счет более высокой твердости карбидов.

Неравномерный износ наплавленного *WOKA PTA*-6040 по высоте обуславливает необходимый технологический припуск для шлифовки наплавленных валиков. При токе плазменной дуги 70А припуск должен быть не менее 0,7мм, при 85А – не менее 1 мм, а при токе дуги 100А – около 1,4 мм.

Различие в характере нагрева внутреннего и внешнего края наплавляемой дорожки, при наплавке на торцевую поверхность цилиндрической заготовки обуславливает различие и в степени их износа, величина которого на внутреннем крае дорожки существенно больше, чем на внешнем.

5. В целом в плазменно-порошковых наплавленных покрытиях возникает неравномерное распределение твердой карбидной фазы по объему зоны наплавки, то есть возникают участки наплавленного материала с различной структурой, соответственно, твёрдостью и износостойкостью.

СПИСОК ЛИТЕРАТУРЫ

 Жаткин С.С., Паркин А.А., Минаков Е.А. Влияние параметров плазменной дуги и материала заготовки на структуру и свойства наплавленного сплава Stellite 190 W // Известия МГТУ «МАМИ». 2013. .Nº1(15). T2, C. 38-46.

 Паркин А.А., Жаткин С.С., Минаков Е.А. Влияние структуры и свойств на износ покрытия Micro Melt NT-60 после плазменной порошковой наплавки // Известия Самарского научного центра Российской академии наук. 2011. Т. 13. №4(3). С. 847-852.

THE FEATURES OF FORMATION OF THE STRUCTURE AND TRIBOLOGY PROPERTIES OF CARBIDE COVERINGS AT PLASMA CLADDING

© 2016 S.S. Zhatkin, A.A. Parkin, V.G. Klimov

Samara State Technical University

The results of researches of the structure and wear resistance of carbide composite coverings *Micro-Melt NT-60* and *WOKA PTA-6040* after plasma powder cladding in different modes are presented. *Keywords:* plasma cladding, wear resistance, microstructure, microhardness, composite materials, carbides, microanalysis.

Sergey Zhatkin, Candidate of Technics, Associate Professor at the Founding and High-Performance Processes Department. E-mail: laser@samgtu.ru, sergejat@mail.ru Anatoly Parkin, Candidate of Technics, Professor at the Founding and High-Performance Processes Department. E-mail: laser@samgtu.ru Vadim Klimov, Graduate Student.