УДК 621.98.044.7:621.757.002

ВЗАИМОДЕЙСТВИЕ ДЕФОРМИРУЕМОЙ ИМПУЛЬСНЫМ МАГНИТНЫМ ПОЛЕМ ЦИЛИНДРИЧЕСКОЙ ЗАГОТОВКИ С ОСНАСТКОЙ. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

© 2016 В.А. Глущенков¹, И.А. Беляева²

¹ Самарский научный центр РАН ² Самарский национальный исследовательский университет имени академика С.П. Королёва

Статья поступила в редакцию 12.07.2016

В статье описаны методика и результаты компьютерного моделирования процессов магнитноимпульсного деформирования трубчатой заготовки на всех его этапах, включая взаимодействие (соударение) с оснасткой и последующую разгрузку. Показана возможность образования неразъемного соединения. Намечены пути дальнейшего совершенствования предложенной методики. *Ключевые слова:* компьютерное моделирование, импульсно-магнитная деформация, неразъемное соединение, специальные технологии, космическая, металлургической промышленность, нефтедобыча и переработка, взаимодействие с оправкой.

І. ПОСТАНОВКА ВОПРОСА

В работах [1, 2] рассмотрено компьютерное моделирование процессов свободного магнитно-импульсного деформирования трубчатых заготовок по технологическим схемам «на обжим» и «на раздачу». В них приведены изменение во времени напряжённо-деформированного состояния материала деформируемой заготовки; кинематика процесса, изменение геометрических размеров и других параметров при различных начальных и граничных условиях.

Однако практически все технологические процессы магнитно-импульсной обработки материалов (МИОМ) [3] заканчиваются взаимодействием заготовки с оснасткой (матрицей или оправкой). Взаимодействие сопровождается их соударением с достаточно большими скоростями. При этом напряженно-деформированное состояние материала заготовки на конечном этапе свободного деформирования будет являться начальным при взаимодействии с оснасткой.

Процесс же взаимодействия (соударения) заготовки с оснасткой, в конечном счёте, определяет точность готовой детали при штамповке или прочность соединения при выполнении сборочной операции, уровень остаточных напряжений в деталях и другие характеристики качества готовой продукции [4, 5].

Вот почему необходимы анализ процесса соударения заготовки с оснасткой со вскрытием возникающих при этом явлений, разработка на его основе рекомендаций по научно-обоснованному управлению этим процессом.

Данная статья посвящена разработке методики и компьютерному моделированию «сквозного» процесса динамического деформирования цилиндрической заготовки: от свободного формоизменения до взаимодействия с оснасткой и последующей разгрузки, выявлению механизма и последствий этого процесса, определяющего качество готовой продукции.

II. РАСЧЁТНАЯ МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ЗАГОТОВКИ С ОСНАСТКОЙ

На рис. 1 приведены технологические схемы магнитно-импульсной «раздачи» и «обжима» трубы (исходное положение). Под действием импульсного магнитного поля (ИМП) на первом временном этапе происходит свободное деформирование трубы в зазоре «∆» между заготовкой и оснасткой (матрицей или оправкой).

Заключительный этап сопровождается их взаимодействием – соударение заготовки с оснасткой. Скорость соударения определяется величинами давления ИМП «Р» и исходного зазора « Δ ».

Расчётные модели процессов раздачи и обжима даны на рис. 2. Характеристики расчётной конечно-элементной модели: средний размер элементов модели 0,5 мм; тип – объемный прямоугольный элемент (HIX8).

<u>Граничные условия</u>. Оснастка принимается абсолютно жёсткой (блокирование перемещений по всем координатам), а для заготовки вводилось ограничение только на продольное перемещение (рис. 3).

<u>Физический объект.</u> Для моделирования был выбран фрагмент тонкостенной трубы диаметром 50 мм, толщиной стенки 1,0 мм и шириной l=6 мм из алюминиевого сплава AMr6M. Поверх-

Глущенков Владимир Александрович, кандидат технических наук, начальник отдела металлофизики и авиационных материалов, профессор кафедры обработки металлов давлением Самарского университета. E-mail: vgl@ssau.ru

Беляева Ирина Александровна, старший научный сотрудник

Рис. 1. Технологические схемы деформирования трубчатых заготовок под действием ИМП: а – на раздачу, б – на обжим

Рис. 2. Расчетные модели для анализа процессов свободного деформирования труб и их взаимодействия с оснасткой при: а – обжиме; б – раздаче

Рис. 3. Граничные условия, используемые при моделировании процесса взаимодействия заготовки с оснасткой

ность взаимодействия – гладкий цилиндр. Исходный зазор D = 0,5 мм, как для схемы «раздача», так и для схемы «обжима». Свойства материала трубы: E = 126642 МПа, $v_{\rm B}$ = 350 МПа, $v_{0,2}$ = 210-230 МПа, m = 0,34, 2,65 г/см³. Аппроксимация кривой упрочнения принималась линейной (рис. 4).

Характер импульсной нагрузки, соответствующий первому полупериоду затухающей синусоиды тока разрядной цепи, приведен на рис. 5. Амплитуда давление Р в расчётах принималось равной 10,20 и 50 МПа.

<u>Расчётная среда.</u> Для компьютерного моделирования выбраны расчётная среда MC.MARC (динамика, нелинейный расчёт) и MSC.NASTRAN (модельный анализ, линейная статика).

III. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

При моделировании процессов магнитноимпульсного обжима и раздачи варьировали величиной давлений «Р». При этом оценивались возникающие в заготовке напряжения и деформации на всём временном интервале, включая свободное деформирование, взаимодействие с оснасткой и разгрузку. Особое внимание уделялось определению конечных размеров заготовки, а в случае образования неразъемного соединения – определению величины остаточных контактных напряжений. Используя закон трения - закон Кулона $\tau = \mu \sigma_k$, уровень контактных напряжений позволил найти касательные усилия выпрессовки заготовки из матрицы или с оправки.

На рис. 6 в качестве примера приведен график перемещения заготовки в процессе обжима, а на рис. 7 – на раздачу на всём временном интервале деформирования.

Рис. 4. Аппроксимация кривой упрочнения для сплава АМг6М

Strain, mm

Из приведенных рисунков видно конечное положение заготовки относительно оправки или матрицы, то есть можно наблюдать как наличие зазора, так и образование неразъемного соединения.

Результаты численного эксперимента сведены в табл. 1.

Площадь контактной поверхности при этом: при обжатии 712,5 мм², при раздаче 892,2 мм², коэффициент трения f = 0,22.

IV. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как видно из таблицы, для процесса «обжима» влияние исходного давления, а, следовательно, и скорости соударения заготовки с оправкой на величину контактных напряжений не однозначно. В диапазоне исходных давлений 10-20 МПа усилие выпрессовки возрастает, а при P = 50 МПа снижается, что можно объяснить возрастанием амплитуды колебательного характера заготовки после соударения с оправкой.

Более благоприятные деформационные условия возникают при взаимодействии заготовки с матрицей.

Приведённые результаты получены при допущениях, не вполне отражающих физику магнитноимпульсного деформирования, и могут рассматриваться как промежуточные. Например, не учтены последствия действия термических напряжений от наведённых в заготовке токов, изменения схемы напряжённо-деформированного состояния материала при снятии ограничений с осевых перемещений заготовки, податливости матрицы.

Однако проведенные исследования позволили оценить н.д.с. материала заготовки на всем временном интервале, включая соуда-

Рис. 5. Нормированный график нагрузки от электромагнитного импульса

Рис. 6. Характер перемещения заготовки на всем временном интервале обжатия цилиндрической заготовки на оправку при Р = 50 МПа

Рис. 7. Характер перемещения заготовки на всем временном интервале раздачи при P = 50 МПа

рение, обратив особое внимание на развитие контактных напряжений, сделать первый шаг в совершенствовании методики компьютерного моделирования контактных задач.

выводы

1. Создана методика компьютерного моделирования процессов магнитно-импульсной «раздачи» и «обжима» цилиндрической заготовки на всех этапах деформирования: от свободного деформирования до взаимодействия с оснасткой и последующей разгрузки.

2. Методика опробована на конкретном примере деформирования трубчатых образцов диаметром 50 x 1,0 x 6 мм из алюминиевого сплава АМГ6М как в матрицу, так и на оправку.

3. Получены кривые перемещения, напряжённо-деформированного состояния материала заготовки в зависимости от исходного давления.

	Давление	Нормальное	Усилие выпрессовки при
	Р	(контактное) усилие	коэффициенте трения f=0,22
Обжатие			
1	10 МПа	12619,58 H	2271,52 H
2	20 МПа	109446,7 H	24078,27 H
3	50 МПа	599,9 H	132,0 H
Раздача			
5	10 МПа	35992,7 H	10406,9 H
7	50 МПа	88962,8 H	19571,8 Н

Таблица 1. Величины контактных усилий и усилий выпрессовки при различных значениях давления

4. Конечные их значения показали возможность оценки точности готовых деталей, образования неразъемных соединений.

5. Намечены пути дальнейшего совершенствования методики компьютерного моделирования подобных задач в направлении снятия ограничений по перемещению заготовки и оснастки (изменение граничных условий).

СПИСОК ЛИТЕРАТУРЫ

- Глущенков В.А., Беляева И.А. Раздача труб импульсным магнитным полем. Результаты компьютерного моделирования // Известия Самарского научного центра РАН. 2015. Т.17. № 6 (3). С. 657-665.
- 2. Глущенков В.А., Беляева И.А. Моделирование про-

цесса магнитно-импульсного обжима цилиндрических образцов // Известия Самарского научного центра РАН. 2015. Т. 17. № 2. С. 113-118.

- Глущенков В.А., Карпухин В.Ф. Технология магнитно-импульсной обработки материалов: монография. Самара: Издательский дом «Федоров», 2014. 208 с.
- 4. Беляева И.А., Глущенков В.А. Качество соединения панелей полученного методом комбинированной фланцовки // Известия Самарского научного центра РАН. 2014. № 6. С. 312-315.
- Pabst C., Groche P. The Influence of Thermal and Mechanical Effects on the Bond Formation During Impact Welding // HIGH SPEED FORMING 2016. Proceedings OF THE 7th INTERNATIONAL CONFERENCE. April 27-28, 2016. Dortmund, Germany. Pp. 309-321.

INTERACTION OF THE CYLINDRICAL WORKPIECE, BEING DEFORMED BY THE PULSED MAGNETIC FIELD, WITH THE MANDREL. COMPUTER SIMULATION

© 2016 V.A. Glushchenkov¹, I.A. Belyaeva²

¹ Samara Scientific Center of the RAS ² Samara National Research University named after Academician S.P. Korolyov

The procedure and results of computer simulation of processes of pulse-magnetic deforming a tubular billet at all its stages including the interaction (collision) with the mandrel and subsequent unloading have been outlined in the paper. The possibility of formation of a non-detachable joint has been shown. Ways to further improvement of the proposed procedure have been directed.

Keywords: computer simulation, pulse-magnetic deforming, non-detachable joint, special technologies of space, metallurgical and oil purpose, interaction mandrel.

Vladimir Glushchenkov, Candidate of Technical Sciences, Head of the Metal-Physics Department, Professor at the Plastic Working of Metals Department at the Samara University. E-mail: vgl@ssau.ru Irina Belyaeva, Senior Research Fellow.