УДК 546.17-39:546.171.8:549.451.4-46:661.8-41:621.762-666.775-798.2

АНАЛИЗ ВОЗМОЖНОСТИ СИНТЕЗА НИТРИДНЫХ КОМПОЗИЦИЙ TIN-BN, Aln-BN И Si_xN₄-Tin по Азидной технологии свс

© 2017 Л.А. Кондратьева, И.А. Керсон, А.П. Амосов, Г.В. Бичуров

Самарский государственный технический университет

Статья поступила в редакцию 30.05.2017

В данной статье представлены оптимальные системы для синтеза в режиме азидной технологии CBC нитридных нано- и субмикрокристаллических продуктов (TiN-BN, AlN-BN и Si₃N₄-TiN) из систем, состоящих из азида натрия, химического элемента и/или галоидных солей. В работе построена химическая стадийность образования нитридных композиций AlN-BN, TiN-BN и Si₃N₄-TiN, без построена химическая стадийность образования нитридные композиций AlN-BN, TiN-BN и Si₃N₄-TiN, без побочных продуктов удалось получить из систем «3Al+NH₄BF₄+4NaN₃» и «3Si+(NH₄)₂TiF₆+6NaN₃» при следующем соотношении фаз в продукте: TiN (88 %), BN (12 %) и TiN (28 %), α -Si₃N₄ (11 %), β -Si₃N₄ (61 %) соответственно. Чистую нитридную композицию AlN-BN без побочного продукта Na₃AlF₆ (9 %) синтезировать не удалось. В результате исследований был установлен размер и форма нитридных частиц синтезированного порошкового продукта: AlN - пластины размером 100-150 нм (толщина), BN и Na₃AlF₆ - равноосные частицы размером 300-400 нм; TiN волокна размером 70-90 нм в диаметре и BN - равноосные частицы размером 150-200 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300 нм в диаметре и TiN - равноосные частицы размером 200-300

Ключевые слова: нитриды, галоидная соль, азид натрия, нитридная композиция, самораспространяющийся высокотемпературный синтез, нано- и субмикрокристаллический порошок.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках базовой части Государственного задания ФГБОУ ВО «Самарский государственный технический университет» на выполнение НИР (код 1583).

Керамика обладает малым весом, высокими значениями твердости и жесткости, жаростойкости и жаропрочности, коррозионной стойкости, что делает ее перспективным материалом для авиакосмической и автомобильной техники, машиностроения в целом и металлургии. Однофазная керамика может плохо спекаться, плохо обрабатываться, быть слишком хрупкой и т. д., поэтому существует большое разнообразие композиционных керамических материалов для применения в качестве конструкционных материалов. Из источников литературы [1, 2] известно, что уменьшение размера порошков, переход к нанопорошкам и изготовление на-

Кондратьева Людмила Александровна, кандидат технических наук, доцент кафедры металловедения, порошковой металлургия, наноматериалов. ноструктурной керамики может значительно улучшить механические свойства. В настоящее время, для получения нитридных наноструктурированных композиций перспективно использовать ресурсосберегающую азидную технологию СВС (СВС-Аз). Технология СВС-Аз основана на использовании азида натрия NaN, в качестве твердого азотирующего реагента и галоидных солей различного состава. Достоинствами азидной технологии СВС с точки зрения получения нанопорошков являются: а) низкие температуры и скорости горения; б) наличие побочных продуктов синтеза как в газовом, так и в конденсированном состояниях, которые разделяют частицы целевого продукта, препятствуя увеличению их размера; в) применение газифицирующихся добавок (галоидных солей) [3, 4].

В данной работе был представлен анализ возможности синтеза композитных нанопорошков AlN-BN, TiN-BN и Si₃N₄-TiN по азидной технологии CBC (CBC-A3) с использованием смесей порошков азида натрия NaN_3 с галоидными солями в качестве прекурсоров элементов Ti, Al, B и Si. Полученные результаты подтвердили, что эти смеси способны гореть и синтезировать агломерированные композиционные порошки различного состава, состоящие из микро- и наноразмерных частиц нитрида титана, нитрида

E-mail: schiglou@yandex.ru

Керсон Ирина Александровна, ассистент кафедры металловедения, порошковой металлургия, наноматериалов. E-mail: rafkalimullin@yandex.ru

Амосов Александр Петрович, доктор физико-математических наук, профессор, заведующий кафедрой металловедения, порошковой металлургия, наноматериалов. E-mail: egundor@yandex.ru

Бичуров Георгий Владимирович, доктор технических наук, профессор кафедры металловедения, порошковой металлургия, наноматериалов. E-mail: bichurov@yandex.ru

алюминия, нитрида кремния и нитрида бора вместе с побочными продуктами K_2 NaTiF₆, TiB₂, Na₃TiF₆, K₂NaAlF₆, Na₃AlF₆, Na₃TiF₆, Ti₅Si₃, TiSi₂ и Na₂SiF₆

В процессе исследований было установлено, что сжигание смесей NaN₃ только с прекурсорами – галоидными солями алюминия и бора AlF₃, Na₃AlF₆, NaBF₄, KBF₄, NH₄BF₄ – не позволяет синтезировать чистый без побочных продуктов двухфазный композитный порошок AlN-BN, так как конечный продукт кроме AlN и BN содержит большое количество примесей: K₂NaAlF₄ и Na₃AlF₆ Наименьшее количество побочной примеси в конечном продукте получилось при сжигании системы «3Al+NH₄BF₄+4NaN₃» (система №1). Конечный продукт представляет собой смесь ультрадисперсных пластинчатых частиц AlN (85 %) и расноосных частиц BN (6 %) со средним размером 70-100 нм, а так же небольшого количества равноосных частиц Na₃AlF₆ (9 %) [5, 6] (табл. 1).

Для установления механизма образования нитридной композиции AlN-BN в системе «3Al+NH₄BF₄+4NaN₃» в процессе горения была произведена закалка. Метод закалки в технологии СВС основан на резком сбросе давления азота в реакторе с 4 МПа до 0,1-0,2 МПа в процессе синтеза с последующей остановкой фронта горения и анализом промежуточных продуктов реакции в образовавшемся слое. Закалка проводилась в интервале температур 400-500 °С и 600-700 °С. После закалки был сделан рентгенофазовый анализ, который показал, что продукты синтеза состоят из разных фаз: Al, B, AlN, BN, Na₃AlF₄, AlF₃, NaF, Na₂O. Какие газообразные продукты образуются в процессе горения можно определить, если построить химическую стадийность, рассмотрев в ней всевозможные химические реакции взаимодействия веществ в процессе горения.

На основании полученных экспериментальных результатов и результатов Г.В. Бичурова по анализу химической стадийности в процессах СВС-Аз [3, 7] была построена химическая стадийность образования нитридной композиции AIN-BN в системе «3AI+NH₄BF₄+4NaN₃»:

1) Разложение азида натрия NaN_3 происходит при температуре ~300°C:

Таблица 1. Результаты синтеза оптимальных систем для получения нитридных к	омпозиций
TiN-BN, AlN-BN и Si $_{z}$ N $_{a}$ -TiN по технологии CBC-Аз	

Исходный состав: x; y; z (моли)	Температура горения, ℃	Скорость горения, см/с	Фазовый состав	Форма частиц	Размер частиц, нм		
Система № 1: «xAl + yNH ₄ BF ₄ + zNaN ₃ »							
1;1;4	1200	0,50	AlN = 71 %, BN = 16 %, Na ₃ AlF ₆ = 13 %	равноосная, пластинчатая	100-150		
3; 1; 4	750	0,30	AlN =85 %, BN = 6 %, Na ₃ AlF ₆ = 9 %	равноосная, пластинчатая	70-100		
1; 3; 12	800	0,50	AlN =82 %, BN = 6 %, Na ₃ AlF ₆ = 12 %	равноосная, пластинчатая	300-400; 100-150		
Система № 2: «хNH ₄ BF ₄ + yNa ₂ TiF ₆ + zNaN ₃ »							
1; 1; 8	1300	1,00	TiN = 64 %, BN = 14 %, Na ₃ TiF ₆ = 22 %	игольчатая	100-200		
3; 1; 16	1450	1,70	TiN = 79 %, $BN = 11 %$, $Na_3 TiF_6 = 10 \%$	игольчатая	70-90		
1; 3; 16	1000	0,40	TiN = 88 %, BN = 12 %, Na ₃ TiF ₆ = 0 %	равноосная	170-200		
Система № 3: «xSi + y(NH ₄) ₂ TiF ₆ + zNaN ₃ »							
3; 1; 6	900	0,50	TiN = 57 %, Si = 10 %, α -Si ₃ N ₄ = 10 %, β -Si ₃ N ₄ = 23 %	равноосная, игольчатая	70-100		
9; 1; 6	1800	0,60	TiN = 28 %, Si = 0 %, α -Si ₃ N ₄ = 11 %, β -Si ₃ N ₄ = 61 %	столбчатая, волокнистая, равноосная	200-600; 100-120		
3; 3; 18	700	0,50	TiN = 81 %, Si = 5 %, α -Si ₃ N ₄ = 7 %, β -Si ₃ N ₄ = 7 %	равноосная	80-130		

 $2NaN_3 \rightarrow 2Na + 3N_2^{\uparrow}$. (1) 2) При температуре выше 350 °С происходит сублимация тетрафторбората аммония с последующим разложением и взаимодействием с активным натрием, образовавшимся в ходе разложения азида натрия:

 $NH_4BF_4 + 3Na \rightarrow B + 3NaF + NH_3 \uparrow + HF \uparrow$. (2)

3) Так как порошок алюминия всегда покрыт на небольшую глубину оксидной пленкой Al₂O₃, то в процессе горения при температуре 450-600 °C сначала происходит реакция взаимодействия пленки оксида алюминия с фторводородом:

 $Al_2O_3 + 6HF \uparrow \rightarrow 2AlF_3 + 3H_2 \uparrow + 1,5O_2 \uparrow$, (3) а затем при температурах 450-500°С протекает реакция взаимодействия алюминия с фторводородом:

$$2Al + 6HF \uparrow \rightarrow 2AlF_{z} + 3H_{z} \uparrow .$$
 (4)

Суммарная реакция выглядит следующим образом:

 $Al_2O_3 + 2Al + 12HF \uparrow \rightarrow 4AlF_3 + 6H_2 \uparrow + 1,5O_2 \uparrow .(5)$ 4) Часть натрия, которая образовалась при

разложении азида натрия и не успела прореагировать с тетрафторборатом аммония, окисляется под воздействием кислорода, образовавшегося при разрушении оксидной пленки на поверхности частиц порошка алюминия, входящего в состав исходной шихты:

$$4Na + O_2 \uparrow \rightarrow 2Na_2O.$$
 (6)

5) Фторид алюминия при температуре выше 700°С начинает разлагаться на алюминий и фтор:

$$AlF_{3} \rightarrow Al + 3F\uparrow$$
. (7)

6) Химическая реакция взаимодействия газообразного фтора с натрием, образовавшимся при разложении азида натрия, идет с выделением тепла и образованием фторида натрия:

$$Na + F \uparrow \rightarrow NaF.$$
 (8)

7) Далее алюминий вступает в реакцию с газообразным азотом, закачанным в реактор и активным азотом, и аммиаком, образовавшимися при разложении тетрафторбората аммония (~700-750°C):

$$AI + NH_{3} \uparrow \rightarrow AIN + 1,5H_{2} \uparrow + 0,5N_{2} \uparrow , \quad (9)$$

$$Al + 0.5N_2 \uparrow \rightarrow AlN, \qquad (10)$$

$$B + NH_{3} \uparrow \rightarrow BN + 1,5H_{2} \uparrow + 0,5N_{2} \uparrow, \qquad (11)$$

$$B + 0.5N_2 \uparrow \rightarrow BN.$$
 (12)

Суммарная реакция получения композиции AlN-BN имеет вид:

 $3Al + NH_{a}BF_{a} + 4NaN_{3} =$

$$= 3$$
AlN-BN + 4 NaF + $2H_2$ + $4,5N_2$. (13)

Неполнота прохождения указанных химических реакций, влияющая на параметры горения и синтеза, приводит к появлению в продуктах синтеза галоидной соли - гексафторалюмината натрия состава Na₃AlF₆. Наличие в конечном продукте синтеза галоидной соли Na₃AlF₆ говорит о том, что низкая температура горения (~750°C) была не достаточна для прохождения полного процесса азотирования алюминия и образования нитрида алюминия. В результате образуется галоидная соль Na₃AlF₆ по реакции:

$${\rm AlF}_3$$
 + 3NaF \rightarrow Na₃AlF₆. (14)
Эта реакция является самопроизвольной и
протекает без притока энергии извне.

Таким образом, может быть объяснено, почему в конечном продукте самого оптимального состава исходной шихты «3Al+NH₄BF₄+4NaN₃» для получения нитридной композиции AlN-BN наряду с нитридами AlN (85 %) и BN (6 %) присутствует Na₄AlF₆ (9 %).

Были проведены исследования по возможности получения нитридной композиции TiN-BN. В процессе исследований было установлено, что сжигание смесей NaN₃ только с прекурсорами – галоидными солями титана и бора $(NH_4)_2$ TiF₆, Na₂TiF₆, NaBF₄, KBF₄, NH₄BF₄ – не позволяет синтезировать композиционный порошок TiN-BN, так как в конечном продукте кроме фаз TiN и BN присутствуют фазы побочных продуктов: Ti, TiB₂, Na₃TiF₆, K₂NaTiF₆. Только в одной системе «NH₄BF₄+3Na₂TiF₆+16NaN₃» (система N^o2) удалось синтезировать чистый, без побочных фаз продукт, представляющий собой смесь ультра- и тонкодисперсных равноосных частиц TiN (88 %) и BN (22 %) с размером 170-200 нм [8, 9] (табл. 1).

Для установления механизма образования нитридной композиции TiN-BN в системе « NH_4BF_4 + $3Na_2TiF_6$ + $16NaN_3$ » была произведена закалка образцов исследуемой смеси в интервале температур 500-600 °С и 800-900 °С. После закалки был сделан рентгенофазовый анализ, который показал, что продукты синтеза состоят из смеси разных фаз: B, Ti, BN, TiN, TiF₄, Na₂TiF₆, NaF, Na.

На основании полученных экспериментальных результатов по анализу химической стадийности в процессах СВС-Аз была построена химическая стадийность образования нитридной композиции TiN-BN в системе «NH₄BF₄+3Na₂TiF₄+16NaN₃».

1) Разложение азида натрия NaN₃ происходит при ~300°C:

$$2\text{NaN}_3 \rightarrow 2\text{Na} + 3\text{N}_2^{\uparrow}. \tag{15}$$

2) При температуре выше 350 °С происходит сублимация тетрафторбората аммония с последующим разложением и взаимодействием с активным натрием:

 $NH_4BF_4 + 3Na \rightarrow B + 3NaF + NH_3 + HF\uparrow$. (16)

3) Часть оставшегося натрия вступает в реакцию восстановления с гексафтортитанатом натрия, при температуре разложения Na, TiF₆ (~600°C):

5Na + Na₂TiF₆ \rightarrow Ti + 6NaF + Na. (17) 4) Далее элементный титан и бор, вступают в реакцию с газообразным азотом, закачанным в реактор и активным азотом, и аммиаком, образовавшимся при разложении тетрафторбората аммония (~800-1000°C):

$$\mathrm{Ti} + \mathrm{NH}_{3}^{\uparrow} \rightarrow \mathrm{TiN} + 1,5\mathrm{H}_{2}^{\uparrow} + 0,5\mathrm{N}_{2}^{\uparrow}, \quad (18)$$

$$\mathrm{Ti} + 0.5\mathrm{N}_{2}^{\uparrow} \rightarrow \mathrm{TiN}, \qquad (19)$$

$$B + NH_{3} \uparrow \rightarrow BN + 1,5H_{2} \uparrow + 0,5N_{2} \uparrow , \qquad (20)$$

$$B + 0.5N_2^{\uparrow} \rightarrow BN.$$
 (21)

Суммарная реакция получения композиции TiN-BN имеет вид:

$$NH_4BF_4 + 3Na_2TiF_6 + 16NaN_3 =$$

$$=3TiN - BN + 22NaF + 2H_2 + 22,5N_2.$$
 (22)

Из табл. 1 видно, что конечный продукт самого оптимального состава исходной шихты « NH_4BF_4 + $3Na_2TiF_6$ + $16NaN_3$ » состоит из TiN (88 %) и BN (12 %).

Неполнота прохождения химических реакций, влияющая на параметры горения и синтеза нитридной композиции TiN-BN, приводит к появлению в конечном продукте синтеза галоидной соли Na₃TiF₆ (табл. 1). Это говорит о том, что из-за высоких скоростях горения системы «NH₄BF₄+Na₂TiF₆+8NaN₃» (при υ = 1,0 см/с) и системы « $3NH_4BF_4$ +Na₂TiF₆+16NaN₃» (при $\upsilon = 1,7$ см/с) галоидная соль Na $_2^2$ TiF₆, входящая в состав исходных систем, лишь частично успевает разложиться, с образованием чистого титана, который азотируется до образования нитрида титана. А другая не разложившаяся часть Na₂TiF₆, которая не успевает разложиться в процессе горения шихты реагирует с натрием, образовавшимся в результате разложения азида натрия (15) по реакции:

$$Na + Na_2TiF_6 \rightarrow Na_3TiF_6.$$
 (23)

Таким образом, может быть объяснено, почему в конечном продукте при получении нитридной композиции TiN-BN наряду с нитридами TiN (64-79 %) и BN (11-14 %) присутствует галоидная соль Na₃TiF₆ (10-22 %).

Так же были проведены исследования по возможности получения нитридной композиции Si_zN₄-TiN. Было установлено, что сжигание смесей NaN₃ только с прекурсорами – галоидными солями кремния и титана Na_2SiF_6 , $(NH_4)_2SiF_6$, Na_2TiF_6 , $(NH_4)_2TiF_6$ – не позволяет синтезировать композиционный порошок Si₃N₄-TiN, так как здесь фазы нитрида кремния не образуются, и после водной промывки ультрадисперсный порошкообразный продукт горения состоит только из одной целевой фазы TiN и большого количества примесей побочных фаз: свободного Si, Ti и TiSi₂. Замена галоидной соли одного из элементов (Si или Ti) на порошок этого элемента в системе СВС-Аз приводит к образованию не только $Si_{3}N_{4}$, но и TiN, с наименьшим количеством

примесей – от 0 до 10% свободного Si. Однако, только в одной системе «9Si+(NH₄)₂TiF₆+6NaN₃» (система №3) удалось синтезировать чистый, без примесей продукт, представляющий собой смесь ультра- и тонкодисперсных столбчатых кристаллов β-Si₃N₄ (61 %) с поперечным размером 200-600 нм, наноразмерных волокон α-Si₃N₄ (11 %) и равноосных частиц TiN (28 %) с размером 100-120 нм [10, 11] (табл. 1).

Для установления механизма образования нитридной композиции Si_3N_4 -TiN в системе «3Si+(NH₄)₂TiF₆+6NaN₃» была произведена закалка смеси исходных продуктов внутри реактора CBC-A3. При закалке образцов исследуемой смеси в интервале температур 500-600 °C и 900-1000 °C рентгенофазовый анализ показал, что продукты синтеза состоят из смеси разных фаз: TiF₄, Ti, Si, TiN, α -Si₃N₄, β -Si₃N₄, Na₂TiF₆, NaF, Na.

На основании полученных экспериментальных результатов по анализу химической стадийности в процессах СВС-Аз была построена химическая стадийность образования нитридной композиции Si_3N_4 -TiN в системе «9Si+(NH₄)₂TiF₆+6NaN₃».

1) Разложение гексафтортитаната аммония $(NH_4)_2$ TiF₆ начинается при температуре 150°C:

 $(NH_4)_2 TiF_6 \rightarrow TiF_4 + 2NH_3 \uparrow + 2HF \uparrow + H_2 \uparrow . (24)$ 2) Разложение азида натрия NaN₃ происходит при ~300°С:

$$6NaN_3 \rightarrow 6Na + 9N_2\uparrow$$
. (25)

3) Далее идет реакция образования аммиака с выделением тепла (~500°С):

$$N_{2}\uparrow +3H_{2}\uparrow \rightarrow 2NH_{3}\uparrow.$$
 (26)

4) Следом идет реакция взаимодействия тетрафторида титана с натрием, образовавшимся при разложении азида натрия (~600 °C):

 $2\text{TiF}_4 + 4\text{Na} \rightarrow \text{Na}_2\text{TiF}_6 + \text{Ti} + 2\text{NaF}.$ (27)

5) Параллельно часть оставшегося натрия вступает в реакцию восстановления с образовавшимся гексафтортитанатом натрия (26), при температуре разложения Na₂TiF₆ (~600°C):

 $5\text{Na} + \text{Na}_2\text{TiF}_6 \rightarrow \text{Ti} + 6\text{NaF} + \text{Na.}$ (28)

6) Параллельно идет реакция взаимодействия фторфодорода с натрием до образования фторида натрия и выделения водорода:

$$3HF + 3Na \rightarrow 3NaF + 1,5H_2\uparrow$$
. (29)

7) Далее титан, образовавшийся в реакции (27) вступает в реакцию с газообразным азотом, активным азотом, образовавшимися при разложении азида натрия и аммиаком, образовавшимися при разложении (NH₄)₂TiF₆ (~1100°C):

$$\begin{array}{cc} \mathrm{Ti} + \mathrm{NH}_{_{3}} \rightarrow \mathrm{TiN} + 1,5\mathrm{H}_{_{2}} \uparrow + 0,5\mathrm{N}_{_{2}} \uparrow , & (30) \\ \mathrm{Ti} + 0,5\mathrm{N}_{_{2}} \rightarrow \mathrm{TiN}. & (31) \end{array}$$

8) После чего элементный кремний, вступает в реакцию с аммиаком и азотом, образовавшимся по реакциям (24), (25) и (26), образуя нитрид кремния (~1300°C):

$$\begin{array}{ccc} 3\mathrm{Si}+2\mathrm{NH}_{3} \rightarrow \mathrm{Si}_{3}\mathrm{N}_{4}+3\mathrm{H}_{2}\uparrow +\mathrm{N}_{2}\uparrow, & (32)\\ 3\mathrm{Si}+2\mathrm{N}_{2} \rightarrow \mathrm{Si}_{3}\mathrm{N}_{4}. & (33) \end{array}$$

Суммарная реакция получения композиции $Si_{s}N_{4}$ -TiN имеет вид:

$$9Si + (NH_4)_2 TiF_6 + 6NaN_3 =$$

 $=3Si_{3}N_{4}$ -TiN + 6NaF + 4H₂ + 3,5N₂ . (34)

Из табл. 1 видно, что конечный продукт самого оптимального состава исходной шихты «9Si+(NH₄)₂TiF₆+6NaN₃» состоит из TiN (28 %), α -Si₃N₄ (11 %) и β -Si₃N₄ (61 %) [12, 13].

В исследуемой системе «кремний-азид натрия-гексафтортитанат аммония» образование нитрида титана становится возможным и при более низких температурах, по сравнению с другими методами получения, благодаря образованию активного титана и его азотированию аммиаком и атомарным азотом, образующимся в процессе горения. Неполнота прохождения химических реакций, влияющая на параметры горения и синтеза, из-за не высоких температур горения (700-900°С) и теплоотвода тепла горения из зоны синтеза, не позволяет проходить реакциям азотирования кремния и приводит к появлению в конечных продуктах синтеза не проазотированного элементного кремния.

Таким образом, может быть объяснено, почему в конечном продукте при получении нитридной композиции Si_3N_4 -TiN наряду с нитридами TiN (57-81 %), α -Si $_3N_4$ (7-10 %) и β -Si $_3N_4$ (7-23 %) присутствует Si (5-10 %).

Все рассмотренные химические реакции являются полуколичественной оценкой химической стадийности образования нитридных композиций AlN-BN, TiN-BN и Si₃N₄-TiN в системах CBC-A3 и рассматриваются как наиболее вероятные.

Исследование размера и морфологии конечных продуктов проводилось с помощью растрового электронного микроскопа *JSM*-6390A. Морфология частиц конечного продукта при различном соотношении компонентов в системах представлена на рис. 1.

Из рис. 1а видно, что форма частиц конечного продукта, синтезированного в системе «xAl+yNH₄BF₄+zNaN₃» при $x_{A1} = 1$ моль имеет равноосную, пластинчатую форму и средний размер частиц (толщина) составляет 100-150 нм. На рис. 1а при x_{AI} = 3 моль конечный продукт имеет равноосную, пластинчатую форму и средний размер частиц составляет 70-100 нм. На рис. 1а при при у_{NH4BF4} = 3 моль конечный продукт имеет равноосную, пластинчатую форму. Средний размер равноосных частиц составляет 300-400 нм, а средний размер пластинчатых частиц (толщина) составляет 100-150 нм. Таким образом, полученный конечный продукт представляет тобой смесь ультра- и тонкодисперсного (нано- и субмикрокристаллического) порошка AlN пластинчатой формы, BN и Na₃AlF₆ равноосной формы [6].

Из рис. 1б видно, что форма частиц конечного продукта, синтезированного в системе «хNH₄BF₄+yNa₂TiF₆+zNaN₃» при $x_{\text{NH4BF4}} = 1$ моль имеет волокнистую форму и средний размер частиц (толщина) составляет 100-200 нм. На рис. 1а при $x_{\text{NH4BF4}} = 3$ моль конечный продукт имеет волокнистую форму и средний размер частиц (толщина) составляет 70-90 нм. На рис. 1а при $y_{\text{Na2TiF6}} = 3$ моль конечный продукт имеет равноосную форму и средний размер частиц (толщина) составляет 70-90 нм. На рис. 1а при $y_{\text{Na2TiF6}} = 3$ моль конечный продукт имеет равноосную форму и средний размер частиц составляет 170-200 нм. Таким образом, полученный конечный продукт представляет тобой смесь ультра-и тонкодисперсного (нано и и субмикрокристаллического) порошка TiN волокнистой формы и BN равноосной формы [8, 9].

Из рис. 1в видно, что форма частиц конечного продукта, синтезированного в системе $(xSi+y(NH_4)_2TiF_6+zNaN_3)$ при $x_{Si} = 3$ моль имеет равноосную форму и средний размер частиц составляет 70-100 нм. На рис. 1а при x_{si} = 9 моль конечный продукт имеет столбчатую, волокнистую форму и средний размер частиц (толщина) составляет 200-300 нм, а так же равноосную форму со средним размером частиц – 100-120 нм. На рис. 1а при у_{(NH4)2TiF6} = 3 моль конечный продукт имеет равноосную форму и средний размер частиц составляет 80-130 нм. Таким образом, полученный конечный продукт представляет тобой смесь ультра- и тонкодисперсного (нано- и субмикрокристаллического) порошка α-Si₃N₄ волокнистой формы, β-Si_zN₄ столбчатой формы и TiN равноосной формы [10, 11].

B данной работе была представлехимическая стадийность получения на нитридных композиций AlN-BN, TiN-BN и Si₇N₄-TiN из оптимальных систем \ll 3Al+NH₄BF₄+4NaN₃, \ll NH₄BF₄+3Na₂TiF₆+16NaN₃, «ЗSi+(NH₄)₂TiF₆+6NaN₃», а так же исследована морфология конечного продукта. С помощью остановки фронта горения методом закалки, удалось установить, что прежде чем получить конечный целевой продукт – нитридную композицию, в смеси исходных компонентов в процессе горения проходит большое количество эндо- и экзотермических реакций, приводящих к получению целевого продукта, состоящего из нитридов и побочных продуктов синтеза.

Получить конечный продукт, состоящий только из нитридов, без побочных продуктов удалось при синтезе нитридной композиции TiN-BN, с соотношением фаз в продукте: TiN (88 %) в виде частиц волокнистой формы размером 70-90 нм в диаметре и BN (12 %) в виде равноосных частиц размером 150-200 нм. А так же удалось получить нитридную композицию $Si_{3}N_{4}$ -TiN, без побочных продуктов, состоящую из следующих фаз: TiN (28 %) в виде частиц во-

«Al+NH4BF4+4NaN3»

«NH4BF4+8NaN3+Na2TiF6»

«3Si+(NH₄)₂TiF₆+6NaN₃»

«3Al+NH₄BF₄+4NaN₃»

«ЗNH₄BF₄+16NaN₃+Na₂TiF₆» б)

«Al+3NH₄BF₄+12NaN₃»

 $\ll NH_4BF_4 + 16NaN_3 + 3Na_2TiF_6 \gg$

 $(3Si+3(NH_4)_2TiF_6+18NaN_3)$

в)

- **Рис. 1.** Морфология частиц конечного продукта, синтезированного в системах: a) $N^{\circ}1 \ll Al + yNH_4BF_4 + zNaN_3^{\circ}$; 6) $N^{\circ}2 \ll xNH_4BF_4 + yNa_2TiF_6 + zNaN_3^{\circ}$; b) $N^{\circ}3 \ll xSi + y(NH_4)_2TiF_6 + zNaN_3^{\circ}$
- локнистой формы размером 50-200 нм в диаметре, α -Si₃N₄ (11 %) в виде частиц столбчатой формы размером 200-300 нм в диаметре; β -Si₃N₄ (61 %) в виде частиц равноосной формы размером 100-200 нм. Получить чистую нитридную композицию, состоящую только из AlN (85 %) (в виде частиц пластинчатой формы размером 100-150 нм) и BN (6 %) (в виде частиц равноосной формы размером 300-400 нм) не удалось, так как в конечном продукте присутствует незначительное количество побочного продукта -Na₃AlF₆ (9 %) в виде частиц равноосной формы размером 300-400 нм.

СПИСОК ИСТОЧНИКОВ

- 1. *Basu B., Balani K.* Advanced structural ceramics. Hoboken, New Jersey: John Wiley & Sons, Inc., 2011.
- 2. *Palmero P.* Structural ceramic nanocomposites: a review of properties and powders> synthesis methods // Nanomaterials. 2015. Vol. 5. No. 2. P. 656-696.

- Амосов А.П., Бичуров Г.В. Азидная технология самораспространяющегося высокотемпературного синтеза микро- и нанопорошков нитридов: Монография. М.: Машиностроение-1, 2007. 526 с.
- Azides as Reagents in SHS Processes / A.P. Amosov, G.V. Bichurov, N.F. Bolshova, V.M. Erin, A.G. Makarenko, Yu.M. Markov // International Journal of Self-Propagating High-Temperature Synthesis. 1992. Vol.1, No 2. P. 239-245.
- Кондратьева Л.А., Керсон И.А. Оптимальные системы для синтеза нитридной композиции AlN-BN из систем «элемент-азид натрия-галоидная соль» // Научно-технический журнал «Современные материалы, техника и технологии», г. Курск, 2016. С. 37-41.
- Study of Possibility of Obtaining Nanopowder Composition of «Aluminum Nitride – Boron Nitride» by Azide SHS Technology / L. Shiganova, G. Bichurov, I. Kerson, V. Novikov, A. Amosov // Key Engineering Materials, Vol.684 (2016), 2016, C. 379-386.
- Бичуров Г.В., Шиганова Л.А., Титова Ю.В. Азидная технология самораспространяющегося высокотемпературного синтеза микро- и нанопорошков

нитридных композиций: Монография. М.: Машиностроение, 2012. 519 с.

- 8. *Kerson I., Shiganova L.* Obtaining the Nanostructured Nitride Composition TiN-BN Powder by the Self-Propagating High-Temperature Synthesis from the Azide KBF4-NaN3-Na2TiF6 and «NH4BF4-NaN3-Na2TiF6 Systems // Applied Mechanics Materials, Vol.698 (2015), pp.507-512.
- 9. Amosov A.P., Shiganova L.A., Bichurov G.V., Kerson I.A. Combustion Synthesis of TiN-BN Nanostructured Composite Powder with the Use of Sodium Azide and Precursors of Titanium and Boron // Modern Applied Sciences, Vol.9, No.3, 2015, C.133-144.
- Керсон И.А., Кондратьева Л.А. Исследования горения систем для синтеза нитридной композиции Si₃N₄-TiN // Научно-технический журнал «Современные материалы, техника и технологии», г. Курск, 2016.- С.27-31.
- Investigation of possibility to fabricate Si₃N₄-TiN ceramic nanocomposite powder by azide SHS method / *L.A. Kondratieva, I.A. Kerson, A.Yu. Illarionov, A.P. Amosov and G.V. Bichurov //* IOP Conf. Series: Materials Science and Engineering Vol.156 (2016), pp.1-6.
- Химическая стадийность образования нитридных композиций Si₃N₄-TiN, Si₃N₄-BN и Si₃N₄-AlN в режиме CBC-A3 / Л.А. Кондратьева, И.А. Керсон, Г.В. Бичуров, А.П. Амосов // Вестник Самарского государственного технического университета. Серия Технические науки, №3 (51), 2017. С.130-135.
- Кондратьева Л.А., Керсон И.А., Бичуров Г.В. Химическая стадийность образования нитридной композиции Si₃N₄-TiN в режиме CBC-A3 // Международный научно-исследовательский журнал «Успехи современной науки и образования». 2016. № 8. Т. 3. С. 76-77.

ANALYSIS POSSIBILITY OF SYNTHESIS NITRIDE COMPOSITIONS TIN-BN, AIN-BN AND Si $_3N_4$ -TIN ON THE TECHNOLOGY SHS AZIDE

© 2017 L.A. Kondratieva, I.A. Kerson, A.P. Amosov, G.V. Bichurov

Samara State Technical University

In this paper presents the optimal system for the synthesis mode azide SHS technology nitride submicrocrystalline and nano- products (TiN-BN, AlN-BN and Si₃N₄-TiN) systems of, consisting of sodium azide, chemical element and/or halide salts. The paper is based chemical compositions phasic formation of nitrides TiN-BN, AlN-BN and Si₃N₄-TiN the synthesis of optimal systems. The pure nitrides composition TiN-BN, Si₃N₄-TiN no side products could be obtained from the systems of «3Al+NH₄BF₄+4NaN₃» and «3Si+(NH₄)₂TiF₆+6NaN₃» with the following ratio of the product phases: TiN (88 %), BN (12 %) and TiN (28 %), α -Si₃N₄ (11 %), β -Si₃N₄ (61 %) respectively. The pure nitride composition AlN-BN without byproduct Na₃AlF₆ (9%) could not synthesize. As a result, research has been set the size and shape of the particles synthesized nitride of powdered product: AlN - plates size of 100-150 nm (thickness), BN and Na₃AlF₆ - equiaxed particle size of 300-400 nm, TiN fiber size of 70-90 nm in diameter and BN - equiaxed particle size of 150-200 nm, α -Si₃N₄ - fiber size of 100-120 nm. *Keywords*: nitride, a halide salt, sodium azide, nitride composition, self-propagating high-temperature synthesis, nano- and submicrocrystalline powder.

Lyudmila Kondratieva, Candidate of Technics, Associate Professor of Metallurgy, Powder Metallurgy, Nanomaterials Department. E-mail: schiglou@yandex.ru Irina Kerson, Assistent of Metallurgy, Powder Metallurgy, Nanomaterials Department. E-mail: rafkalimullin@yandex.ru Aleksandr Amosov, Doctor of Physics and Mathematics, Professor, Head at the Metallurgy, Powder Metallurgy, Nanomaterials Department. E-mail: egundor@yandex.ru Georgy Bichurov, Doctor of Technics, Professor of Metallurgy, Powder Metallurgy, Nanomaterials Department.

E-mail: bichurov@yandex.ru