УДК 621.373.826 : 621.791.92 : 621.762

ИССЛЕДОВАНИЕ СТРУКТУРЫ И СВОЙСТВ ДЕТАЛЕЙ ИЗ ЖАРОПРОЧНЫХ И НЕРЖАВЕЮЩИХ СПЛАВОВ, ПОЛУЧЕННЫХ ТЕХНОЛОГИЕЙ ПРЯМОГО ЛАЗЕРНОГО ВЫРАЩИВАНИЯ

© 2020 А.М.Хакимов^{1,2}, С.С. Жаткин², Е.Ю. Щедрин¹

¹ПАО «Кузнецов», г. Самара ²Самарский государственный технический университет

Статья поступила в редакцию 5.09.2019

В статье приведено исследование структуры и свойств деталей, полученных по технологии прямого лазерного выращивания (ПЛВ) из металлопорошковых композиций (МПК) нержавеющего ПР-08Х15Н5ДТ и жаропрочного ПР-ХН55В5МБТЮ сплавов. Представлены результаты исследований, выбраны оптимальные режимы при которых в готовой детали образуется минимальное количество дефектов.

Ключевые слова: аддитивные технологии, прямое лазерное выращивание, МПК, дефекты наплавки, режимы.

DOI: 10.37313/1990-5378-2020-22-2-59-66

введение

Существует множество разновидностей аддитивных технологий, но в настоящее время в международном сообществе, а также и в России устоявшейся классификации аддитивных технологий пока не принято. [1, C.11] Одной из множества разновидностей является технология ПЛВ. В технологии ПЛВ материал подается непосредственно в место подведения энергии и построения в данный момент фрагмента детали [2; 1, C.12].

Производственный цикл изготовления крупногабаритных корпусных деталей ГТД традиционным методом может составлять порядка 6-9 месяцев, но применение технологии ПЛВ позволяет сократить цикл более чем в 10 раз. Также при изготовлении деталей по технологии ПЛВ выше КИМ и не требуется изготовление дополнительной оснастки.

До настоящего времени в России технология ПЛВ из металлопорошковых композиций еще не внедрена в авиационное двигателестроение.

Целью работы является проведение исследования особенностей технологии ПЛВ с использованием отечественных МПК нержавеющего ПР-08X15H5ДТ и жаропрочного ПР-XH55B5МБТЮ сплавов, для последующего внедрения технологии в авиационное двигателестроение.

Хакимов Алексей Мунирович, начальник лаборатории аддитивных технологий УГС ПАО «Кузнецов», аспирант кафедры литейных и высокоэффективных технологий (СамГТУ). E-mail: alexeykhakimov@yandex.ru Жаткин Сергей Сергеевич, кандидат технических наук,

житкин Сергеи Сергевич, киноиоит технических ниук, доцент кафедры литейных и высокоэффективных технологий (CamITY).

E-mail: laser@samgtu.ru, sergejat@mail.ru

Щедрин Евгений Юрьевич, главный сварщик ПАО «Кузнецов». E-mail: ugs@kuznetsov-motors.ru

МЕТОДИКА ИССЛЕДОВАНИЙ

Для проведения исследований выращивание образцов проводили на стальных подложках толщиной 5 мм. Жертвенный слой образца, по которому производилась отрезка образца от подложки, составляет 10 мм. Под жертвенным слоем понимается часть высоты выращенного образца расположенная возле подложки. В жертвенном слое обычно располагаются трещины, которые образуются в начале процесса выращивания из-за разницы температур и значений КТЛР материала подложки и материала выращиваемого образца.

Выращенные образцы имеют размеры 15х60х15...25мм.

В качестве расходного материала для прямого лазерного выращивания образцов были использованы МПК из нержавеющего ПР-08Х15Н5ДТ и жаропрочного ПР-ХН55В5МБТЮ сплавов отечественного производства АО «Полема» г.Тула фракцией 40-150 мкм.

Выращивание образцов производилось на установке технологической лазерного выращивания УТЛВ отечественного производства ИЛиСТ ФГБОУ ВО СПбГМТУ. УТЛВ предназначена для изготовления крупногабаритных корпусных деталей с максимальным размером до Ø2000мм из нержавеющих и жаропрочных сплавов. Схема процесса ПЛВ представлена на рис. 1.

Морфология частиц МПК и растровая электронная микроскопия проводилась на растровом электронном микроскопе Tescan VEGA3 LM с модулем Oxford instruments X-Max.

Зерновой состав исходных МПК определялся методом просеивания через сита 016, 014, 004.

Рис. 1. Схема процесса ПЛВ

Металлографическое исследование проводилось при помощи оптического микроскопа CARL ZEISS AXIO OBSERVER

Макро- и микроанализ проводились на поперечных (относительно длины образцов) шлифах, изготовленных в трех сечениях: на расстоянии 10мм от края и по центру образцов. Травление шлифов проводилось электролитическим способом при комнатной температуре в течение 30 секунд в электролите следующего состава: 10г лимонной кислоты + 10г хлористого аммония +1л воды.

Химический анализ выращенных образцов был выполнен оценочно на портативном рентгеновском анализаторе GRN ProSpector, так как погрешность прибора составляет 30%.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

При исследовании морфологии установлено что, МПК из нержавеющего сплава ПР-08Х15Н5ДТ имеет частицы различных фракций. Основной объем частиц имеет сферическую форму. На поверхности некоторых частиц незначительное наличие сателлитов. Также отмечается наличие дефекта в виде панциря.

Результаты исследований МПК из нержавеющего сплава ПР-08Х15Н5ДТ при различных увеличениях представлены на рис. 2.

При исследовании морфологии МПК из жаропрочного сплава ПР-ХН55В5МБТЮ и сравнении с МПК из нержавеющего сплава ПР-08X15H5ДТ установлено, что данный порошок имеет более сферичную форму и одинаковую фракцию (рис. 3). Также отмечается наличие сателлитов на поверхности некоторых частиц. Оболочка в виде панциря отсутствует. На поверхности прослеживается дендритная структура.

Результаты исследований МПК из жаропрочного сплава ПР-ХН55В5МБТЮ при различных увеличениях представлены на рис.3 а-в.

Согласно ГОСТ 57556-2017 «Материалы для аддитивных технологических процессов. Методы контроля и испытаний» такие дефекты как сателлиты и панцирь на поверхности частиц не допускаются.

При микроисследовании МПК из нержавеющего сплава ПР-08Х15Н5ДТ наблюдаются сплавленные частицы в объеме 37% от всей массы (рис. 4 а, б), мелкие частицы, налипающие на более крупные в результате соударения в процессе газовой атомизации (сателлиты) (рис. 4, в).

а

Рис. 2. Морфология МПК марки ПР-08Х15Н5ДТ: а – х100; б – х500; в – х1000

Рис. 3. Морфология МПК марки ПР-ХН55В5МБТЮ: *a* – x100; *б* – x500; *в* – x1000

Рис. 4. Микроисследование МПК марки ПР-08Х15Н5ДТ, х500: *а*, *б* – участки со сплавленными частицами; *в* – участок с сателлитами

Средний размер частиц составляет ~45-69 мкм.

При микроисследовании МПК из жаропрочного сплава ПР-ХН55В5МБТЮ также наблюдаются сплавленные частицы в объеме 12% от всей массы (рис.5, *a*) и частично присутствуют сателлиты (рис.5, *б*). Средний размер частиц составляет ~42-62мкм.

Поры в микроструктуре частиц всех марок материала отсутствуют. Результаты микроспектрального анализа представлены в табл. 1,2.

По результатам микроспектрального анализа химический состав МПК из нержавеющего ПР-08Х15Н5ДТ и жаропрочного ПР-ХН55В5МБТЮ сплавов по проверенным данным соответствуют требованиям, указанным в технических требованиях.

Результаты определения зернового состава представлены в табл. 3.

Размер частиц основной фракции 40-150мкм. Допускаемые отклонения от основной

Рис. 5. Микроисследование МПК марки ПР-ХН55В5МБТЮ, х500: *а* – участок со сплавленными частицами; *б* – участок с сателлитами

	Maccoвaя доля,% Si Mn Cr Ni Ti Cu							
Eq. oguopp	Si	Mn	Cr	Ni	Ti	Cu		
ге - основа	0,44	0,96	15,58	4,67	0,95	1,11		
TT 08-322-2017	≤0,80	≤1,0	14,0-16,0	4,0-6,0	0,20-1,0	1,0-2,0		

Таблица 1. Результаты микроспектрального анализа МПК ПР-08Х15Н5ДТ

Haominga 2. I Coyndraidd Minkpoetieki pandifol o anannoa Mink in Ariobonid i	а 2. Результаты микроспектрального анализа МПК ПР-ХН55В5МБТІ
---	--

Массовая доля,%									
Ni - основа	Si	Mn	Cr	Ti	Al	W	Мо	Nb	Fe
	Н.д.	0,3	35,0	0,86	0,6	5,18	3,09	Н.д.	3,98
TT 08-323-2017	≤0,40	≤0,5	32,0- 35,0	0,50-1,10	0,50-1,10	4,30- 5,30	2,30-3,30	0,5-1,10	≼4,0

Таблица 3. Результаты определения зернового состава металлопорошковых композиций

		Зерновой состав порошков							
МПК	Остаток на сите	Остаток на сите		Остаток					
	016	014	Остаток на сите 004	на поддоне					
ПР-08Х15Н5ДТ	0,00	8,10	90,60	0,50					
ПР-ХН55В5МБТЮ	0,00	13,0	86,00	0,40					

фракции: плюсовая фракция — не более 5 %, минусовая фракция — не более 10 %.

Режимы прямого лазерного выращивания МПК марки ПР-08X15H5ДТ представлены в табл. 4.

ПЛВ производилось с локальной защитой через наплавочное сопло. При металлографическом исследовании выращенных образцов из МПК марки ПР-08Х15Н5ДТ установлено: - по длине образцов структура наплавленного материала достаточно однородна;

- на всех образцах обнаружены поры, микрорыхлота, несплавления, расположенные как по границе сплавления валиков, так и в материале валиков. Наименьшее количество и размер несплошностей наблюдается на образцах №3 и 7, наибольшее - на образце №4 (Рис. 6);

Параметр р	ежима лазерного	Значение параметра лазерного сплавления							
сплавления	I	Обр. №3	Обр. №2	Обр. №7	Обр. №6	Обр. №5	Обр. №4		
Мощность	лазерного излучения, Вт	1850 1750 1500 1300 1100 90				900			
Диаметр пя мм	итна лазерного излучения,	2,7	2,7	2,7	2,7 2,7 2		2,7		
Скорость н	аплавки, мм/с	15	35	18	18	15 15			
	вращение диска, %	40	100	95	95	80	100		
Полого	перемешивание, %	40	40	40	40	40	40		
порошка:	Расход транспортирующего газа Ar, л/мин	10	10	10	10	10	10		
Расход заш	итного газа Ar, л/мин	13	13	13	13	13	13		

Таблица 4. Режимы прямого лазерного выращивания из МПК марки ПР-08Х15Н5ДТ

Рис. 6. Пористость материала образцов после ПЛВ из МПК марки ПР-08Х15Н5ДТ, х2: *a* – образец №3, *б* – образец №2, *в* – образец №7, *г* – образец №6, *д* – образец №5, *е* – образец №4

 на образце №3 наблюдаются единичные поры и микрорыхлоты размером 0,015...0,096мм (рис.7, *a*);

- на образце №2 (рис.7 б) имеются множественные несплошности в виде пор и микрорыхлоты размером 0,015...0,38мм и обнаружено единичное несплавление длиной 0,15мм. В образце обнаружены также локальные участки инородного материала размером Ø0,08мм, 0,07х0,15мм и 0,16х0,19мм;

- в образце №7 мелкая пористость у верхней поверхности наблюдается только в крайнем сечении;

- в образце №6 в крайнем сечении обнаружена рыхлота размером 0,3х0,7мм, расположенная в центральной части образца ближе к основанию на расстоянии 9мм от верхней поверхности. Мелкая пористость имеется с одного края на всю высоту образца в двух исследуемых сечениях;

- в образце №5 в центральном сечении имеется рыхлота размером 0,4х1мм, расположенная в центральной зоне на расстоянии 6,5мм от верхней поверхности. Наблюдается мелкая пористость с одной стороны образца по всем исследуемым сечениям;

- на образце №4 (рис.7 *е*) наблюдаются множественные несплошности в виде пор, микрорыхлоты, несплавлений, расположенные практически по каждому ряду валиков и по высоте, и по ширине образца. Размер несплошностей составляет 0,040...0,51 мм;

По местам инородных включений был проведен микроспектральный анализ и картирование. При картировании дефектных мест наблюдается коагуляция Ti в местах непроплава (рис. 8).

Из табл. 5 видно, что инородные включения – это, возможно, расплавленные частицы МПК из сплава на основе титана, попавшего при плохой очистке камеры при смене материала распыления.

Вид и максимальный размер дефектов, обнаруженных на образцах, приведены в табл. 6.

Рис. 7. Микроструктура образцов после ПЛВ из МПК марки ПР-08Х15Н5ДТ, х25: *a* – образец № 3, *б* – образец № 2, *в* – образец № 7, *г* – образец № 6, *д* – образец № 5, *е* – образец № 4

Рис. 8. Картирование дефектных мест

Спектр 1	Bec. %	Спектр 2	Bec. %	Спектр 3	Bec. %
0	31,93	Ν	6,17	Si	0,56
Al	1	0	28,65	Ti	0,95
Ca	0,37	Al	0,54	Cr	15,79
Ti	61,32	Ca	0,13	Mn	0,7
Cr	2,82	Ti	59,86	Fe	75,69
Mn	0,55	Cr	2,59	Ni	4,96
Fe	1,48	Mn	0,61	Cu	1,35
Zr	0,53	Fe	1,44	Сумма:	100
Сумма:	100	Сумма:	100		

Таблица 5. Картирование дефектных мест

Таблица 6. Вид и максимальный размер дефектов

NIO	Максимальный размер дефекта, мм							
образца	пора, ø	несплавление	инородное					
	0.015 0.00/		включение					
5	0,0150,096	-	-					
			Ø0,8					
2	-	0,15	0,07x0,15					
			0,16x0,19					
7	0.008		0,08x0,28					
1	0,098	-	0,09x0,11					
6	0,056	0,1	0,01x0,15					
5	0,096	0,2	0,04x0,16					
4	-	0,0400,51	-					

Полученные оценочные результаты определения химического состава представлены в табл. 7.

Режимы ПЛВ из МПК марки ПР-ХН55В5МБТЮ представлены в табл. 8.

Макроструктура и микроструктура выращенных образцов приведена на рис. 9, 10.

При анализе макро- и микроструктуры установлено:

 по длине образцов микроструктура наплавленного материала однородна. Четкой границы между наплавленными валиками не наблюдается;

- в материале образцов №1,2,3,4 имеются единичные поры размером до 0,07мм, несплав-

ления, в основном, до 0,11мм (рис. 9, *a*-*д*).

В крайнем сечении образца №2 имеется рыхлота размером 0,19х0,27мм (рис.9, *в*, рис.10, *б*). В крайнем сечении образца №4 обнаружен единичный спай длиной 0,9мм, расположенный на расстоянии ~2мм от верхней поверхности;

- в материале образца №5 имеются поры размером до 0,09мм, спаи длиной до 0,36мм и множественные участки с микрорыхлотой, имеющей максимальный размер 0,13х0,37мм (рис.10, *г*).

Полученные оценочные результаты определения химического состава выращенных образцов представлены в табл. 9.

При анализе полученных данных установ-

Таблица 7. Результаты определения химического состава выращенных образцов из МПК марки ПР-08X15H5ДТ

Nº of page 4	Химический элемент, %									
м- образца	Fe	Cr	Ni	Cu	Mn	Ti	Si	Al	Мо	V
3	75,8	15,1	5	1,2	0,7	0,6	0,6	0,9	0,1	0,1
2	76	15	4,9	1,2	0,7	0,6	0,6	0,5	0,1	0,1
7	76	15,2	5	1,2	0,7	0,65	0,6	0,7	0,1	0,1
6	76	15,1	4,9	1,2	0,7	0,65	0,6	0,7	0,1	0,1
5	76	15,2	5	1,2	0,7	0,6	0,6	0,4	0,1	0,1
4	76	15	5	1,2	0,8	0,7	0,6	0,6	0,1	0,1
TT 08-322-2017	Основа	14,0-16,0	4,0-6,0	1,0-2,0	≤0,8	0,2-1,0	≤0,8	-	-	-

Параметр режима дазерного спекания		Значение параметра лазерного спекания							
параметр режима	а лазерного спекания	Обр.4	Обр.3	Обр.1	Обр.2	Обр.5			
Мощность лазерн	1600	1400	1200	1000	800				
Диаметр пятна ла	азерного излучения, мм	2,7	2,7	2,7	2,7	2,7			
Скорость наплави	ки, мм/с	12	10	10	8	8			
	вращение диска (D), %	90100	95	95100	95	100			
	перемешивание (S), %	40	40	40	40	60			
подача порошка.	Расход								
	транспортирующего	10	10	10	10	10			
	газа Ar, л/мин								
Расход защитного	о газа Ar, л/мин	13	13	13	13	13			

Таблица 8. Режимы ПЛВ из МПК марки ПР-ХН55В5МБТЮ

Рис. 9. Макроструктура образцов после ПЛВ из МПК марки ПР-ХН55В5МБТЮ в поперечном сечении, х3: a – образец № 1, б – образец № 2, s – образец № 2 (крайнее сечение), c – образец № 3, d – образец № 4, e – образец № 5

Рис. 10. Микроструктура образцов после ПЛВ из МПК марки ПР-ХН55В5МБТЮ, х200: *а* – образец №1, *б* – образец №2, *в* – образец №4, *г* – образец №5

лено, что в химическом составе материала образцов после ПЛВ обнаружено существенное отличие от данных технических требований по содержанию железа (Fe) у образцов №3,4.

выводы

На основе проведенных исследований можно сделать следующие выводы:

Nº ofp	Химический элемент, %									
11- 00p.	Ni	Cr	W	Мо	Fe	Al	Ti	Nb	Mn	Si
1	основа	31,8	4,1	2,8	4,9	1,0	0,9	0,7	0,3	0,4
2	основа	32	4,15	2,9	3,2	1,5	0,95	0,7	0,3	0,4
3	основа	31,2	3,9	2,7	6,8	1,5	0,9	0,65	0,35	0,45
4	основа	31,4	4,0	2,8	6,2	1,2	0,9	0,7	0,3	0,3
5	основа	32,1	4,15	2,9	2,5	1,1	0,9	0,7	0,35	0,3
TT 08-323-	OCHORD	32,0-	4,30-	2,30-	<10	0,50-	0,50-	0,5-	<0.5	<0.40
2017	ОСНОВа	35,0	5,30	3,30	≈4,0	1,10	1,10	1,10	≈0,5	₹0,40

Таблица 9. Результаты определения химического состава выращенных образцов из МПК марки ПР-ХН55В5МБТЮ

1. Все металлопорошковые композиции имеют сферическую форму и, несмотря на наличие сателлитов на поверхности частиц порошка, не допустимых по ГОСТ 57556-2017, процесс выращивания идет стабильно. При этом фракция исследованных порошков соответствует техническим требованиям 40-150 мкм.

2. По результатам микроспектрального анализа установлено, что химические составы порошков из нержавеющего сплава ПР-08Х15Н5ДТ и жаропрочного сплава ПР-ХН55В5МБТЮ соответствуют техническим требованиям.

3. По длине полученных прямым лазерным выращиванием образцов структура наплавленного материала однородна. Однако, в материале выращенных образцов наблюдаются поры и микрырыхлоты, расположенные как по границе сплавления, так и в материале валиков.

4. На основе исследования макро-и микроструктуры наплавленных материалов подобраны наиболее оптимальные режимы лазерного выращивания из представленных МПК. Для нержавеющего сплава ПР-08Х15Н5ДТ это режим, использованный для образца №7 (мощность ЛИ 1,5 кВт и скорость наплавки 18 мм/с). В этом случае в зоне наплавки образуется наименьшее количество дефектов. При выращивании из МПК жаропрочного сплава ПР-ХН55В5МБТЮ оптимальным является режим, использованный для образца №2 (мощность ЛИ 1 кВт и скорость наплавки 8 мм/с).

5. Для качественного выращивания деталей с использованием МПК из сплавов ПР-08Х15Н5ДТ и ПР-ХН55В5МБТЮ требуются дальнейшие исследования свойств материалов, полученных по технологии ПЛВ.

СПИСОК ЛИТЕРАТУРЫ

- Зленко М.А., Попович А.А., Мутылина И.Н. Аддитивные технологии в машиностроении: учебное пособие / ФГАОУ ВО СПбГПУ. СПб. 2013. 222 с.
- 2. *Pinkerton A.J.* Advances in the modeling of laser direct metal deposition // Journal of Laser Applications, 2015. Vol. 27, N S1. S15001.

THE STUDY OF THE STRUCTURE AND PROPERTIES OF PARTS MADE OF HEAT-RESISTANT AND STAINLESS STEEL ALLOYS OBTAINED BY DIRECT LASER DEPOSITION

© 2020 A. M. Khakimov^{1,2}, S.S. Zhatkin², E.Y. Shedrin¹

¹PJSC «Kuznetsov», Samara ²Samara State Technical University

The article presents the study of the structure and the properties of the parts obtained by the technology of direct laser deposition (DLD) of metal-powder compounds (MPC) non-rusting PR-08C15N5DT and heat resistant PR-CN55V5MBTU alloys. The results of studies are presented, the optimal modes are chosen in which the minimum number of defects is formed in the finished part.

Key words: additive technologies, direct laser deposition, MPC, defects in welding, modes.

DOI: 10.37313/1990-5378-2020-22-2-59-66

Alexey Khakimov, Head of the Laboratory of Additive Technologies of UGS PJSC «Kuznetsov», Post-Graduate Student of the Department of Foundry and High-Efficient Technologies (SamSTU). E-mail: alexeykhakimov@yandex.ru Sergey Zhatkin, Candidate of Technical Sciences, Associate Professor of Foundry and High-Efficient Technologies (SamSTU). E-mail: laser@samgtu.ru, sergejat@mail.ru Evgeny Shedrin, Chief Welder of PJSC «Kuznetsov». E-mail: ugs@kuznetsov-motors.ru