УДК 629.78 : 681.51

АВТОНОМНОЕ ЦИФРОВОЕ УПРАВЛЕНИЕ МИНИ-СПУТНИКОМ ЗЕМЛЕОБЗОРА В РЕЖИМАХ НАЧАЛЬНОЙ ОРИЕНТАЦИИ

© 2020 С.Е. Сомов^{1,2}, Т.Е. Сомова²

¹ Самарский федеральный исследовательский центр Российской академии наук, Самара, Россия ² Самарский государственный технический университет, Самара, Россия

Статья поступила в редакцию 23.10.2020

Рассматриваются задачи автономного цифрового управления ориентацией космического аппарата и проверки работоспособности системы управления его ориентацией в начальных режимах. Представлены разработанные методы, алгоритмы и результаты имитации процессов управления ориентацией миниатюрного спутника землеобзора на солнечно-синхронной орбите. Для приведения ориентации космического аппарата из произвольной к требуемой применяется автономное угловое наведение и модульно ограниченное векторное цифровое управление с использованием вектора модифицированных параметров Родрига. Кратко обсуждается проблемы верификации работоспособности системы управления ориентацией мини-спутника.

Ключевые слова: мини-спутник землеобзора, начальная ориентация, автономное цифровое управление

DOI: 10.37313/1990-5378-2020-22-5-84-93

Работа поддержана РФФИ, грант 20-08-00779.

введение

После отделения любого малого низкоорбитального космического аппарата (информационного спутника [1], космического робота [2] и т.д.) от верхней ступени ракеты-носителя такой космический аппарат (КА) начинает кувыркаться – вращаться с вектором угловой скорости Ф изменяемого направления в связанной с ним системе координат (ССК) О *xvz*. Основное назначение начальных режимов системы управления ориентацией (СУО) состоит в приведении ориентации КА к заданной в орбитальной системе координат (ОСК) $O x^{\circ} y^{\circ} z^{\circ}$. Затем космический аппарат с помощью собственной двигательной установки перемещается в заданное положение на целевой орбите и начинает выполнять свои задачи при его удержании на этой орбите [3].

В последнее десятилетие произошли существенные изменения в практической деятельности, связанной с использованием малых спутников для космического мониторинга Земли. Здесь радикальное отличие состоит в создании орбитальных группировок малых КА,

Сомов Сергей Евгеньевич, научный сотрудник отдела «Динамики и управления движением» СамНЦ РАН; научный сотрудник отдела «Навигации, наведения и управления движением» НИИ проблем надежности механических систем СамГТУ. E-mail: s_somov@mail.ru Сомова Татьяна Евгеньевна, научный сотрудник отдела «Навигации, наведения и управления движением» НИИ Проблем надежности механических систем СамГТУ. E-mail: te_somova@mail.ru обеспечивающих непрерывное обновление видеоданных. Стоимость их разработки, а также изготовления и вывода на орбиту невелика, что объясняет превращение таких спутников в массовый продукт для ДЗЗ, а также для быстрой практической проверки новых космических технологий. Широкое использование малых спутников землеобзора стало также стимулом развития инновационных технологий, направленных на совершенствование их бортовых систем и целевой аппаратуры.

В данной статье рассматривается миниспутник землеобзора (рис. 1) массой 250 кг, оснащенный телескопом с апертурой 0.4 м, который отделяется от верхней ступени ракеты-носителя на солнечно-синхронной орбите высотой 600 км. Предполагается, что такой миниатюрный КА оснащён системой управления движением,

Рис. 1. Мини-спутник землеобзора

Рис. 2. Схема *GE* (*a*) и оболочка ее КМ (*b*)

содержащей бесплатфрменную инерциальную навигационную систему (БИНС) с коррекцией по сигналам спутников GPS/ГЛОНАСС и звездных датчиков, кластер гироскопических датчиков угловой скорости (ДУС), трехосный магнитометр (ММ), а также следующие бортовые приводы: двигательная установка (ДУ), кластер четырех двигателей-маховиков (ДМ) по схеме *General Electric (GE)*, рис. 2, и магнитный привод (МП). Мы изучаем нелинейные проблемы управления КА в следующих режимах начальной ориентации (PHO):

(i) успокоение вращательного движения КА в инерциальной системе координат (ИСК) с помощью цифрового управления МП по сигналам кластера ДУС когда модуль вектора угловой скорости $\omega = |\mathbf{\omega}| > \omega_1^*$ при заданном значении ω_1^* ;

(ii) инициализация кластера ДМ, включение его в контур управления КА и последующее приведение КА по сигналам БИНС к требуемой ориентации в ОСК;

(iii) угловая стабилизация КА в ОСК при автономном цифровом управлении кластером ДМ, в том числе при его разгрузке от накопленного кинетического момента (КМ) с использованием МП, для подготовки СУО спутника к полётной верификации её работоспособности.

Методы решения таких задач без использования каких-либо ДУ ранее были представлены в [4]. Недостатками этих разработанных методов являются необходимость временной программы пространственного наведения КА с использованием прогноза терминальных граничных условий и большая длительность приведения углового положения спутника к требуемой ориентации в ОСК.

В отличие от такого подхода, здесь в развитие [5] решается задача автономного углового наведения КА при отслеживании значений вектора модифицированных параметров Родрига (МПР) эталонной модели с использованием модульно ограниченного вектора цифрового управляющего момента кластера ДМ в процессе приведения ориентации спутника из произвольной в ИСК к требуемой в орбитальной системе координат. Мы также кратко обсуждаем проблемы проверки работоспособности СУО в режимах начальной ориентации.

МОДЕЛИ И ПОСТАНОВКА ЗАДАЧИ

Минимально-избыточная схема GE кластера ДМ, рис. 2, обладает возможностью управлять ориентацией КА при отказе любого одного маховика. Здесь в ССК Охуг оси вращения четырёх ДМ располагаются на поверхности конуса с углом полу-раствора γ . Далее используются стандартные обозначения $\{\cdot\} = col(\cdot)$, $[\cdot] = \text{line}(\cdot), \langle , \rangle, (\cdot)^{t}, [\times] и \circ, \widetilde{\cdot}$ для векторов, матриц и кватернионов, $C_{\gamma} \equiv \cos \gamma$, $S_{\gamma} \equiv \sin \gamma$, $i = 1, 2, 3...m \equiv 1 \div m$ и применяется вектор МПР $\boldsymbol{\sigma} = \{\boldsymbol{\sigma}_i\} = \mathbf{e} \operatorname{tg}(\boldsymbol{\Phi}/4)$ с традиционными обозначениями орта Эйлера е и угла Ф собственного поворота. Вектор **о** взаимно-однозначно связан с кватернионом $\Lambda = (\lambda_0, \lambda)$, $\lambda \equiv \{\lambda_i\}$ ориентации КА в ИСК прямыми $\sigma = \lambda/(1 + \lambda_0)$ и обратными $\lambda_0 = (1 - \sigma^2)/(1 + \sigma^2)$, $\lambda \equiv {\lambda_i} = 2\sigma/(1+\sigma^2)$ соотношениями.

Модель углового движения КА учитывает упругость его конструкции и имеет вид

$$\dot{\mathbf{A}} = \mathbf{A} \circ \boldsymbol{\omega}/2 ; \mathbf{A}^{\circ} \{ \dot{\boldsymbol{\omega}}, \ddot{\mathbf{q}}, \mathbf{\Omega} \} = \{ \mathbf{F}^{\omega}, \mathbf{F}^{q}, \mathbf{F}^{r} \}, (1)$$

$$\mathbf{F}^{\omega} = -[\boldsymbol{\omega} \times] \mathbf{G} + \mathbf{M}^{m} + \mathbf{M}^{d} ;$$

$$\mathbf{F}^{q} = -\mathbf{A}^{q} (\mathbf{V}_{q} \dot{\mathbf{q}} + \mathbf{W}_{q} \mathbf{q}) ; \mathbf{F}^{r} = \mathbf{m} - \mathbf{m}^{f} ;$$

$$\mathbf{A}^{\circ} = \begin{bmatrix} \mathbf{J} & \mathbf{D}_{q} & J_{r} \mathbf{A}_{\gamma} \\ \mathbf{D}_{q}^{t} & \mathbf{A}^{q} & \mathbf{0} \\ J_{r} \mathbf{A}_{\gamma}^{t} & \mathbf{0} & J_{r} \mathbf{I}_{4} \end{bmatrix} ;$$

$$\mathbf{A}_{\gamma} = \begin{bmatrix} C_{\gamma} & C_{\gamma} & C_{\gamma} & C_{\gamma} \\ S_{\gamma} & -S_{\gamma} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & S_{\gamma} & -S_{\gamma} \end{bmatrix} .$$

Здесь $\mathbf{G} = \mathbf{G}^{\circ} + \mathbf{D}_{q}\dot{\mathbf{q}}$ является вектором КМ электромеханической системы, где $\mathbf{G}^{\circ} = \mathbf{K} + \mathbf{H}$ и $\mathbf{K} = \mathbf{J}\boldsymbol{\omega}$, столбцы $\mathbf{H} = \{\mathbf{H}_{i}\}, \quad i = 1 \div 3$ и $\mathbf{h} = \{\mathbf{h}_{p}\}, \quad \mathbf{h}_{p} = J_{r}\Omega_{p}, \quad p = 1 \div 4$ представляют КМ кластера и отдельных ДМ, которые связаны соотношением $\mathbf{H} = \mathbf{A}_{\gamma} \mathbf{h}$, где матрица \mathbf{A}_{γ} составлена из ортов осей ДМ в базисе В;

$$\mathbf{A}^{q} = \operatorname{diag}\{\boldsymbol{\mu}_{j}\}; \ \mathbf{V}_{q} = \operatorname{diag}\{\frac{\mathbf{o}}{\pi}\boldsymbol{\Omega}_{j}^{s}\}; \\ \mathbf{W}_{q} = \operatorname{diag}\{(\boldsymbol{\Omega}_{j}^{s})^{2}\}; \ \mathbf{M}^{m} = \{m_{i}^{m}\}; \\ \mathbf{m} = \{m_{p}\}; \ \mathbf{m}^{f} = \{m_{p}^{f}\};$$

МΠ вектор механического момента $\mathbf{M}^{\mathrm{m}} = \{m^{\mathrm{m}}_i\} = -\mathbf{L} imes \mathbf{B}$, где вектор электромагнитного момента (ЭММ) $\mathbf{L} = \{l_i\}$ с ограниченными компонентами $|I_i| \leq l^m$ и вектор индукции магнитного поля Земли $\mathbf{B} = \mathbf{b}\mathbf{B}$ с ортом \mathbf{b} определены в ССК; векторы-столбцы $\mathbf{m} = \{m_n\}$ и $\mathbf{m}^{\mathrm{f}} = \{m_p^{\mathrm{f}}\}$ представляют управляющие мо-менты и моменты сил сухого трения по осям вращения ДМ, а вектор \mathbf{M}^{d} – внешние возмущающие моменты. Ресурсы каждого ДМ по управляющему и кинетическому моментам ограничены, $|m_p(t)| \le m^m$, $|\mathbf{h}_p(t)| \le h^m$, $p = 1 \div 4$. Далее используется вектор $\mathbf{M}^{r} = \{\mathbf{M}_{i}^{r}\}$ управляющего момента кластера ДМ в виде $\mathbf{M}^{r} = -\mathbf{H}^{*}$, где $(\cdot)^{*}$ - символ локальной производной по времени.

Если КА считать свободным твердым телом, который управляется только кластером ДМ, и СУО сбалансирована по вектору суммарного кинетического момента (вектор $\mathbf{G} \equiv \mathbf{0}$), то модель (1) пространственного углового движения КА принимает вид

$$\mathbf{\Lambda} = \mathbf{\Lambda} \circ \mathbf{\omega}/2; \quad \dot{\mathbf{\omega}} = \mathbf{J}^{-1}\mathbf{M}^{1} = \mathbf{\varepsilon} \equiv \mathbf{u}.$$
 (2)

Пусть для формирования управления **u** применяются измерения кватерниона $\Lambda(t)$, которые используются для вычисления вектора МПР $\sigma(t)$, и вектора угловой скорости $\omega(t)$. Кинематическому уравнению в (2) соответствует соотношение $\dot{\sigma} = (1 - \sigma^2)\omega/4 + \sigma \times \omega/2 + \sigma \langle \sigma, \omega \rangle/2$ для вектора MПР **о**, поэтому при векторе управляющего углового ускорения $\mathbf{u} \equiv \mathbf{\varepsilon}$ модель (2) представляется в нормированной непрерывной векторной форме

$$\dot{\boldsymbol{\sigma}} = \frac{1}{4} (1 - \sigma^2) \boldsymbol{\omega} + \frac{1}{2} \boldsymbol{\sigma} \times \boldsymbol{\omega} + \frac{1}{2} \boldsymbol{\sigma} \langle \boldsymbol{\sigma}, \boldsymbol{\omega} \rangle ; \ \dot{\boldsymbol{\omega}} = \mathbf{u} \ (3)$$

с заданными начальными условиями $\mathbf{\sigma}(t_o) = \mathbf{\sigma}_o$, $\mathbf{\omega}(t_{o}) = \mathbf{\omega}_{o}$ при $t_{o} = 0$, где при обозначении $\mathbf{e}_{o} = \mathbf{e}(t_{o})^{\circ}$ вектор $\mathbf{\sigma}_{o} \equiv \mathbf{e}_{o} \operatorname{tg}(\Phi_{o}/4)$ является произвольным с условием | Φ_{α} |< 2π .

Как известно, кватернион $-\Lambda$ задает вращение КА на угол $2\pi - \Phi$ вокруг орта Эйлера -е, которое полностью совпадает с вращением этого объекта на угол Ф вокруг орта Эйлера ${\bf e}$, т.е. значения ${\bf \Lambda}$ и $-{\bf \Lambda}$ совпадают. Следовательно, при $\Phi = \pi$ возникает проблема двузначности кватерниона и требуется конкретизировать его значение вместе с направлением орта Эйлера. Для вектора МПР **о** такая проблема не проявляется $\forall \Phi \in (-2\pi, 2\pi)$. Поэтому далее принимается эталонная модель (3) автономного пространственного наведения с вектором МПР σ, вектором угловой скорости $\boldsymbol{\omega}$ и вектором ускорения $\boldsymbol{\epsilon} \equiv \boldsymbol{u}$, который формально считается управлением. Будем считать, что вектор такого управления $\mathbf{u} = \{u_i\}$ ограничен по модулю $|\mathbf{u}(t)| \equiv u(t) \le u^m$, $u^m > 0$, а вектор $\boldsymbol{\omega}(t) = \{\omega_i(t)\}$ ограничен по модулю $|\omega(t)| \equiv \omega(t) \le \omega^m$, $\omega^m > 0$, естественно $\omega_{o} = |\boldsymbol{\omega}_{o}| \leq \omega^{m}$.

При законе наведения КА, заданного кватернионом $\Lambda^{p}(t)$, векторами угловой скорости $\boldsymbol{\omega}^{p}(t)$ и углового ускорения $\boldsymbol{\varepsilon}^{p}(t)$, погрешность ориентации ССК О хуг определяется кватернионом $\mathbf{E} = (e_0, \mathbf{e}) = \widetilde{\mathbf{\Lambda}}^p \circ \mathbf{\Lambda}$ при векторе $\mathbf{e} = \{e_i\}$, которому соответствуют матриошибки ориентации $\mathbf{C}^{e} = \mathbf{I}_{3} - 2[\mathbf{e} \times] \mathbf{Q}_{e}^{t}$, где матрица $\mathbf{Q}_{e} = \mathbf{I}_{3}e_{0} + [\mathbf{e}\times]$, вектор мо-дифицированных параметров Родрига $σ^e = {σ_i^e} = e/(1 + e_0) = e^e tg(Φ^e/4) c optom$ \mathbf{e}^{e} оси Эйлера и углом Φ^{e} собственного поворота, а также вектор угловой погрешности $\delta \mathbf{\phi} = \{\delta \phi_i\} = \{4 \sigma_i^e\}$. При этом вектор ошибки $\delta \omega(t) \equiv \omega^{e}(t)$ по угловой скорости вычисляется на основе соотношения $\omega^{e} = \omega - \mathbf{C}^{e} \omega^{p}(t)$.

Предположим, что дискретное измерение кватерниона $\Lambda_i \equiv \Lambda(t_i)$ ориентации КА в ИСК выполняется БИНС в моменты времени t₁, $l \in \mathbb{N}_0 \equiv [0,1,2,...)$ периодом T_p , в моменты времени t_k , $k \in \mathbb{N}_0$ с периодом T_u формируется цифровое управление кластером ДМ, а цифровое управления МП действует $\forall t \in [t_r, t_{r+1})$, $r \in \mathbb{N}_0$ с периодом $T_u^m > T_u$. В данной статье решаются следующие задачи:

(i) разработка дискретных алгоритмов цифрового управления как МП, так и кластером ДМ с учетом особенностей их применения в СУО мини-спутника;

(ii) синтез нелинейного цифрового закона управления $\mathbf{u}_k \equiv \mathbf{u}(\boldsymbol{\sigma}_k, \boldsymbol{\omega}_k)$ в эталонной модели (2) & (3) автономного наведения при ограниченных модулях векторов управления и угловой скорости, который обеспечивает асимптотическую устойчивость замкнутой непрерывно-дискретной эталонной модели;

(iii) синтез нелинейного цифрового закона управления кластером ДМ, который после завершения режима успокоения спутника обеспечивает переход КА из произвольной ориентации в ИСК в требуемое угловое положение в ОСК;

(iv) компьютерная имитация работы СУО в режимах начальной ориентации геодезического мини-спутника на солнечно-синхронной орбите при его автономном угловом наведении и управлении;

(v) краткое обсуждение проблем проверки работоспособности СУО мини-спутника.

ЦИФРОВОЕ УПРАВЛЕНИЕ МАГНИТНЫМ ПРИВОДОМ

Когда КА моделируется как твердое тело $(\mathbf{M}^{d} = \mathbf{0}, \mathbf{M}^{r} = \mathbf{0}$ и $\mathbf{G} = \mathbf{K}$), управляемое только МП, то согласно (1) модель его динамики представляется в виде $\mathbf{K} = \mathbf{M} - \boldsymbol{\omega} \times \mathbf{K}$, где $\dot{\mathbf{K}} \equiv \mathbf{K}^* = \mathbf{J}\dot{\boldsymbol{\omega}}$ и внешний управляющий момент $M = M^{m}$. Для синтеза локально оптимальных непрерывных законов управления $\mathbf{M} = \mathbf{M}(\boldsymbol{\omega})$ применялась функция Ляпунова $v = K^2 = \langle K, K \rangle$. В результате установлено [4], что в режиме успокоения КА с минимальным принуждением $M^2 = |\mathbf{M}|^2$ закон управления имеет вид $\mathbf{M} = -a \mathbf{K} \mathbf{k}$ с ортом $\mathbf{k} = \mathbf{K} / \mathbf{K}$ и постоянным параметром a > 0, а закон управления $\mathbf{M} = -m \, \mathbf{k}$ с постоянным параметром *m* > 0 представляет управляющий момент, оптимальный по быстродействию.

При цифровом управлении МП будем считать, что в моменты времени $t_r = r T_u^m$ вектор индукции магнитного поля Земли $\mathbf{B}_r \equiv \mathbf{B}(t_r) = \mathbf{B}_r \mathbf{b}_r$ измеряется магнитометром. При формировании команды $\mathbf{M}_r = -a \mathbf{K}_r$ для вектора механического момента МП на каждом полуинтервале времени $t \in [t_r, t_{r+1})$ с заданным периодом T_u^m сначала определяется вектор потребной вариации импульса (*pulse*) управляющего момента

$$\mathbf{M}_{r}^{p} \equiv \int_{t_{r}}^{t_{r+1}} \mathbf{M}(\tau) d\tau = -a \int_{t_{r}}^{t_{r+1}} \mathbf{K}(\tau) d\tau$$
$$= -\mathbf{K}_{r} (1 - \exp(-aT_{u}^{m})) \mathbf{k}_{r}.$$

Этот вектор представляется в виде $\mathbf{M}_{r}^{p} = \mathbf{b}_{r} \times (\mathbf{M}_{r}^{p} \times \mathbf{b}_{r}) + \mathbf{b}_{r} \langle \mathbf{M}_{r}^{p}, \mathbf{b}_{r} \rangle$ и для энергетической экономичности МП назначается вектор $\mathbf{M}_{r}^{p} = \mathbf{M}_{r}^{pm} \equiv \mathbf{b}_{r} \times (\mathbf{M}_{r}^{p} \times \mathbf{b}_{r})$ с условием $\langle \mathbf{M}_{L}^{p}, \mathbf{b}_{r} \rangle = 0$.

Вектор потребной вариации импульса управляющего момента МП $\mathbf{M}_{r}^{pm} \equiv -\Delta \mathbf{I}_{r}^{m} \mathbf{k}_{r}$ с модулем $\Delta \mathbf{I}_{r}^{m} = \mathbf{K}_{r}(1 - \exp(-aT_{u}^{m}))$ и ортом \mathbf{k}_{r} далее используется для формирования цифрового управления ЭММ $\mathbf{L}_{r} = \{l_{ir}\}$ МП с периодом T_{u}^{m} . При этом определяется взаимная ориентация ортов \mathbf{b}_{r} и \mathbf{k}_{r} , если $|(\mathbf{b}_{r}, \mathbf{k}_{r})| > \cos(\pi/3)$, то на текущем периоде дискретности МП не включается, иначе формируется вектор ЭММ $\mathbf{L}_{r} = (\Delta \mathbf{I}_{r}^{m} / T_{u}^{m})(\mathbf{b}_{r} \times \mathbf{k}_{r}) / \mathbf{B}_{r}$ с ограниченными компонентами $|l_{r}| \leq l^{m}$.

ЦИФРОВОЕ УПРАВЛЕНИЕ ДМ

В задаче идентификации момента сил сухого трения по осям вращения ДМ для простоты рассмотрим только один ДМ, при этом индекс p не используется. Простейшая модель движения ДМ представляется в нормированном виде $\dot{\Omega}(t) = a(t) - a^{\rm f}(t)$, где управляющее ускорение $a = m/J_r$, ускорение $a^{\rm f}(t) = a_{\rm o}^{\rm f} \operatorname{sign}(\Omega(t) \in [-a_{\rm o}^{\rm f}, a_{\rm o}^{\rm f}]$ отражает влияние момента сил сухого трения и при моменте инерции ДМ J_r параметр $a_{\rm o}^{\rm f} = m_{\rm o}^{\rm f}/J_r = \operatorname{const}$. В предположении $a^{\rm f}(t) = a^{\rm f}(t_s) = a_s^{\rm f} = \operatorname{const}$ $\forall t \in [t_s, t_{s+1}]$, где $t_{s+1} = t_s + T_q)$ с периодом $T_q < T_u$, для получения оценки $\hat{a}_s^{\rm f}$ значения $a_s^{\rm f}$ применяется дискретный идентификатор Луенбергера

$$\hat{\Omega}_{s+1} = \hat{\Omega}_s + (a_s - \hat{a}_s^{\mathrm{f}}) T_s + g_1^{\mathrm{f}} \delta \Omega_s;$$
$$\hat{a}_{s+1}^{\mathrm{f}} = \hat{a}_s^{\mathrm{f}} + g_2^{\mathrm{f}} \delta \Omega_s; \delta \Omega_{s+1} = \Omega_{s+1} - \hat{\Omega}_{s+1},$$

где постоянные параметры g_1^{f} и g_2^{f} определяются по явным соотношениям. Дискретная оценка момента сил сухого трения получается в виде $\hat{m}^{f}(t_s) = \hat{m}_s^{f} = J_r \hat{a}_s^{f}$.

Компенсационная схема разгрузки кластера ДМ основана на следующих положениях. Вычисляются потребная вариация модуля ΔI_r^m и орт \mathbf{k}_r вектора потребного *импульса* механического момента МП в ССК. Далее рассчитывается постоянная команда $\mathbf{M}_k^{cu} = \{m_{ik}^{cu}\} = \Delta I^m \mathbf{b}_r / T_u^m$ *компенсации* импульса механического момента МП, которая одновременно с периодом управления T_u^m поступает как на МП, так и с периодом управления T_u на кластер ДМ, но с обратным знаком.

Для кластера четырех ДМ принципиальная проблема заключается в распределении векторов его кинетического **H** и управляющего $\mathbf{M}^{r} = -\mathbf{H}^{*}$ моментов при избыточном числе двигателей- маховиков. При некоторых упрощениях эта проблема состоит в одновременном решении двух уравнений

$$\begin{split} \mathbf{A}_{\gamma} \, \mathbf{h} &= \mathbf{H} \quad \forall \ \mathbf{H} \in \mathbf{R}^{3}, \ \forall \ \mathbf{h} \in \mathbf{R}^{4}; \\ \mathbf{A}_{\gamma} \, \mathbf{m} &= \mathbf{H}^{*} = -\mathbf{M}^{\mathrm{r}} \ \forall \ \mathbf{M}^{\mathrm{r}} \in \mathbf{R}^{3}, \mathbf{m} \in \mathbf{R}^{4}. \end{split}$$

Используемый подход к разрешению этих уравнений основан на применении скалярной функции автоматической настройки кластера, которая позволяет однозначно распределять векторы **H** и $\mathbf{M}^{r} = -\mathbf{H}^{*}$ между четырьмя ДМ по явным аналитическим соотношениям [6]. Введем нормированный вектор КМ кластера $\boldsymbol{h} \equiv \{x, y, z\} = \mathbf{H}/\mathbf{h}^{m} = \mathbf{A}_{\gamma} \mathbf{h}$, где $x = x_{1} + x_{2}$,

$$x_{1} = C_{\gamma}(h_{1} + h_{2}), x_{2} = C_{\gamma}(h_{3} + h_{4});$$

$$y = S_{\gamma}(h_{1} - h_{2}), z = S_{\gamma}(h_{3} - h_{4});$$

$$\mathbf{h} = \{h_{p}\}, h_{p} = \mathbf{h}_{p} / \mathbf{h}^{m}, |h_{p}| \leq 1.$$

Распределение этого вектора между четырьмя ДМ выполняется по закону

$$\begin{split} f_{\rho} &= \widetilde{x}_{1} - \widetilde{x}_{2} + \rho(\widetilde{x}_{1}\widetilde{x}_{2} - 1) = 0, \\ \text{где } 0 < \rho < 1; \ \widetilde{x}_{1} &= x_{1} / q_{y}; \ \widetilde{x}_{2} &= x_{2} / q_{z}, \\ q_{s} &= (4C_{\gamma}^{2} - s^{2})^{1/2}, \ s &= y, z, \end{split}$$

на основе соотношений

(i)
$$q \equiv q_y + q_z$$
;
 $\Delta \equiv (q / \rho)(1 - (1 - 4\rho[(q_y - q_z)(x / 2) + \rho(q_y q_z - (x / 2)^2)]/q^2)^{1/2});$

 $x_1 = (x + \Delta)/2$, $x_2 = (x - \Delta)/2$;

(ii) распределение КМ между ДМ в каждой паре по очевидным формулам;

(iii) вычисление столбца $\mathbf{m} = \{m_p\}$ по явной формуле

$$\mathbf{m} = -(\{\mathbf{A}_{\gamma}, \mathbf{a}^{\mathrm{f}}\})^{-1}\{(\mathbf{M}_{k}^{\mathrm{r}} + \mathbf{M}_{k}^{\mathrm{cu}}), \mathbf{h}^{\mathrm{m}}\operatorname{sat}(\phi_{\rho}, \mu_{\rho}f_{\rho})\} (4)$$

с параметрами $\phi_{\rho}, \mu_{\rho} > 0$ и компонентами строки $\mathbf{a}^{\mathrm{f}} = [a_{n}^{\mathrm{f}}]$ в виде

$$a_{1,2}^{f} = \frac{2C_{\gamma}}{q_{y}^{3}} [2C_{\gamma}^{2} \pm S_{\gamma}^{2}h_{2}(h_{1} - h_{2})][1 + \rho \frac{C_{\gamma}(h_{3} + h_{4})}{q_{z}}];$$

$$a_{3,4}^{f} = \frac{2C_{\gamma}}{q_{z}^{3}} [2C_{\gamma}^{2} \mp S_{\gamma}^{2}h_{4}(h_{3} - h_{4})][1 + \rho \frac{C_{\gamma}(h_{1} + h_{2})}{q_{y}}]$$

с явным учетом команды $\mathbf{M}_{k}^{\mathrm{cu}}$ для приближенной компенсации влияния моментов МП при разгрузке кластера ДМ. В завершении формирования цифрового управления ДМ выполняется переопределение $\mathbf{m}_{k} := \mathbf{m}_{k} + \hat{\mathbf{m}}_{k}^{\mathrm{f}}$, где $\hat{\mathbf{m}}_{k}^{\mathrm{f}}$ является столбцом, составленным из текущих оценок \hat{m}_{k}^{f} моментов сил сухого трения по осям вращения ДМ.

ЭТАЛОННАЯ МОДЕЛЬ НАВЕДЕНИЯ

При использовании диадного произведения $[\mathbf{a} \cdot \mathbf{b}]$ 3-мерных векторов $\mathbf{a} = \{a_i\}$ и $\mathbf{b} = \{b_j\}$, которое представляется как $[\mathbf{a} \cdot \mathbf{b}] \equiv \mathbf{a} \mathbf{b}^t = \mathbf{C} = ||c_{ij}|| = ||a_i b_j||$, прямые и обратные кинематические уравнения для вектора МПР $\boldsymbol{\sigma}$ имеют вид $\dot{\boldsymbol{\sigma}} = \mathbf{B}(\boldsymbol{\sigma})\boldsymbol{\omega}$ и $\boldsymbol{\omega} = \mathbf{D}(\boldsymbol{\sigma})\dot{\boldsymbol{\sigma}}$, где матрицы

$$\mathbf{B}(\boldsymbol{\sigma}) = \frac{1}{4}(1-\boldsymbol{\sigma}^2)\mathbf{I}_3 + \frac{1}{2}([\boldsymbol{\sigma}\times] + [\boldsymbol{\sigma}\cdot\boldsymbol{\sigma}];$$
$$\mathbf{D}(\boldsymbol{\sigma}) = \mathbf{B}^{-1}(\boldsymbol{\sigma}) = (8/(1+\boldsymbol{\sigma}^2)^2)\mathbf{B}^{\mathrm{t}}(\boldsymbol{\sigma}).$$

Компактное представление второй производной векторной функции **о** даётся соотношением

$$\ddot{\boldsymbol{\sigma}} = \frac{1}{2} (\boldsymbol{\leftarrow} \boldsymbol{\sigma}, \dot{\boldsymbol{\sigma}} \rangle \boldsymbol{\omega} + \frac{1}{2} (1 - \boldsymbol{\sigma}^2) \boldsymbol{\varepsilon} + \dot{\boldsymbol{\sigma}} \times \boldsymbol{\omega} + \boldsymbol{\sigma} \times \boldsymbol{\varepsilon} + \langle \boldsymbol{\sigma}, \boldsymbol{\omega} \rangle \dot{\boldsymbol{\sigma}} + \langle \dot{\boldsymbol{\sigma}}, \boldsymbol{\omega} \rangle \boldsymbol{\sigma} + \boldsymbol{\sigma} \langle \boldsymbol{\sigma}, \boldsymbol{\varepsilon} \rangle.$$

В итоге модель (3) сводится к нелинейной управляемой системе в форме Бруновского

 $\ddot{\mathbf{\sigma}} = \mathbf{v} \equiv \mathbf{b}(\mathbf{\sigma}, \mathbf{\omega}) + \mathbf{B}(\mathbf{\sigma})\mathbf{u}$, где векторная функция

$$\mathbf{b}(\sigma, \omega) = ([(\mathbf{B}(\sigma)\omega) \times] + [\sigma \cdot \mathbf{B}(\sigma)\omega)] \omega/2.$$

Применение методов линеаризации обратной связью, модального синтеза и векторных функций Ляпунова [7] для модели $\ddot{\mathbf{\sigma}} = \mathbf{v}$ на едином желаемом спектре $S_* = (-\alpha \pm j\beta)$ с $j = \sqrt{-1}$ приводит к непрерывному нелинейному закону управления $\mathbf{v} = -(k_{\sigma}\mathbf{\sigma} + k_{\omega}\dot{\mathbf{\sigma}}) = -(k_{\sigma}\mathbf{\sigma} + k_{\omega}\mathbf{B}(\mathbf{\sigma})\boldsymbol{\omega})$ с постоянными коэффициентами, который при обеспечении требуемой асимптотической устойчивости тривиального решения $\mathbf{\sigma}(t) = \mathbf{0}$, $\boldsymbol{\omega}(t) = \mathbf{0}$ представляется в дискретном виде

$$\mathbf{v}_k \equiv \{\mathbf{v}_k\} = -(k_{\sigma}^d \mathbf{\sigma}_k + k_{\omega}^d \mathbf{B}(\mathbf{\sigma}_k) \mathbf{\omega}_k).$$

Здесь при заданном времени регулирования T_r коэффициенты k_σ^d и k_ω^d вычисляются по явным аналитическим соотношениям

$$\omega_* = 3/(\xi T_r); \ \alpha = \xi \omega_*, \ \beta = \omega_* \sqrt{1 - \xi^2};$$

$$a_1 = -2 \exp(-\alpha T_u) \cos(\beta T_u), \ a_2 = \exp(-2\alpha T_u);$$

$$k_{\sigma}^d = (1 + a_1 + a_2)/T_u^2, \ k_{\omega}^d = (3 + a_1 - a_2)/(2T_u),$$

которые справедливы $\forall \xi > 0$.

Предварительный непрерывный законуправления $\widetilde{\mathbf{u}} \equiv \{\widetilde{u}_i\} = \widetilde{\mathbf{u}}(\boldsymbol{\sigma}, \boldsymbol{\omega}) = \mathbf{D}(\boldsymbol{\sigma})(\mathbf{v} - \mathbf{b}(\boldsymbol{\sigma}, \boldsymbol{\omega}))$ обеспечивает равномерную асимптотическую устойчивость тривиального решения для модели (3), а его дискретная форма представлена соотношением

$$\widetilde{\mathbf{u}}_{k} = -[\mathbf{D}(\mathbf{\sigma}_{k})(k_{\sigma}^{d}\mathbf{\sigma}_{k} + \mathbf{b}(\mathbf{\sigma}_{k},\mathbf{\omega}_{k})) + k_{\omega}^{d}\mathbf{\omega}_{k}].$$
(5)

При окончательном формировании цифрового управления $\mathbf{u}_k(\mathbf{\sigma}_k, \mathbf{\omega}_k) \equiv \{u_k\}$ в очередной момент времени t_k учитываются ограничения на модуль вектора управления ($u(t) \le u^m$) и модуль вектора угловой скорости ($\omega(t) \le \omega^m$) по следующему простому алгоритму A :

1) по значению цифрового управления $\widetilde{\mathbf{u}}_k$ (5) в момент времени t_k вычисляется прогнозное значение вектора угловой скорости $\mathbf{\omega}_k^q = \mathbf{\omega}_k + \widetilde{\mathbf{u}}_k T_u$, достигаемое в конце интервала времени длительностью T_u , и если $|\mathbf{\omega}_k^q| > \mathbf{\omega}^m$, то управление $\widetilde{\mathbf{u}}_k$ переопределяется как $\widetilde{\mathbf{u}}_k = ((\mathbf{\omega}^m \mathbf{\omega}_k^p / \mathbf{\omega}_k^p) - \mathbf{\omega}_k) / T_u$;

2) далее, если $| \widetilde{\mathbf{u}}_k | \equiv \widetilde{u}_k > \mathbf{u}^m$, то формируется управление $\mathbf{u}_k = \mathbf{u}^m \widetilde{\mathbf{u}}_k / \widetilde{u}_k$, иначе $\mathbf{u}_k = \widetilde{\mathbf{u}}_k$.

Для проверки работоспособности разработанного цифрового закона управления в эталонной модели наведения рассмотрим простейшую каноническую задачу. Пусть для эталонной модели наведения (3), определенной в ИСК, в момент времени $t_0 = 0$ заданы начальные условия

закон цифрового управления $\mathbf{u}_k(\mathbf{\sigma}_k, \mathbf{\omega}_k)$ с па-

раметрами $T_r = 60 T_u$, $\xi = 0.95$, периодом $T_u = 0.25$ с представлен (5) с учетом алгоритма A и ограничения $\omega^m = 1$ град/с, $u^m = 0.3$ град/с². Задача состоит в обеспечении совпадения ориентации ССК с ИСК, когда $\sigma = 0$ и $\omega = 0$.

На рис. З представлены переходные процессы для компонентов векторов σ , ω и $\varepsilon \equiv \mathbf{u}_k$, а также для модулей векторов ω и ε (черный цвет). Здесь и далее компоненты векторов всегда отмечаются цветами: синий по оси *Ox* крена, зелёный по оси *Oy* рыскания и красный по оси *Oz* тангажа. Эти результаты демонстрируют, что нелинейная модель (З) с цифровым законом управления $\mathbf{u}_k(\sigma_k, \boldsymbol{\omega}_k)$ асимптотически устойчива при ограничениях на модули векторов $\boldsymbol{\omega}$ и \mathbf{u}_k .

АВТОНОМНОЕ НАВЕДЕНИЕ И ЦИФРОВОЕ УПРАВЛЕНИЕ

Автономное наведение и цифровое управление основано на аналитических соотношениях, связывающих требуемые координаты состояния КА с измеренными координатами его углового перемещения. Задача заключается в синтезе законов автономного наведения и управления КА в начальных режимах ориентации, в том числе приведении КА из произвольной ориентации в ИСК к заданной в ОСК, для простоты совпадающей с этой системой координат. В таком случае кватернион $\Lambda^{\circ}(t)$ определяет ориентацию ОСК в ИСК и получается закон наведения $\Lambda^p = \Lambda^o$, $\boldsymbol{\omega}^{p} = \boldsymbol{\omega}^{o}$ и $\boldsymbol{\varepsilon}^{p} = \boldsymbol{\varepsilon}^{o}$. В ОСК О $x^{o}y^{o}z^{o}$ ориентация КА определяется также углами Эйлера-Крылова ϕ_1 (крена), ϕ_2 (рыскания) и ϕ_3 (тангажа) в последовательности 312 элементарных поворотов. Эти углы составляют столбец $\phi = \{\phi_i\}$ и используются при формировании матрицы $\mathbf{C}^{\circ} = \mathbf{C}^{\circ}$. Все кинематические параметры (Λ° , ω° ,

 ε°) углового движения ОСК в ИСК формируются непосредственно на борту мини-спутника, сначала с периодом T_u^m при его успокоении в ИСК и затем с периодом T_u при использовании методов фильтрации, аппроксимации, интерполяции и экстраполяция [1]. С другой стороны, кватернион Λ ориентации КА в ИСК и вектор ω его угловой скорости измеряются БИНС и кластером ДУС, поэтому и возникает возможность автономного наведения [5] и цифрового управления ориентацией мини-спутника в РНО.

Предположим, что КА отделяется от ракеты-носителя в момент времени $t_0 = 0$, когда вектор угловой скорости $\mathbf{\omega}(t)$ принимает значение $\boldsymbol{\omega}_0 = \boldsymbol{\omega}(t_0)$ с полностью произвольным кватернионом $\mathbf{\Lambda}_0 = \mathbf{\Lambda}(t_0)$ его ориентации в ИСК. Как подробно описано выше, цифровой вектор ЭММ $\mathbf{L}_r = \{l_{ir}\}$ с ограниченными компонентами | *l*_{ir} | ≤ 1^m начинает формироваться автономно, используя измерения магнитометра и кластера ДУС: генерируются значения вектора $\mathbf{M}^{\mathrm{m}}_{r}(t) = \{m^{\mathrm{m}}_{ir}(t)\} \; \forall t \in [t_{r},t_{r+1})$ для замедления вращения КА и режим его успокоения в ИСК заканчивается, когда выполнено условие $|\omega(t)| \le \omega_1^* \equiv \omega(t_1^*)$ в некоторый момент времени t_1^* . В тот же момент времени значения $\Lambda_{*1} = \Lambda(t_1^*)$ и $\omega_1^* = \omega(t_1^*)$ измеряются БИНС, которые далее используются при расчете начальных условий для приведения ориентации ССК к заданной в ОСК.

При $t \ge t_1^*$ измеряемые Λ_k , ω_k и формируемые на борту КА переменные Λ_k° , ω_k° , ε_k° применяются для расчета значений $\sigma_k \equiv \mathbf{e}_k \operatorname{tg}(\Phi_k/4)$, $\mathbf{C}_k^{\mathrm{e}}$, $\sigma_k^{\mathrm{e}} \equiv \mathbf{e}_k^{\mathrm{e}} \operatorname{tg}(\Phi_k^{\mathrm{e}}/4)$, $\omega_k^{\mathrm{e}} \equiv \delta \omega_k = \omega_k - \mathbf{C}_k^{\mathrm{e}} \omega_k^{\circ}$ и $\delta \phi_k$. Это позволяет вычислить вектор цифрового управления кластером ДМ по соотношению

$$\mathbf{M}_{k}^{\mathrm{r}} = \boldsymbol{\omega}_{k} \times \mathbf{G}_{k}^{\mathrm{o}} + \mathbf{J}(\mathbf{C}_{k}^{\mathrm{e}} \boldsymbol{\varepsilon}_{\hat{e}}^{\mathrm{o}} + [\mathbf{C}_{k}^{\mathrm{e}} \boldsymbol{\omega}_{\hat{e}}^{\mathrm{o}} \times] \boldsymbol{\omega}_{k} + \widetilde{\mathbf{m}}_{k}), (6)$$

где вектор $\mathbf{G}_k^{o} = \mathbf{K}_k + \mathbf{H}_k$, а вектор $\widetilde{\mathbf{m}}_k$ формируется в соответствии с двумя этапами:

1) $\forall t \in [t_1^*, t_2^*)$ пока $\Phi^{\rm e}(t) > \Phi_{*_2}^{\rm e} \equiv \Phi^{\rm e}(t_2^*)$ при заданном значении $\Phi_{*_2}^{\rm e}$ в некоторый момент времени $t = t_2^*$, вектор $\widetilde{\mathbf{m}}_k$ рассчитывается с использованием эталонной модели наведения по ошибке $\mathbf{\sigma}_k^{\rm e}$ вектора МПР как

 $\tilde{\mathbf{u}}_{k}^{e} = -[\mathbf{D}(\boldsymbol{\sigma}_{k}^{e})(k_{\sigma}^{d}\boldsymbol{\sigma}_{k}^{e} + \mathbf{b}(\boldsymbol{\sigma}_{k}^{e},\boldsymbol{\omega}_{k}^{e})) + k_{\omega}^{d}\boldsymbol{\omega}_{k}^{e}],$ (7) но с учетом общих ограничений на модули векторов $\boldsymbol{\omega}$ и \mathbf{u}_{k} в алгоритме A, см. также (5);

2) $\forall t \geq t_2^*$ стабилизирующий вектор $\widetilde{\mathbf{m}}_k$ формируется так: выполняется фильтрация значений вектора углового рассогласования $\mathbf{\epsilon}_l = -\delta \mathbf{\phi}_l$, $l \in \mathbf{N}_0$ с периодом T_p и результи-

рующие векторы $\mathbf{\epsilon}_{k}^{\mathrm{f}}$, $k \in \mathrm{N}_{0}$ используются для вычисления значений вектора $\widetilde{\mathbf{m}}_k$ по соотношениям

$$\mathbf{g}_{k+1} = \mathbf{B}\mathbf{g}_k + \mathbf{C}\mathbf{\varepsilon}_k^{\mathrm{f}}; \, \widetilde{\mathbf{m}}_k = \mathbf{K}(\mathbf{g}_k + \mathbf{P}\mathbf{\varepsilon}_k^{\mathrm{f}}), \quad (8)$$

где при $d_u \equiv 2/T_u$ и $a \equiv (d_u \tau_1 - 1)/(d_u \tau_1 + 1)$ элементы диагональных матриц **В**, **Р** и **С** вычисляются в виде

 $b \equiv (d_u \tau_2 - 1)/(d_u \tau_2 + 1); \ p \equiv (1-b)/(1-a);$ $c \equiv p(b-a)$ с параметрами τ_1 и τ_2 .

РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОЙ ИМИТАЦИИ

Пусть мини-спутник массой 250 кг при выводе на солнечно-синхронную орбиту высотой 600 км, наклонением 97.787 град и долготой восходящего узла 30 град, пролетая над восходящим узлом орбиты в момент времени $t_0 = 0$ отделяется от ракеты-носителя и начинает кувыркаться с модулем вектора угловой скорости $\omega_0 = 3$ град/с. Предположим, что МП имеет ограничение $1^{\rm m}=10$ А м² для компонент вектора ЭММ и период $T_{\mu}^{m} = 4$ с цифрового управления МП, а в цифровом законе управления $\mathbf{u}_k(\mathbf{\sigma}_k, \mathbf{\omega}_k)$ кластером ДМ (6) с периодом $T_u = 0.25$ с и ограничениями $\omega^m = 1$ град/с, $u^m = 0.3$ град/с² коэффициенты k_{σ}^{d} и k_{ω}^{d} были рассчитаны с параметрами $T_{r} = 60 T_{u}$ и $\xi = 0.95$. На рис. 4 представлены результаты компью-

терной имитации изменения вектора угловой скорости $\omega(t)$ мини-спутника при цифровом управлении как МП, так и кластером ДМ во всех начальных режимах ориентации. Здесь для заданного значения $\omega_1^*=0.5$ град/с автоматически определяется момент времени $t_1^* = 6336$ с завершения режима успокоения КА, а также значения Λ_{*1} , ω_1^* , $\sigma_{*1}^e \equiv e_{*1}^e tg(\Phi_{*1}^e/4)$ при

Рис. 4. Изменение вектора угловой скорости при цифровом управлении МП и кластером ДМ

Рис. 6. Изменение вектора механического момента при цифровом управлении МП в режиме успокоения

 $\Phi_{*_1}^e = 175.56$ град и $\omega_{*_1}^e = \omega_{*_1} - C_{*_1}^e \omega_{*_1}^o$. Изменения векторов L и M^m магнитного привода в этом режиме представлены на рис. 5 и 6. При заданном значении $\Phi^{\rm e}_{*2}=0.083$ град векторный закон $\widetilde{\mathbf{m}}_k$ в (6) переключается от (7) к (8) в момент времени $t_2^* = 6583.6$ с. Изменение углов Эйлера-Крылова $\delta \phi_1$ (крен, синий цвет), $\delta \phi_2$ (рыскание, зеленый), δφ₃ (тангаж, красный) и угол Φ^{e} (черный цвет) собственного поворота КА в ОСК $\forall t \ge t_1^* = 6336$ с представлены на рис. 7, а некоторые детали изменения векторов ω , M^r и **m** в процессе приведения ориентации КА в ОСК – на рис. 8, 9 и 10. Наконец, на рис. 11 и 12 приведены ошибки по угловым скоростям δω, и углам бф. при переходе СУО в установивший режим угловой стабилизации мини-спутника в орбитальной системе координат.

Здесь были учтены все шумы измерений и возмущающие моменты, тщательная дискрет-

Рис. 7. Углы Эйлера-Крылова и угол вращения КА в ОСК

Рис. 9. Изменение вектора моментов кластера ДМ

ная фильтрация измерений и выбор параметров в автономных цифровых законах управления позволили добиться хороших результатов по точности СУО мини-спутника в начальных режимах его ориентации.

ПРОВЕРКА РАБОТОСПОСОБНОСТИ СИСТЕМЫ УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ

Проверка работоспособности СУО в режимах начальной ориентации является весьма ответственной, здесь требуется особая тщательность при определении работоспособности кластера ДМ. В случае отказа необходимо провести быструю диагностику с определением конкретного отказавшего двигателя-маховика.

Алгоритм бортовой диагностики состояния СУО использует её эталонную модель для имитации номинального управления движением КА в реальном времени. Здесь для обнаружения аномальной ситуации на каждом контрольном

Рис. 8. Изменение вектора ω при приведении КА к ОСК

в режиме стабилизации КА

периоде вычисляется вектор рассогласований $\hat{\mathbf{e}} = \{\hat{e}_i\} = \mathbf{x} - \hat{\mathbf{x}}$ между векторами измеренных $\mathbf{x} = \{x_i\}$ и моделируемых $\hat{\mathbf{x}} = \{\hat{x}_i\}$ координат.

Применяемый подход к диагностике СУО и принятию решения о неисправности заключается в следующем. Изменение во времени диагностических параметров $\hat{\mathbf{e}}_{\mathbf{j}}(t)$ с индексом отказа і = 1,2 можно рассматривать как случайный процесс, характеристики которого зависят от множества факторов. Поэтому классификацию нужно вести не по детерминированным мгновенным значениям рассогласований $\hat{\mathbf{e}}_{\mathbf{j}}(t)$ в конце каждого контрольного периода T_{μ} , а как случайный процесс, представленный дискретной последовательностью значений $\hat{\mathbf{e}}\mathbf{j}_k = \hat{\mathbf{e}}\mathbf{j}\left(t_k
ight)$, $t_{k+1} = t_k + T_u$ для скользящего окна таких измерений. Классификация отказов с использованием обработки данных случайного процесса в таком окне реализована в нашей модификации [8] алгоритма последовательного контроля отношения вероятностей (ПКОВ, А. Wald, 1954), детали представлены также в [9].

ЗАКЛЮЧЕНИЕ

Для приведения ориентации космического аппарата от произвольной к требуемой используется автономное угловое наведение и модульно ограниченное векторное цифровое управление с применением вектора модифицированных параметров Родрига. Автономные векторные цифровые законы управления магнитным приводом и минимально избыточным кластером двигателей-маховиков применяются соответственно для успокоения кувыркающегося мини-спутника после его отделения от ракеты-носителя и приведения его ориентации в заданное положение в орбитальной системе координат без какой-либо реактивной двигательной установки.

Основными достижениями работы являются: (i) автономное векторное цифровое управление минимально-избыточным кластером двигателей-маховиков при явном распределении вектора управляющего момента между маховиками с учетом ограниченных ресурсов кластера по векторам управляющего момента и кинетического момента; (ii) разгрузка кластера двигателей-маховиков от накопленного кинетического момента при помощи магнитного привода с цифровым управлением по оригинальной схеме компенсации; (iii) встроенная дискретная идентификация и цифровая компенсация момента сил сухого трения на оси вращения каждого маховика.

Представлены разработанные методы и алгоритмы автономного наведения и цифрового управления мини-спутником землеобзора в начальных режимах ориентации, а также результаты компьютерной имитации с учетом всех шумов измерений и возмущающих моментов. Эти результаты продемонстрировали хорошую точность системы ориентации мини-спутника, достигаемую тщательной дискретной фильтрацией измерений и выбором параметров в простых цифровых законах управления. Кратко рассмотрена проблема проверки работоспособности системы ориентации мини-спутника и представлены разработанные дискретные алгоритмы бортовой диагностики и классификации отказов, основанные на компьютерной обработке доступных измерений и явных соотношениях.

Разработанные алгоритмы автономного наведения, цифрового управления и мониторинга состояния миниатюрных геодезических спутников просты, надежны и реализуемы в космической технике [1].

СПИСОК ЛИТЕРАТУРЫ

- Testoyedov N., Rayevsky V., Somov Ye., Titov G., Yakimov Ye. Attitude and orbit control systems of Russian com-munication, navigation and geodesic satellites: History, present and future // IFAC-PapersOnLine. 2017, vol. 50, no. 1, pp. 6422-6427.
- 2. *Somov Ye., Butyrin S., Somov S., Somova T.* Control of robot- manipulator during its preparation and capture of a passive satellite // Mathematics in Engineering, Science and Aerospace, 2019, vol. 10, no. 3, pp. 421-432.
- Somov Ye., Starinova O., Butyrin S. Pulse-width control of electro-reaction engines for a station-keeping of a land-survey satellite on sun-synchronous orbit // Procedia Engineering, 2017; vol. 185, pp. 267-274.
- 4. *Somova T*. Satellite attitude guidance and economical digital control during initial modes // Mathematics in Engineer-ing, Science and Aerospace. 2018, vol. 9, no. 3, pp. 365-372.
- Сомов Е.И., Бутырин С.А., Сомова Т.Е. Автономное наведение и управление ориентацией космического ап-парата в режиме слежения // Известия Самарского научного центра Российской академии наук. 2019. Т. 21. № 5. С. 96-107.
- Somova T. Attitude guidance and control, simulation and animation of a land-survey mini-satellite motion // Journal of Aeronautics and Space Technologies. 2016. Vol. 9, no. 2, pp. 35-45.
- Somov Ye. Feedback linearization and VLF techniques on the synthesis of spacecraft's gyromoment attitude control systems // Proceedings of 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems. Beijing. 1996, vol. 4, pp. 2522-2527.
- 8. *Somov Ye., Rodnishchev N., Somova T.* Health checking of a spacecraft control system in the orientation initial modes // Proceedings of 2019 IEEE International Workshop on Metrology for Aerospace;

Turin.2019, pp. 619-623.

9. Somov Ye., Rodnishchev N. Active fault tolerant gyromoment control of information satellites and

free-flying robots // Proceedings of 2018 IEEE International Workshop on Metrology for Aerospace, Rome. 2018, p. 166-170.

AUTONOMOUS DIGITAL CONTROL OF THE EARTH GEODETIC MINI-SATELLITE IN INITIAL ORIENTATION MODES

©2020 S.Ye. Somov^{1,2}, T.Ye. Somova²

¹ Samara Federal Research Centre, Russian Academy of Sciences, Samara, Russia ² Samara State Technical University, Samara, Russia

Methods for guidance and motion control of a space robot during a flyby of a geostationary satellite at a visual monitoring its technical state are considered. Numerical results are presented that demonstrate the effectiveness of the developed discrete guidance and control algorithms. *Key words:* a space robot, a geostationary satellite, a visual monitoring the state, control. DOI: 10.37313/1990-5378-2020-22-5-84-93

Sergey Somov, Researcher of Department "Dynamics and Motion Control", Samara Federal Research Centre, Russian Academy of Sciences; Researcher of Department "Navigation, Guidance, and Motion Control", Research Institute for Problems of Mechanical Systems Reliability, Samara State Technical University. E-mail: s_somov@mail.ru

Tatyana Somova, Researcher of Department "Navigation, Guidance and Motion Control", Research Institute for Problems of Mechanical Systems Reliability, Samara State Technical University. E-mail: te somova@mail.ru