УДК 629.78 : 681.51

СРАВНЕНИЕ МОМЕНТНЫХ СВОЙСТВ КЛАСТЕРОВ МАХОВИКОВ И ГИРОДИНОВ ПРИ СТЫКОВКЕ КОСМИЧЕСКОГО РОБОТА С ГЕОСТАЦИОНАРНЫМ СПУТНИКОМ

© 2022 С.Е. Сомов^{1,2}, Т.Е. Сомова², С.А. Бутырин^{1,2}, Е.И. Сомов^{1,2}

¹ Самарский федеральный исследовательский центр Российской академии наук, г. Самара, Россия ² Самарский государственный технический университет, г. Самара, Россия

Статья поступила в редакцию 15.02.2022

Сравниваются возможности создания управляющего момента кластерами двигателей-маховиков и гиродинов при торможении вращения связки космического робота с геостационарным спутником после завершения их стыковки. Разработаны алгоритмы системы управления с разгрузкой кинетического момента электромеханических приводов с помощью электрореактивной двигательной установки. Представлены результаты компьютерной имитации нелинейных динамических процессов, подтверждающие эффективность созданных алгоритмов.

Ключевые слова: космический робот, геостационарный спутник, успокоение вращения после стыковки, управление.

DOI: 10.37313/1990-5378-2022-24-1-105-113

Работа поддержана РФФИ, грант 20-08-00779.

ВВЕДЕНИЕ

В противовес низкоорбитальным спутниковым системам традиционная космическая связь планирует развиваться на основе перспективных геостационарных платформ, которые собираются на геостационарной орбите (ГСО) космическими роботами-манипуляторами (КРМ) из сменных и пополняемых компонентов, а затем регулярно обслуживаются КРМ в течение нескольких десятилетий. В частности, при продлении срока службы геостационарных спутников связи (ГСС) выполняется дозаправка топливом их электрореактивных двигательных установок (ЭДУ) [1].

Компания Northrop Grumman (США) уже производит космические буксиры, которые сцепившись с существующим ГСС выполняют его удержание на ГСО с помощью своей ЭДУ с потребным запасом топлива. Так, космический Сомов Сергей Евгеньевич, научный сотрудник отдела «Динамики и управления движением» СамНЦ РАН; научный сотрудник отдела «Навигации, наведения и управления движением» НИИ Проблем надежности механических систем СамГТУ. E-mail s_somov@mail.ru Сомова Татьяна Евгеньевна, научный сотрудник отдела «Навигации, наведения и управления движением» НИИ Проблем надежности механических систем СамГТУ. E-mail te_somova@mail.ru

Бутырин Сергей Анфимович, старший научный сотрудник отдела «Динамики и управления движением» СамНЦ РАН; начальник лаборатории «Моделирования систем управления» НИИ Проблем надежности механических систем СамГТУ. E-mail butyrinsa@mail.ru Сомов Евгений Иванович, ведущий научный сотрудник отдела «Динамики и управления движением» СамНЦ РАН; начальник отдела «Навигации, наведения и управления движением» НИИ Проблем надежности механических систем СамГТУ. E-mail e_somov@mail.ru буксир MEV-1 (Mission Extension Vehicle) 25 февраля 2020 года успешно пристыковался к спутнику связи Intelsat 901, который работал на ГСО в 2001-2016 гг., и после дислокации этот спутник уже 2 апреля 2020 года возобновил свою работу. Космический буксир MEV-2 был запущен 15 августа 2020 г. для продления срока службы спутника Intelsat 10-02, который работает на ГСО с 16 июня 2004 г. Успешная стыковка MEV-2 с ГСС Intelsat 10-02 была выполнена 12 апреля 2021 г. и этот спутник возобновил свою работу.

В системе управления движением (СУД) КРМ могут применяться минимально-избыточные кластеры гиродинов (ГД) либо реактивных двигателей-маховиков (ДМ) и ЭДУ на основе как плазменных, так и каталитических электрореактивных двигателей (ЭРД) [2,3]. В штатном режиме СУД измерение координат движения КРМ выполняется бесплатформенной инерциальной навигационной системой (БИНС) с коррекцией сигналами от навигационных спутников GPS/ ГЛОНАСС и звездных датчиков.

Применяемая стратегия стыковки КРМ с ГСС предполагает использование активного и пассивного агрегатов класса «штырь - конус» [4], когда КРМ притягивается к захватываемому спутнику и с натягом прижимается к механическим упорам на корпусе ГСС, обеспечивая жесткое соединение этих космических аппаратов (КА). Здесь активный агрегат имеет стыковочный механизм, который, взаимодействуя с приемным конусом и гнездом пассивного агрегата, обеспечивает первичную механическую связь (сцепку), поглощение кинетической энергии относительного движения объектов, выравнивание и стягивание агрегатов и, соответственно, робота, стыкуемого с ГСС. В статье рассматриваются вопросы успокоения (торможения) пространственного вращения связки КРМ с ГСС после завершения их стыковки и последующей угловой стабилизации этой связки в орбитальной системе координат. Задача состоит в сравнении характеристик кластеров ДМ и ГД по возможностям создания вектора управляющего крутящего момента [5] при успокоении связки КРМ с ГСС на основе компьютерной имитации нелинейных динамических процессов.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ И ПОСТАНОВКА ЗАДАЧИ

При описании движения механической связки КРМ с ГСС применяются (i) экваториальная инерциальная системы координат (ИСК) \mathbf{I}_{\oplus} с началом в центре Земли O_{\oplus} , (ii) связанная сйстема координат (ССК) **В** (Охуг) с началом в полюсе О, которая совпадает с системой координат $O_r x_r y_r z_r$ КРМ, (iii) орбитальная система координат (ОСК) **О** $(Ox^{\circ}y^{\circ}z^{\circ})$ с началом в полюсе О и ортами $\mathbf{r}^{\circ}, \mathbf{\tau}^{\circ}, \mathbf{n}^{\circ}$, которая имеет следующие направления осей и ортов: ось Ox° направлена по радиали \mathbf{r}° , ось Oz° – по нормали \mathbf{n}° к плоскости орбиты, а ось Oy° – по трансверсали $\boldsymbol{\tau}^{\circ}$ и направлена в сторону орбитального движения, см. рис 1 в статье [1], где представлена также система координат $O_t x_t y_t z_t$, связанная с корпусом ГСС (цель, target) в его центре масс О₁. Используются также общепринятые обозначения $col(\cdot) = \{\cdot\}$, $line(\cdot) = [\cdot], (\cdot, \cdot), [\times \cdot],$ $(\cdot)^{t}$, $[\mathbf{a} \times]$ и °, $\stackrel{\circ}{\cdot}$ для векторов, матриц и кватернионов, матриц $[\alpha]_i$ стандартного элементарного поворота вокруг *i*-ой оси на угол α при $i=1,2,3\equiv1\div3$, а также $\ C_{\alpha}\equiv\cos\alpha$, $\ S_{\alpha}\equiv\sin\alpha$. Ориентация ССК ${\bf B}$ в ИСК ${\bf I}_{\oplus}$ определяется кватернионом $\Lambda = (\lambda_0, \lambda)$ с вектором $\lambda = \{\lambda_i\},$

кватернионом $\Lambda = \{\Lambda_0, \kappa\}$ с вектором $\kappa = \{\Lambda_i\}$, вектором модифицированных параметров Родрига (МПР) $\sigma = \{\sigma_i\} = e \operatorname{tg}(\Phi/4)$ с ортом eоси Эйлера и углом Φ собственного поворота. В ИСК I_{\oplus} кинематические уравнения для вектора \mathbf{r}_0 расположения КРМ и кватерниона Λ имеют вид

$$\dot{\mathbf{r}}_{o} = \mathbf{r}_{o}' + \mathbf{\omega} \times \mathbf{r}_{o}; \qquad \dot{\mathbf{\Lambda}} = \mathbf{\Lambda} \circ \mathbf{\omega}/2, \qquad (1)$$

где вектор ω представляет угловую скорость корпуса КРМ и используется обозначение $(\cdot)'$ локальной производной по времени.

Ориентации базиса **О** в базисе I_{\oplus} определяется кватернионом Λ° , углами рыскания $\phi_1 = \psi$, крена $\phi_2 = \phi$ и тангажа $\phi_3 = \theta$ в последовательности 132, а также матрицей направляющих косинусов координатного перехода от ОСК к ССК $\mathbb{C}^{\circ} = [\phi_2]_2 [\phi_3]_3 [\phi_1]_1$. Погрешность ориентации базиса **B** в орбитальном базисе **O** определяется кватернионом $\mathbf{E} = \widetilde{\Lambda}^{\circ} \circ \mathbf{\Lambda} \equiv (e_0, \mathbf{e})$, где $e_0 = C_{\Phi^e/2}$, $\mathbf{e} = S_{\Phi^e/2} \mathbf{e}^e$ с ортом оси Эйлера \mathbf{e}^e и угловой ошибкой Φ^e , матрицей $\mathbf{C}^e = \mathbf{I}_3 - 2[\mathbf{e} \times] \mathbf{Q}_e^t$, где $\mathbf{Q}_e = \mathbf{I}_3 e_0 + [\mathbf{e} \times]$, и вектором угловой погрешности $\delta \mathbf{\Phi} \equiv {\delta \phi_i} = {2e_0 e_i}$. При этом вектор $\delta \boldsymbol{\omega}$ погрешности угловой скорости определяется как $\delta \boldsymbol{\omega} = \boldsymbol{\omega} - \mathbf{C}^e \boldsymbol{\omega}^o(t)$.

В ССК О*хуг* с полюсом О векторы ρ_i , $i = 1 \div 4$ определяют положения центров масс c_i звеньев манипулятора с массами \mathbf{M}_i и собственными тензорами инерции \mathbf{J}_i^c , а векторы $\rho_r = 0$ и ρ_t – положения центров масс O_r и O_t робота (индекс r) и цели (индекс t) с массами и собственными тензорами инерции $\mathbf{m}_r, \mathbf{J}_r^c$ и $\mathbf{m}_t, \mathbf{J}_t^c$ соответственно. Положение центра масс С связки КРМ и ГСС (робот, манипулятор с 4 звеньями и цель, см. рис. 1 в [1]) суммарной массы $\mathbf{m} = \mathbf{m}_r + \Sigma \mathbf{m}_i + \mathbf{m}_t$ определяется вектором $\rho_c = \{x_c, y_c, z_c\}$ по соотношению

$$\mathbf{L} \equiv \mathbf{m} \boldsymbol{\rho}_{\rm c} = \mathbf{m}_{\rm r} \boldsymbol{\rho}_{\rm r} + \Sigma \mathbf{m}_i \boldsymbol{\rho}_i + \mathbf{m}_{\rm t} \boldsymbol{\rho}_{\rm t},$$

где вектор статического момента L имеет постоянное значение при фиксированном положении всех четырёх звеньев манипулятора. Тензор инерции J механической системы в полюсе O вычисляется по соотношению $J \equiv ||J_{ij}|| = J_r^o + \Sigma J_i^o + J_t^o$, где при единичном тензоре E имеем

$$\mathbf{J}_{r}^{o} = \mathbf{J}_{r}^{c}; \ \mathbf{J}_{i}^{o} = \mathbf{J}_{i}^{c} + \mathbf{m}_{i} (\mathbf{E} \boldsymbol{\rho}_{i}^{t} \boldsymbol{\rho}_{i} - \boldsymbol{\rho}_{i} \boldsymbol{\rho}_{i}^{t});$$
$$\mathbf{J}_{t}^{o} = \mathbf{J}_{t}^{c} + \mathbf{m}_{t} (\mathbf{E} \boldsymbol{\rho}_{t}^{t} \boldsymbol{\rho}_{i} - \boldsymbol{\rho}_{i} \boldsymbol{\rho}_{i}^{t}).$$

При векторе \mathbf{v}_{o} скорости полюса О поступательное движение связки КРМ с ГСС описывается векторным уравнением

$$\dot{mv}_{o} - L \times \dot{\omega} = \omega \times (L \times \omega) + P^{e} + F^{gr}, (2)$$

где $\dot{\mathbf{v}}_{o} = \mathbf{v}'_{o} + \boldsymbol{\omega} \times \mathbf{v}_{o}$, \mathbf{P}^{e} и \mathbf{F}^{gr} представляют вектор тяги ЭДУ, центрированный в полюсе O,

Рис. 1. Схема ЭДУ с 8 каталитическими ЭРД

и вектор гравитационных сил. Вращательное движение этой связки описывается векторным уравнением

$$\mathbf{L} \times \dot{\mathbf{v}}_{o} + \mathbf{J}\dot{\boldsymbol{\omega}} = -\mathbf{L} \times (\boldsymbol{\omega} \times \mathbf{v}_{o}) - \boldsymbol{\omega} \times \mathbf{G} + \mathbf{M}^{o}, \quad (3)$$

где вектор $\mathbf{H} = \{\mathbf{H}_i\}$ представляет КМ кластера ДМ или кластера ГД, вектор $\mathbf{G} = \mathbf{J}\boldsymbol{\omega} + \mathbf{H}$, вектор момента $\mathbf{M}^{o} = \mathbf{M}^{a} + \mathbf{M}^{e} + \mathbf{M}^{gr}$, векторы $\mathbf{M}^{a} = -\mathbf{H}'$ и $\mathbf{M}^{e} \equiv \mathbf{M}$ представляют управляющие крутящие моменты кластера ДМ $(\mathbf{M}^{a} = \mathbf{M}^{r})$ либо кластера ГД $(\mathbf{M}^{a} = \mathbf{M}^{g})$ с вектором КМ Н и ЭДУ на основе восьми каталитических ЭРД, а вектор **М**^{gr} – гравитационный момент.

На рисунке 1 приведена схема ЭДУ на основе восьми ЭРД. Положение ортов \mathbf{e}_p , $p = 1 \div 8$ осей сопел электрореактивных двигателей в ССК определяется углами α^e и β^e , векторы ρ_p , $p = 1 \div 8$ точек O_p приложения вектора тяги ЭРД в ССК определяются параметрами b_x , b_y и b_z , см. рис. 1. Здесь каждый ЭРД имеет широтно-импульсную модуляцию (ШИМ) тяги $p_p(t)$, что $\forall t \in [t_r, t_{r+1})$ описывается нелинейным соотношением

 $p_p(t) = \mathbf{P}^m \operatorname{PWM}(t - T_{zu}^e, t_r, \tau_m, \mathbf{v}_{pr})$

с периодом T_u^e и запаздыванием T_{zu}^e , скаляр Р^т представляет номинальное значение тяги, одинаковое для всех восьми ЭРД, v_{nr} является входным сигналом и функции

$$PWM(t,t_r,\tau_m,\mathbf{v}_{pr}) \equiv \begin{cases} \operatorname{sign} \mathbf{v}_{pr} & t \in [t_r t_r + \tau_{pr}) \\ 0 & t \in [t_r + \tau_{pr}, t_{r+1}) \end{cases};$$
$$\tau_{pr}(\tau_m) = \begin{cases} 0 & |\mathbf{v}_{pr}| \leq \tau_m \\ \operatorname{sat}(T_u^{e}, |\mathbf{v}_{pr}|) & |\mathbf{v}_{pr}| > \tau_m \end{cases},$$

где $t_r = r T_u^e$, $t_{r+1} = t_r + T_u^e$; $r \in N_0 \equiv [0,1,2,3...)$. Вектор тяги p-го ЭРД вычисляется по фор-

муле $\mathbf{p}_{p}(t) = -p_{p}(t)\mathbf{e}_{p}$, а векторы тяги \mathbf{P}^{e} и крутящего момента М^е ЭДУ – по соотношениям

 $\mathbf{P}^{e} = \Sigma \mathbf{p}_{p}(t); \quad \mathbf{M}^{e} = \Sigma [\mathbf{\rho}_{p} \times] \mathbf{p}_{p}(t).$

На рисунке 2 представлен кластер 4 ДМ по схеме General Electric (GE) и область вариации вектора его кинетического момента **H**. Реактивный ДМ с номером $p \in [1 \div 4]$ вращается вокруг фиксированной в ССК оси с ортом \mathbf{a}_p , $p = 1 \div 4$, вектор его КМ $\mathbf{h}_p = \mathbf{h}_p \mathbf{a}_p$. Матрица $\mathbf{A}_4 = [\mathbf{a}_p]$ размером (3×4), которая определяет расположения осей вращения ДМ в ССК, имеет вид

$$\mathbf{A}_{4} = \begin{bmatrix} C_{\gamma} & C_{\gamma} & C_{\gamma} & C_{\gamma} \\ S_{\gamma} & -S_{\gamma} & 0 & 0 \\ 0 & 0 & S_{\gamma} & -S_{\gamma} \end{bmatrix}.$$
 (4)

Столбец $\mathbf{h} = \{\mathbf{h}_p\}$, составленный из КМ \mathbf{h}_p отдельных ДМ, связан со столбцом **H** КМ кластера соотношением $\mathbf{H} = \mathbf{A}_4 \mathbf{h}$. Вектор управляющего момента этого кластера $\mathbf{M}^{\mathrm{r}} = -\mathbf{H}' = -\mathbf{A}_{4} \mathbf{h}'$. Далее для простоты не учитываются моменты сопротивления вращению по осям ДМ и считается, что осевой момент инерции любого маховика намного меньше минимального значения из главных центральных моментов инерции КРМ. В этих условиях столбец управляющих моментов двигателеймаховиков формируется в виде $\mathbf{m} = \{\mathbf{m}_n\} = \mathbf{h}'$. Каждый ДМ имеет ограниченные по модулю ресурсы по управляющему и кинетическому момен-

там, именно $|\mathsf{m}_{p}(t)| \le \mathsf{m}^{\mathsf{m}}$ и $|\mathsf{h}_{p}(t)| \le \mathsf{h}^{\mathsf{m}}$.

Как известно, система векторов Xn $p = 1 \div m$ в евклидовом пространстве \mathbf{R}^m является линейно независимой, если матрица Грама G, составленная их этих векторов, имеет определитель $G \equiv \det(\mathbf{G}) > 0$, который равен квадрату объема *m*-мерного параллелепипеда, построенного на векторах **х**_n, направленных по его ребрам. В рассматриваемом кластере ДМ m = 4, $\mathbf{x}_p = \mathbf{a}_p$ и матрица Грама $\mathbf{G} = \mathbf{A}_{4}\mathbf{A}_{4}^{t} = 16 \operatorname{diag}(C_{\gamma}^{2}, S_{\gamma}^{2}, S_{\gamma}^{2})$ имеет определитель $\mathbf{G} = 16C_{\gamma}^{2}S_{\gamma}^{4}$. Выбор значения угла γ в матрице (4) основан на максимизации объема указанного параллелепипеда, что достигается при максимальном значении определителя G, когда $d G/d\gamma = 0$. В результате получаются явные аналитические соотношения [6]

Рис. 2. Кластер ДМ по схеме GE(a) и область вариации вектора его КМ (b)

$$d \,\mathsf{G}/d\gamma = 16[-2S_{\gamma}C_{\gamma}S_{\gamma}^{4} + 4C_{\gamma}^{2}C_{\gamma}S_{\gamma}^{3}] = 32S_{\gamma}C_{\gamma}S_{\gamma}^{2}[-S_{\gamma}^{2} + 2C_{\gamma}^{2}] = 0; S_{\gamma}^{2} = 2C_{\gamma}^{2} \implies \operatorname{tg}\gamma = \sqrt{2}; C_{\gamma} = 1/\sqrt{1 + \operatorname{tg}^{2}\gamma} = \sqrt{1/3} = 0.57735; S_{\gamma} = \operatorname{tg}\gamma/\sqrt{1 + \operatorname{tg}^{2}\gamma} = \sqrt{2/3} = 0.81650,$$

при значении угла $\gamma = 54^{\circ}44'$. Область вариации КМ этого кластера ДМ с исключением двух плоскостей, где располагаются компланарные орты $\mathbf{a}_1, \mathbf{a}_2$ и $\mathbf{a}_3, \mathbf{a}_4$ соответственно, представляется в ССК десятигранником (число граней m(m-1)-2=10), каждая грань которого является ромбом, см. рис 2b, зеленый цвет. В эту область вписывается шар радиусом $R_{\rm H} = 2S_{\gamma} \, {\rm h}^{\rm m}$, который касается всех 10 граней, см. рис. 2b, синий цвет. В итоге получаются значения допустимых радиусов шаров КМ $R_{\rm H} = 1.633 \, {\rm h}^{\rm m}$ и управляющего момента $R_{\rm M} = 1.633 \, {\rm m}^{\rm m}$ кластера ДМ [6].

Для управления ориентацией связки КРМ с ГСС может применяться также силовой гироскопический кластер (СГК) на основе четырех ГД по схеме 2-SPE (Scissored Pair Ensemble) с векторами КМ $\mathbf{h}_p(\boldsymbol{\beta}_p), p = 1 \div 4$. На рисунке 3 приведены схема этого кластера, область вариации вектора его КМ $\mathbf{H}(\boldsymbol{\beta}) = \Sigma \mathbf{h}_p(\boldsymbol{\beta}_p)$ со столбцом $\boldsymbol{\beta} = \{\boldsymbol{\beta}_p\}$, составленными из произвольных углов $\boldsymbol{\beta}_p$ поворота ГД вокруг осей их подвеса, проекции этой области на плоскости базиса $Ox_c^g y_c^g z_c^g$ и все множества естественных сингулярных состояний. Столбец $\mathbf{H}(\boldsymbol{\beta}) = \Sigma \mathbf{h}_p(\boldsymbol{\beta}_p) = \mathbf{h}_g \mathbf{h}(\boldsymbol{\beta}) \equiv \mathbf{h}_g \Sigma \mathbf{h}_p(\boldsymbol{\beta}_p)$ представляет вектор КМ СГК с одинаковым собственным КМ \mathbf{h}_g и ортом \mathbf{h}_p с модулем $|\mathbf{h}_p|=1$ каждого гиродина. Вводятся столбец $\boldsymbol{h} \equiv \{x,y,z\} = \mathbf{H}/\mathbf{h}_g$ нормированного КМ СГК с компонентами $x = \Sigma x_p$, $y = \Sigma y_p$ и $z = \Sigma z_p$, где

$$x_p = C_{\beta_p} \equiv C_p, \ y_p = S_{\beta_p} \equiv S_p, \ p = 1,2;$$

 $x_p = S_{\beta_p} \equiv S_p, \ z_p = C_{\beta_p} \equiv C_p, \ p = 3,4,$

и матрица Якоби

$$\mathbf{A}_{\rm h} = \partial \, \boldsymbol{h}(\boldsymbol{\beta}) / \partial \, \boldsymbol{\beta} = \begin{bmatrix} -S_1 & -S_2 & C_3 & C_4 \\ C_1 & C_2 & 0 & 0 \\ 0 & 0 & -S_3 & -S_4 \end{bmatrix}.$$
(5)

При цифровом управлении $\mathbf{u}_{k}^{g}(t) = {\mathbf{u}_{pk}^{g}(t)}$ СГК с периодом T_{u} , где для $k \in \mathbb{N}_{0}$ компоненты $\mathbf{u}_{pk}^{g}(t) = \mathbf{u}_{pk}^{g} \quad \forall t \in [t_{k}, t_{k+1}), \ t_{k+1} = t_{k} + T_{u}$ формируют вектор управляющего момента СГК

$$\mathbf{M}_{k}^{g}(t) = -\mathbf{h}_{g}\mathbf{A}_{h}(\boldsymbol{\beta}(t) \ \mathbf{u}_{k}^{g}(t); \ \boldsymbol{\beta}(t) = \mathbf{u}_{k}^{g}(t).$$
(6)

Здесь все компоненты столбца $\mathbf{u}_{k}^{g} = \{\mathbf{u}_{pk}^{g}\} = \dot{\boldsymbol{\beta}} = \{\dot{\boldsymbol{\beta}}_{p}\},$ которые считаются управлениями гиродинов, имеют модульное ограничение $|\dot{\boldsymbol{\beta}}_{p}(t)| \leq \dot{\boldsymbol{\beta}}^{m} = \mathbf{u}^{gm} \quad \forall p = 1 \div 4.$

Цель статьи состоит в сравнении динамических характеристик кластеров ДМ и ГД в отношении создания вектора управляющего крутящего момента при успокоении пространственного вращения связки КРМ с ГСС после завершения стыковки этих КА. Здесь решаются следующие задачи:

(i) синтез алгоритмов управления ЭДУ с ШИМ тяги восьми каталитических ЭРД;

(ii)синтез алгоритмов цифрового управления избыточными кластерами ДМ и ГД;

(iii) синтез дискретных алгоритмов СУД при успокоении вращения связки КРМ и ГСС с разгрузкой векторов КМ электромеханических приводов с помощью ЭДУ по компенсационной схеме;

(iv) компьютерная имитация успокоения связки космического робота с ГСС и сравнительный анализ влияния моментных свойств кластеров ДМ и ГД на нелинейные процессы такого успокоения.

ДИСКРЕТНОЕ УПРАВЛЕНИЕ ЭДУ

Применяемая схема ЭДУ с 8 каталитическими ЭРД (рис. 1) позволяет одновременно создавать векторы импульса управляющей силы и импульса управляющего крутящего момента произвольных направлений в ССК. Орты \mathbf{r}_p векторов $\mathbf{\rho}_p$, $p = 1 \div 8$, вычисляются как $\mathbf{r}_p = \mathbf{\rho}_p / \mathbf{\rho}$, где скаляр $\mathbf{\rho} = (b_x^2 + b_y^2 + b_z^2)^{1/2}$ яв-

Рис. 3. Схема СГК (a), область вариации вектора КМ (b) и множества сингулярных состояний (c)

ляется единым модулем точек O_p приложения векторов тяги ЭРД в ССК, см. рис. 1. При обозначениях $\tau_r = {\tau_{pr}};$

$$\widetilde{\mathbf{p}}(t) = \mathbf{P}^{e}(t) / \mathbf{P}^{m}; \ \widetilde{\mathbf{m}}(t) = \mathbf{M}^{e}(t) / (\mathbf{P}^{m}\boldsymbol{\rho});$$
$$\mathbf{t}^{p} = \{\widetilde{\mathbf{p}}^{p}, \widetilde{\mathbf{m}}^{p}\}, \ \mathbf{D}^{e} = \{[\mathbf{e}_{p}], [\mathbf{r}_{p} \times \mathbf{e}_{p}]\},$$

где векторы $\tilde{\mathbf{p}}^{p}$ и $\tilde{\mathbf{m}}^{p}$ представляют *импульсы* требуемых нормированных векторов тяги $\tilde{\mathbf{p}}(t)$ и крутящего момента $\tilde{\mathbf{m}}(t)$ ЭДУ, заданные в ССК, главная проблема заключается в решении векторного уравнения $\mathbf{D}^{e} \mathbf{\tau}_{r} = \mathbf{t}_{r}^{p}$, $\mathbf{\tau}_{r} \in R_{+}^{8}$, $\mathbf{t}_{r}^{p} \in R^{6}$ при условии $0 \leq \tau_{pr} \leq T_{u}^{e}$ $\forall p = 1 \div 8$ относительно компонентов столбца длительностей $\mathbf{\tau}_{r} = \{\tau_{pr}\}$, когда матрица \mathbf{D}^{e} и столбец $\mathbf{t}_{r}^{p} \in R^{6}$ заданы.

При псевдообратной матрице $(\mathbf{D}^{e})^{\#} \equiv (\mathbf{D}^{e})^{t} (\mathbf{D}^{e} (\mathbf{D}^{e})^{t})^{-1}$ разработанный закон распределения длительностей τ_{pr} при ШИМ тяги всех восьми ЭРД с периодом T_{u}^{e} имеет простую алгоритмическую форму

$$\widehat{\mathbf{\tau}}_{r} \equiv \{\widehat{\mathbf{\tau}}_{pr}\} = (\mathbf{D}^{e})^{\#} \mathbf{t}^{p}; \, \widetilde{\mathbf{\tau}}_{pr} =: \widehat{\mathbf{\tau}}_{pr} - \min(\widehat{\mathbf{\tau}}_{pr});$$
if $q \equiv \max(\widetilde{\mathbf{\tau}}_{pr}) > T_{u}^{e}$ then $\mathbf{\tau}_{pr} = \widetilde{\mathbf{\tau}}_{pr} - T_{u}^{e} \widetilde{\mathbf{\tau}}_{pr} / q.$
(7)

Далее векторы тяги $\mathbf{P}^{e}(t)$ и крутящего момента $\mathbf{M}^{e}(t)$ ЭДУ с ШИМ тяги всех восьми каталитических ЭРД формируются по соотношениям

$$\mathbf{P}^{e}(t) = \mathbf{P}^{m}\widetilde{\mathbf{p}}(t), \ \mathbf{M}^{e}(t) = \mathbf{P}^{m}\rho \ \widetilde{\mathbf{m}}(t).$$
 (8)

ЦИФРОВОЕ УПРАВЛЕНИЕ КЛАСТЕРАМИ ДМ И ГД

Для кластера четырех ДМ принципиальная проблема заключается в распределении векторов его кинетического **H** и управляющего $\mathbf{M}^{r} = -\mathbf{H}'$ моментов в ССК между избыточным числом ДМ. При некоторых упрощениях эта проблема состоит в одновременном решении двух уравнений

$$\mathbf{A} \mathbf{h} = \mathbf{H} \quad \forall \mathbf{H} \in \mathbf{R}^{3}, \mathbf{h} \in \mathbf{R}^{4};$$

$$\mathbf{A} \mathbf{m} = -\mathbf{M}^{r} = \mathbf{H}'; \forall \mathbf{M}^{r} \in \mathbf{R}^{3}, \mathbf{m} \in \mathbf{R}^{4}.$$
⁽⁹⁾

Используемый подход к разрешению уравнений (9) основан на применении скалярной функции однозначного распределения векторов **H** и $\mathbf{M}^{r} = -\mathbf{H}'$ между четырьмя ДМ по явным аналитическим соотношениям. Введем нормированный вектор КМ кластера $\boldsymbol{h} \equiv \{x, y, z\} = \mathbf{H}/\mathbf{h}^{m} = \mathbf{A} \mathbf{h}, где \ x = x_{1} + x_{2},$

$$x_{1} = C_{\gamma}(h_{1} + h_{2}), \ x_{2} = C_{\gamma}(h_{3} + h_{4});$$

$$y = S_{\gamma}(h_{1} - h_{2}), \ z = S_{\gamma}(h_{3} - h_{4});$$

$$\mathbf{h} = \{h_{p}\}, \ h_{p} = \mathbf{h}_{p} / \mathbf{h}^{m}, \ |h_{p}| \leq 1.$$

Распределение этого вектора между четырьмя ДМ выполняется по закону

$$f_{\rho}(\mathbf{h}) = \widetilde{x}_1 - \widetilde{x}_2 + \rho(\widetilde{x}_1 \widetilde{x}_2 - 1) = 0$$
(10)

с параметром ρ , где $0 < \rho < 1$, и

$$\widetilde{x}_{1} = x_{1} / q_{y}; \widetilde{x}_{2} = x_{2} / q_{z},$$
$$q_{s} = (4C_{\gamma}^{2} - s^{2})^{1/2}, \ s = y, z$$

на основе таких соотношений:

(i)
$$q \equiv q_y + q_z$$
;
 $\Delta \equiv (q/\rho)(1 - (1 - 4\rho[(q_y - q_z)(x/2) + \rho(q_y q_z - (x/2)^2)]/q^2)^{1/2});$
 $x_1 = (x + \Delta)/2, x_2 = (x - \Delta)/2;$

(ii) распределение КМ между ДМ в каждой паре по очевидным формулам;

(iii) вычисление столбца **m** по явной формуле $\mathbf{m} = \{\mathbf{m}_n\} = (\{\mathbf{A}, \mathbf{a}^{\mathrm{f}}\})^{-1} \{-\mathbf{M}^{\mathrm{r}}, \Phi_n(\cdot)\}$ (11)

с компонентами строки $\mathbf{a}^{\mathrm{f}} = [a_p^{\mathrm{f}}]$ в виде

$$a_{1,2}^{f} = \frac{2C_{\gamma}}{q_{y}^{3}} [2C_{\gamma}^{2} \pm S_{\gamma}^{2}h_{2}(h_{1} - h_{2})][1 + \rho \frac{C_{\gamma}(h_{3} + h_{4})}{q_{z}}];$$

$$a_{3,4}^{f} = \frac{2C_{\gamma}}{q_{z}^{3}} [2C_{\gamma}^{2} \mp S_{\gamma}^{2}h_{4}(h_{3} - h_{4})][1 + \rho \frac{C_{\gamma}(h_{1} + h_{2})}{q_{y}}]$$

и функцией $\Phi_{\rho}(\cdot) = -h^{m} \operatorname{sat}(\phi_{\rho}, \mu_{\rho} f_{\rho}(\mathbf{h})$ с параметрами $\phi_{\rho}, \mu_{\rho} > 0$

При введённых выше обозначениях для столбца $\mathbf{h}_p = \{x_p, y_p, z_p\}, p = 1 \div 4$, соответствующего орту нормированного КМ каждого ГД, вводятся обозначения

$$x_{12} = x_1 + x_2; \ x_{34} = x_3 + x_4; \ x = x_{12} + x_{34};$$

$$y = y_1 + y_2; \ z = z_3 + z_4$$

$$\widetilde{x}_1 = x_{12} / q_y; \ \widetilde{x}_2 = x_{34} / q_z,$$

$$x_2 = x_{12} / q_z; \ x_3 = x_{12} / q_z,$$

где $q_s = (4 - s^2)^{1/2}$, s = y,z. Распределение вектора нормированного КМ СГК $\mathbf{h} \equiv \{x, y, z\} = \mathbf{H}/\mathbf{h}_g$ между парами ГД выполняется по закону (10) для скалярной функции $f_{\rho}(\mathbf{\beta})$ с параметром ρ . В результате исчезают все множества естественных сингулярных состояний СГК (см. рис. 3 *c*) и при условии $f_{\rho}(\mathbf{\beta}) = 0$ внутри области вариации **S** вектора нормированного КМ СГК \mathbf{h} остаются сингулярными (но проходимыми !) только два одномерных множества

$$\mathbf{S}_{y} = \{ (x/(2\rho))^{2} + (z/2)^{2} = 1, x < 0; y = 0, | y_{1} |= | y_{2} |= 1 \}; \mathbf{S}_{z} = \{ (x/(2\rho))^{2} + (y/2)^{2} = 1, x > 0; z = 0, | z_{3} |= | z_{4} |= 1 \},$$
(12)

см. рис. 4, все детали представлены в [7]. В соот-

Рис. 4. Сингулярные линии - половины эллипсов

ношениях (12) учтены направления запрещенного перераспределения вектора КМ СГК между парами ГД при условии $h(\beta(t)) \in \mathbf{S}_{yz} \equiv \mathbf{S}_{y} \cup \mathbf{S}_{z}$.

Аналогично кластеру ДМ, здесь при заданном векторе *h* закон распределения (10) позволяет получить значения x_1, x_2, y_1, y_2 для первой пары ГД и x_3, x_4, z_3, z_4 для второй пары ГД, а далее вычислить значения углов $\beta_p, p = 1 \div 4$ по явным соотношениям.

Закон настройки СГК по схеме 2-SPE применяется в виде $D^+ f_{\rho}(\boldsymbol{\beta}) = \Phi_{\rho}(f_{\rho}(\boldsymbol{\beta}), \boldsymbol{h}(\boldsymbol{\beta}))$, где

$$\Phi_{\rho}(f_{\rho}(\boldsymbol{\beta}),\boldsymbol{h}(\boldsymbol{\beta})) \equiv \begin{cases} -\operatorname{sat}(\phi_{\rho},\mu_{\rho}f_{\rho}) \ \boldsymbol{h}(\boldsymbol{\beta}) \in \mathbf{S} \setminus \mathbf{Q}_{yz}; \\ \phi_{\rho} \operatorname{Relh}(a_{s},l_{\rho},r_{s}) \ \boldsymbol{h} \in \mathbf{Q}_{s}, s = y, z. \end{cases}$$

Здесь D^+ – символ правой производной по времени, ϕ_{ρ} , μ_{ρ} и l_{ρ} – положительные параметры и используются такие нелинейные функции:

$$\operatorname{Relh}(a, l_{\rho}, x) \equiv \begin{cases} 1 & x > -l_{\rho} \\ -1 & x < l_{\rho} \end{cases},$$

$$\operatorname{Relh}(a_{s}, l_{\rho}, r_{s}(\boldsymbol{\beta}(t_{0})) = a_{s} \in (-1; 1);$$

$$r_{y} \equiv M_{\pi}(\beta_{1} - \beta_{2} - \pi), r_{z} \equiv M_{\pi}(\beta_{3} - \beta_{4} - \pi),$$

$$M_{\pi}(\alpha) \equiv \begin{cases} \alpha & |\alpha| \le \pi; \\ \alpha - 2\pi \operatorname{sign}(\alpha) |\alpha| > \pi. \end{cases}$$

Для однозначного определения столбца $\mathbf{u}^{g} = \{\mathbf{u}_{p}^{g}\}$ к основному соотношению $\mathbf{M}^{g} = -\mathbf{h}_{g}\mathbf{A}_{h}(\boldsymbol{\beta}) \mathbf{u}^{g}$ добавляется закон настройки СГК $\langle \mathbf{a}^{f}, \mathbf{u}^{g} \rangle = \Phi_{\rho}(f_{\rho}(\boldsymbol{\beta}), \boldsymbol{h}(\boldsymbol{\beta})),$ где столбец $\mathbf{a}^{f}(\boldsymbol{\beta}) = \partial f_{\rho}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}.$

При заданном векторе \mathbf{M}^{g} получается система линейных уравнений относительно компонентов \mathbf{u}_{p}^{g} столбца $\mathbf{u}^{g} = \{\mathbf{u}_{p}^{g}\} = \dot{\boldsymbol{\beta}} = \{\dot{\boldsymbol{\beta}}_{p}\}$, которая разрешается по явному соотношению

$$\mathbf{u}^{g} = \{\mathbf{A}_{h}(\boldsymbol{\beta}), (\mathbf{a}^{t})^{t}\}^{-1}\{-\mathbf{M}^{g}/h_{g}, \Phi_{\rho}(\cdot)\}.$$
 (12)

При законе настройки (12) обеспечивается принадлежность конца нормированного вектора $\boldsymbol{h}(\boldsymbol{\beta})$ КМ СГК множеству $\mathbf{Q}_{yz}(\boldsymbol{\beta})$ внутренних сингулярных состояний только в отдельные моменты времени (меры нуль по Лебегу) и биективная связь вектора \mathbf{M}^{g} с векторами-столбцами $\boldsymbol{\beta}$ и $\mathbf{u}^{g} = \dot{\boldsymbol{\beta}}$. В статье [7] установлено, что для любых значений столбца $\boldsymbol{h} \equiv \{x, y, z\}$, принадлежащих сфере $\mathbf{S}_r^{\rm g} \equiv \{x^2 + y^2 + z^2 \le r_g^2\}$ радиуса $r_g < 2\rho$, отсутствуют сингулярные состояния СГК, см. рис. 4.

АЛГОРИТМЫ СУД

В процессе угловой стабилизации связки КРМ с ГСС в ОСК с законом наведения $\mathbf{\Lambda}^{\circ}(t), \mathbf{\omega}^{\circ}(t) = \mathbf{\varepsilon}^{\circ}(t)$ после дискретной фильтрации измерений вектора углового рассогласования $\mathbf{\varepsilon}_{l}^{a} \equiv -\delta \mathbf{\phi}_{l}, \ l \in \mathbf{N}_{0}$ с периодом $T_{q} = T_{u}/4$ формируются значения вектора $\mathbf{\varepsilon}_{k}^{\mathrm{af}}, k \in \mathbf{N}_{0}$, которые применяются в алгоритме управления кластером ДМ либо кластером ГД с периодом T_{u} в виде

$$\mathbf{g}_{k+1}^{a} = \mathbf{B}^{a} \mathbf{g}_{k}^{a} + \mathbf{C}^{a} \boldsymbol{\varepsilon}_{k}^{af}; \quad \widetilde{\mathbf{m}}_{k} = \mathbf{K}^{a} (\mathbf{g}_{k}^{a} + \mathbf{P}^{a} \boldsymbol{\varepsilon}_{k}^{af});$$
$$\mathbf{M}_{k}^{a} = \boldsymbol{\omega}_{k} \times \mathbf{G}_{k} + \mathbf{J} (\mathbf{C}_{k}^{e} \boldsymbol{\varepsilon}_{k}^{o} + [\mathbf{C}_{k}^{e} \boldsymbol{\omega}_{k}^{o} \times] \boldsymbol{\omega}_{k} + \widetilde{\mathbf{m}}_{k}).$$
(13)

Здесь вектор $\mathbf{M}^{a} = -\mathbf{H}'$ представляет управляющий момент кластера ДМ ($\mathbf{M}^{a} = \mathbf{M}^{r}$) либо кластера ГД ($\mathbf{M}^{a} = \mathbf{M}^{g}$), вектор $\mathbf{G}_{k} = \mathbf{J}\boldsymbol{\omega}_{k} + \mathbf{H}_{k}$ и используются постоянные диагональные матрицы \mathbf{K}^{a} , \mathbf{B}^{a} , \mathbf{C}^{a} и \mathbf{P}^{a} . Далее вектор \mathbf{M}_{k}^{a} с помощью явного закона (10) распределяется между соответствующими ДМ либо ГД и формируются командные сигналы управления, которые фиксируются на полуинтервалах с периодом T_{u} . Например, команды управления гиродинами $\mathbf{u}_{k}^{g} = {\mathbf{u}_{pk}^{g}}$ используются при формировании управляющего момента СГК по соотношениям (6).

В исследуемом режиме СУД имеется такая особенность: в начальный момент времени t_* , когда завершается стыковка КРМ с ГСС, модуль вектора КМ связки этих КА намного превышает возможности кластеров ДМ и ГД по размеру области вариации вектора их кинетического момента. Поэтому на начальном этапе успокоения вращения связки в СУД применяется интенсивная разгрузка соответствующего электромеханического кластера от вектора поглощаемого КМ с помощью ЭДУ на основе восьми каталитических ЭРД с ШИМ тяги по компенсационной схеме при равенстве периодов цифрового и широтно-импульсного управления, именно при $T_{u} = T_{u}^{e}$.

АНАЛИЗ ДИНАМИКИ СУД

Используя результаты компьютерной имитации стыковки КРМ с ГСС, было принято, что после её завершения в момент времени $t_* = 0$ связка этих КА имеет массу m = 6800 кг, тензор инерции

$$\mathbf{J} = \begin{bmatrix} 75726.6 & -2659.4 & -125.0 \\ -2659.4 & 21322.3 & -2661.5 \\ -125.0 & -2661.5 & 67696.9 \end{bmatrix} \text{KFM}^2$$

и вектор угловой скорости $\omega = \{0.0694946, -8.2756710^{-5}, 0.0754546\}^{\circ/c}$.

Параметры ДМ и ГД: $h^m = 30$ Нмс, $m^m = 0.2$ Нм; $h_g = 30$ Нмс, $u^{gm} = 1$ р/с = 57.3 °/с. Периоды управления $T_u = T_u^e = 4$ с. Тяга ЭРД $P^m = 0.2$ Н, параметры ЭДУ b_x , b_y , b_z , α^e и β^e назначены из условия достижения значения 0.5 Нм модулем вектора \mathbf{M}^e в любом направлении ССК.

При имитации нелинейной динамики успокоения связки КРМ и ГСС с её последующей угловой стабилизацией в ОСК было принято, что разгрузка кластера ДМ либо кластера ГД в помощью ЭДУ по компенсационной схеме начинается при превышении значения 35 Нмс модулем вектора **H** КМ соответствующего кластера, а заканчивается когда модуль вектора $\mathbf{G} = \mathbf{J}\boldsymbol{\omega} + \mathbf{H}$ КМ всей электромеханической системы становится меньше 0.1 Нмс.

В таблице 1 на рисунках в согласованном масштабе представлены переходные процессы при успокоении связки КРМ с ГСС в ОСК после их стыковки. Здесь цветом выделены изменения переменных по каналам рыскания (ϕ_1 , синий цвет), крена (ϕ_2 , зелёный) и тангажа (ϕ_3 , красный цвет, а модуль вектора **H** КМ соответствующего кластера отмечен чёрным цветом.

Рис. 5. Управляющие и кинетические моменты ДМ

Сопоставление рисунков влевой и правой колонках таб. 1 убеждает, несмотря на одинаковые возможности кластеров по размерам области вариации КМ ($h^m = h_g = 30$ Hмс), переходные процессы в СУД с кластером ДМ затягиваются по времени в примерно 2 раза. Этот факт объясняется существенным влиянием ограничений каждого ДМ по управляющему моменту. На рисунке 5 детально представлены управляющие и кинетические моменты всех четырёх ДМ на начальном этапе успокоения вращения связки КРМ и ГСС.

ЗАКЛЮЧЕНИЕ

Кратко представлены результаты сравнительного анализа возможностей кластеров двигателей-маховиков и гиродинов по созданию управляющего момента при торможении вращения связки космического робота с геостационарным спутником после завершения их стыковки. Разработаны алгоритмы системы управления движением космического робота с разгрузкой кинетического момента электромеханических приводов при широтно-импульсном управлении электрореактивной двигательной установки. Представлены результаты компьютерной имитации нелинейных динамических процессов, подтверждающие эффективность созданных алгоритмов.

СПИСОК ЛИТЕРАТУРЫ

- Бутырин С.А., Сомов Е.И., Сомов С.Е., Сомова Т.Е. Управление роботом-манипулятором при смене топливных баков двигательной установки геостационарного спутника // Известия Самарского научного центра РАН. 2022. Том 24, № 1, С. 96-104.
- Сомов Е.И., Бутырин С.А., Сомов С.Е. Управление космическим роботом-манипулятором при встрече и механическом захвате пассивного спутника // Известия Самарского научного центра РАН. 2018. Том 20, № 6. С. 202-209.
- Somov Ye., Butyrin S., Somov S., Somova T. Control of robot-manipulator during its preparation and capture of a passive satellite. Mathematics in Engineering, Science and Aerospace. 2019. Vol. 10, no. 3, pp. 421-432.
- Яскевич А.В. Кинематическая схема стыковочного механизма «штырь - конус» для перспективных космических кораблей// Космическая техника и технологии. 2017. № 4 (19), С. 95-104.

Таблица 1. Переходные процессы при успокоении связки КРМ с ГСС в ОСК после их стыковки

- Сомов Е.И., Бутырин С.А., Сомова Т.Е. Анализ динамических свойств маховиков и гиродинов для управления космическим роботом на геостационарной орбите // Известия Самарского научного центра РАН. 2021. Том 23, № 2, С. 84-90.
- 6. *Сомов С.Е., Сомова Т.Е.* Анализ динамических характеристик кластеров маховиков в системе

управления ориентацией космического аппарата // Известия Самарского научного центра РАН. 2021. Том 23, № 6, С. 119-125.

 Сомов Е.И. Анализ сингулярных состояний и синтез явных законов настройки гирокомплексов кратных схем // Гироскопия и навигация. 2013. № 1(80). С. 134-148.

COMPARISON OF TORQUE PROPERTIES FOR THE FLYWHEELS AND GYRODYNES CLUSTERS WHILE A SPACE ROBOT DOCKING WITH A GEOSTATIONARY SATELLITE

© 2022 S.Ye. Somov^{1,2}, T.Ye. Somova², S.A. Butyrin^{1,2}, Ye.I. Somov^{1,2}

^{1,2} Samara Federal Research Scientific Center, Russian Academy of Sciences, Samara, Russia
² Samara State Technical University, Samara, Russia

Abstract. The possibilities of creating the control torques by clusters of flywheels and gyrodines when braking the rotation of a space robot mated with a geostationary satellite after the completion of their docking are compared. The control system algorithms with unloading of electromechanical drives angular momentums using an electro-reaction propulsion unit are developed. The results of computer simulation of nonlinear dynamic processes are presented, confirming the effectiveness of the created algorithms.

Key words: a space robot, geostationary satellite, calming the rotation after docking, control. DOI: 10.37313/1990-5378-2022-24-1-105-113

Sergey Somov, Researcher of Department "Dynamics and Motion Control", Samara Federal Research Centre, Russian Academy of Sciences; Researcher of Department "Navigation, Guidance, and Motion control", Research Institute for Problems of Mechanical Systems Reliability, Samara State Technical University. E-mail s_somov@mail.ru Tatyana Somova, researcher of department "Navigation, Guidance, and Motion Control", Research Institute for Problems of Mechanical Systems Reliability, Samara State Technical University. E-mail te somova@mail.ru

Sergey Butyrin, Senior Researcher of Department "Dynamics and Motion Control", Samara Federal Research Centre, Russian Academy of Sciences; Head of Laboratory for "Modeling of Control Systems", Research Institute for Problems of Mechanical Systems Reliability, Samara State Technical University. E-mail butyrinsa@mail.ru

Yevgeny Somov, Leading Researcher of Department "Dynamics and Motion Control", Samara Federal Research Centre, Russian Academy of Sciences; Head of Department for "Navigation, Guidance, and Motion Control", Research Institute for Problems of Mechanical Systems Reliability, Samara State Technical University. E-mail e somov@mail.ru