УДК 621.7.044.7

ВОЗДУШНОЕ КАНАЛЬНОЕ ОХЛАЖДЕНИЕ ОДНОВИТКОВОГО ИНДУКТОРА ДЛЯ МАГНИТНО-ИМПУЛЬСНОЙ ОБРАБОТКИ МЕТАЛЛОВ

© 2023 В.Н. Самохвалов, Д.Г. Черников, Р.Ю. Юсупов

Самарский национальный исследовательский университет имени академика С.П. Королева, г. Самара, Россия

Статья поступила в редакцию 23.05.2023

В работе представлены результаты исследования эффективности охлаждения токопровода одновиткового индуктора для магнитно-импульсной обработки материалов, имеющего внутренний канал, воздухом низкой температуры от вихревой трубы, в том числе при использовании эжектора. Экспериментально полученные зависимости показывают, что наибольшая эффективность охлаждения и наибольшая интенсивность охлаждения токопровода одновиткового индуктора достигается при значениях β>1 (отношение площадей проходных сечений диафрагмы и сопла эжектора) при всех исследованных отношениях относительного диаметра диафрагмы вихревой трубы, при неизменной величине давления на ее входе. В результате исследований установлено, что канальное охлаждение токопровода одновиткового индуктора охлажденным воздухом от вихревой трубы обладает достаточно высокой эффективностью при высокой степени безопасности.

Ключевые слова: магнитно-импульсная обработка, индуктор, токопровод, охлаждение, вихревая труба, эжектор.

DOI: 10.37313/1990-5378-2023-25-3-64-71 EDN: KWKMSA

ВВЕДЕНИЕ

При разряде батареи конденсаторов магнитно-импульсной установки (МИУ), в процессе высокоскоростного деформирования заготовок давлением импульсного магнитного поля, по скин-слою в материале токопровода индуктора протекает импульсный ток высокой плотности. Это приводит к выделению большого количества тепла от омического нагрева. Температура нагрева зависит, в первую очередь, от величины энергии разряда МИУ, а также от материала токопровода индуктора и обрабатываемой заготовки, размеров (диаметра) и геометрии токопровода индуктора, толщины стенки обрабатываемой заготовки, частоты разрядного тока [1]. Даже при небольших энергиях однократного разряда МИУ, скин-слой материала токопровода индуктора может нагреваться до температур порядка 100 °С и выше. При больших значениях энергий разряда, к концу процесса протекания импульсного тока после однократного разряда

Самохвалов Владимир Николаевич, доктор технических наук, профессор кафедры производства летательных аппаратов и управления качеством в машиностроении. E-mail: samokhvalov.vn@ssau.ru

Юсупов Ринат Юнусович, научный сотрудник лаборатории прогрессивных технологических процессов пластического деформирования.

E-mail: vvz@ssau.ru

МИУ температура в скин-слое материала токопровода может возрастать до 300 – 500 °С [2, 3]. Это приводит к последующему значительному нагреву всего объема материала токопровода индуктора и его изоляции.

При эксплуатации индукторов в условиях серийного производства изделий, нагрев материала токопровода, его витковой изоляции, а также корпусных элементов существенно влияет на допустимую частоту следования импульсов разряда и на ресурс работы индукторных систем. Для увеличения срока службы индукторов в условиях интенсивной эксплуатации их необходимо охлаждать.

СУЩЕСТВУЮЩИЕ КОНСТРУКЦИЯ И МЕТОДЫ ОХЛАЖДЕНИЯ ИНДУКТОРОВ

Токопровод одновиткового индуктора для магнитно-импульсной обработки материалов необходимо монтировать в специальном корпусе, который, кроме высоких электрических показателей, должен иметь достаточную толщину – для механической прочности. Это затрудняет охлаждение токопровода индуктора за счет теплопередачи от токопровода на корпус и его последующего конвективного или принудительного внешнего охлаждения обдувом воздухом. Известны возможные конструкторские решения охлаждаемых одновитковых индукторов, например, одновитковый индуктор с отводом тепла с боковой, нерабочей поверхности токопровода [4].

Черников Дмитрий Генадьевич, кандидат технических наук, научный руководитель лаборатории прогрессивных технологических процессов пластического деформирования. E-mail: chernikov.dg@ssau.ru

Охлаждение токопровода одновиткового индуктора происходит наиболее интенсивно при использовании охлаждающей среды проходящей по каналу в относительной близости к скин-слою. В индукторах с динамическим охлаждением, охлаждающей средой является специальная не электропроводная жидкость (деминерализованная вода, масло или др.), с широким диапазоном рабочих температур и имеющая низкое поверхностное натяжение (низкую вязкость). Такие индукторы необходимо охлаждать с применением внешнего устройства – водяного или масляного радиатора с вентилятором. Применение таких устройств требует высокой степени герметичности всей системы охлаждения индуктора, работающего в условиях больших динамических нагрузок. Нарушение герметичности соединений или разрушение токопровода индуктора в процессе разряда может приводить к серьезным последствиям.

Целью настоящей работы является исследование эффективности охлаждения токопровода одновиткового индуктора, имеющего внутренний канал, воздухом низкой температуры от вихревой трубы (ВТ), в том числе при использовании эжектора [5, 6]. В этом случае нарушение герметичности канала токопровода и выход охлаждающей воздушной среды не нарушает работу МИУ с индуктором для магнитно-импульсной обработки.

ОБОРУДОВАНИЕ И МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ

Принципиальная схема экспериментального устройства показана на рис. 1. Выход охлажденного воздуха из вихревой трубы (1) через гибкие трубопроводы подключен к входному каналу токопровода индуктора (3). Выходной канал токопровода соединен с низконапорным входом эжектора (2) – это схема работы вихревой трубы с эжектором. При отсоединении выходного канала от эжектора и заглушенном низконапорном входе эжектора – схема работы вихревой трубы без эжектора.

В экспериментальном устройстве использовалась ВТ совмещенная с эжектором (рис. 2). Камера расширения вихревой трубы образована стальным корпусом (1), передним (2) и задним (3) фланцами. На заднем фланце (3) выполнен щелевой развихритель потока. К корпусу (1) фланцем (2) плотно прижата улитка (4) закручивающего соплового входа, толщиной 2,5 мм, профилированная по спирали Архимеда. Внутренний диаметр цилиндрической камеры рас-

Рис. 1. Принципиальная схема экспериментального устройства: 1 – вихревая труба, 2 – эжектор, 3 – охлаждаемый токопровод одновиткового индуктора

Рис. 2. Схема вихревой трубы с встроенным эжектором:

- 1 камера расширения ВТ, 2 передний фланец ВТ, 3 задний фланец ВТ с развихрителем потока, 4 закручивающее устройство (улитка), 5 сменная диафрагма; 6 входной штуцер ВТ,
 - 7 выходной штуцер охлажденного воздуха, 8 входной (низконапорный) штуцер эжектора,
 - 9 корпус эжектора, 10 сменное сопло эжектора (выход нагретого воздуха из ВТ), 11– шайба

ширения BT *D* равен 10 мм, а ее длина – 76 мм. Диаметры проходных отверстий штуцеров равны 5 мм. Диаметр смесительной камеры эжектора (9) *D*_к равен 8 мм, а ее длина – 80 мм.

Были использованы сменные диафрагмы (5), изготовленные из нержавеющей стали толщиной 0,25 мм, с диаметром отверстия *d*, равном 3, 4, 4, 5 и 5 мм. Таким образом относительный диаметр диафрагмы ВТ $d_{\rm дo} = d/D$ в экспериментах изменялся от 0,3 до 0,5. Применялись сменные сопла эжектора (10) с диаметром проходного отверстия D_c, равном 2,5; 3; 3,5; 4; 4,5; 5 и 6 мм.

Оценка эффективности воздушного канального охлаждения токопровода индуктора, при различных параметрах работы вихревой трубы и эжектора, была выполнена на модели одновиткового индуктора «на обжим» с внутренним диаметром 60 мм (рис. 3).

Охлаждаемый открытый токопровод одновиткового индуктора изготовлен из медной трубки диаметром 8 мм с толщиной стенки 1 мм. Для повышения контрастности теплового поля и точности измерения температур при работе тепловизора, поверхность токопровода была предварительно зачернена. Индуктор через токоподводы подключался к источнику постоянного тока и нагревался до заданной температуры поверхности токопровода. Постоянство первоначальной температуры нагрева токопровода (равенство нагрева и конвективного и лучевого теплоотвода) во всех экспериментах, до включения вихревой трубы, обеспечивалось подбором силы тока с использованием ЛАТРа.

Температура охлажденного воздуха на выходе из вихревой трубы $T_{_H}$ и после выхода из канала индуктора Т_к измерялась электронными термометрами Digital Thermometer Mastech MS6500 с применением термопар. Спай термопар размещался в центре резиновой трубки. Температура нагрева поверхности токопровода индуктора до включения вихревой трубы, а также после стабилизации температуры на поверхности токопровода при его охлаждении протекающим внутри трубки воздухом, измерялась с применением тепловизора FLIR SC7000. Ось объектива тепловизора была нормальна плоскости токопровода индуктора. Индуктор был жестко зафиксирован относительно тепловизора на расстоянии 1,2 м. Для проведения детального анализа температур, получаемых с тепловизора, и построения графиков нагрева и охлаждения выбранных зон и точек на поверхности токопровода применялась программа ThermaCAM Resercher Professional 2.8 SR-1. Измерение температуры, при всех режимах работы BT с эжектором и без эжектора, производилось в трех сечениях (I, II, III), а также дополнительно в точках $T_1 - T_5$ на середине поверхности токопровода (И) индуктора в этих сечениях (рис. 4).

Рандомизированные эксперименты проводились при постоянном давлении сжатого воздуха на входе в вихревую трубу P = 0,6 МПа, поддерживаемым с помощью редуктора. Варьируемыми факторами были диаметр отверстия диафрагмы d (на «холодном» выходе ВТ) и диаметр отверстия сопла D_c, выполняющего одновременно роль диффузора, на «горячем» выходе ВТ. Это позволяло изменять относительный весовой расход холодного потока:

 $\mu = G_x/G$, где G – весовой расход сжатого воздуха на входе ВТ, $G_{\rm x}$ – расход холодного потока.

При постоянном давлении и температуре воздуха T₀ на входе ВТ это позволяло изменять величину снижения температуры охлажденного потока $\Delta T_{\rm x} = T_{\rm x} - T_{\rm o}$, обусловленную вихревым эффектом.

Варьирование диаметром отверстия сопла D_c (10), при постоянном диаметре смесительной

Рис. 3. Тепловой стенд с моделью охлаждаемого одновиткового индуктора

Рис. 4. Точки измерения температуры воздуха в трубопроводах и на поверхности модели охлаждаемого одновиткового индуктора: И – индуктор (токопровод), ТП – токоподводы индуктора

камеры $D_{\rm K}$ эжектора (9), позволяло также изменять величину основной геометрической характеристики эжектора *m*:

$$m = \frac{F_{\rm K}}{F_{\rm C}} = \frac{D_{\rm K}^2}{D_{\rm C}^2},$$
 (2)

где $F_{\rm K}$ – площадь сечения камеры смешения, $F_{\rm C}$ – площадь сечения сопла активного потока

При увеличении *m* растет величина коэффициента эжекции [7]:

$$k = G_2/G_1, \tag{3}$$

где объем G_1 – расход эжектирующего потока, G_2 объем эжектируемого газа.

В проведенных экспериментах: G₁ – расход «горячего» воздуха из ВТ, G₂ – объем охлаждающего воздуха из канала токопровода индуктора.

Переменной геометрической характеристикой используемого устройства в является отношение площадей проходных сечений диафрагмы (охлажденный поток) и сопла эжектора, выполняющего роль диффузора ВТ (подогретый поток):

$$\beta = \frac{F_{\mathrm{A}}}{F_{\mathrm{C}}} = \frac{d^2}{D_{\mathrm{C}}^2} , \qquad (4)$$

В качестве показателя эффективности охлаждения принята величина снижения средней температуры токопровода индуктора $\Delta T_{\rm xc}$, определяемая на основе измерений температуры в пяти точках на поверхности токопровода, при достижении теплового равновесия после включения вихревой трубы:

$$\Delta T_{XC} = T_0 - \frac{T_1 + \dots + T_5}{5}, \qquad (5)$$

В качестве показателя интенсивности охлаждения Ω взята скорость охлаждения, т.е. отношение величины снижения средней температуры токопровода $\Delta T_{\rm xc}$ к времени достижения теплового равновесия в охлажденном состоянии, от момента включения вихревой трубы $\Delta \tau$: $\Omega = \Delta T_{\rm XC} / \Delta \tau$, [°С/мин], (6)

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Все опыты проводились после достижения установившейся температуры в точке 3 (рис. 4) токопровода $T_0 = 65$ °C, при постоянно включенном источнике питания и неизменной величине силы тока. С применением тепловизора производилось измерение установившейся температуры нагрева токопровода в контрольных точках на его поверхности (рис. 5, а).

Затем, без отключения питания индуктора, запускалась вихревая труба. Измерялась начальная температура воздуха на входе в токопровод T_н. Время выхода вихревой трубы на номинальный режим работы от момента подачи сжатого воздуха составляет 1 – 2 секунды [8]. Это позволяло измерять время до момента стабилизации температуры в точке 3 токопровода (по данным с тепловизора) в процессе его охлаждения при постоянной холодопроизводительности ВТ. При стабилизации температуры в контрольных точках (равенства нагрева и общего теплоотвода) фиксировалось время Δτ. Производилось измерение температур охлажденного токопровода в контрольных сечениях и точках (рис. 5, б). По электронным термометрам снимались показания температуры воздуха в трубках на входе и выходе в токопровод ($T_{\rm HX}$ и $T_{\rm KX}$). Одновременно с помощью тепловизора регистрировалась общая картина теплового поля на поверхности токопровода индуктора.

Затем вихревая труба отключалась и следующий опыт производился после достижения установившейся температуры $T_0 = 65$ °C в точке (3) токопровода. Источник электрического нагрева токопровода стабильно работал в течении всего периода проведения экспериментов, без отключения между опытами.

На рис. 6 показана зависимость эффективности охлаждения $\Delta T_{\rm xc}$ от величины
 $\beta,$ при различных относительных диаметрах диафрагмы $d_{\pi 0}$, при работе вихревой трубы с эжектором.

Рис. 5. Температура токопровода индуктора в контрольных сечениях: а) до включения вихревой трубы,

Рис. 6. Зависимость эффективности охлаждения токопровода ΔT_{xc} от величины относительной площади β при изменении относительного диаметра диафрагмы ВТ

С учетом длительности процесса охлаждения токопровода до стабилизации его температуры (рис. 5, б) получены зависимости интенсивности охлаждения токопровода Ω к времени достижения теплового равновесия от величины σ , при различных значениях $d_{д0}$ при работе вихревой трубы с эжектором (рис. 7). Для оценки эффективности работы вихревой трубы с эжектором и без эжектора (с осевым диффузором) были проведены эксперименты при относительном диаметре диафрагмы $d_{\rm д0}$ =0,45, при котором достигается максимальный эффект охлаждения вихревой трубы без эжектора [5]. Результаты представлены на рис. 8.

Рис. 7. Зависимость интенсивности охлаждения токопровода Ω от величины относительной площади β при изменении относительного диаметра диафрагмы ВТ

Рис. 8. Сравнение эффективности охлаждения токопровода одновиткового индуктора Ω при работе BT с эжектором и без эжектора

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТОВ

Экспериментально полученные зависимости (рисунки 6 и 7) показывают, что наибольшая эффективность охлаждения (снижение средней температуры $\Delta T_{\rm xc}$, °С) и наибольшая интенсивность охлаждения (скорость охлаждения Ω , °С/ мин) токопровода одновиткового индуктора достигается при значениях β >1 (отношение площадей проходных сечений диафрагмы и сопла эжектора) при всех исследованных отношениях относительного диаметра диафрагмы ВТ $d_{дo}$, при неизменной величине давления на входе ВТ.

Относительно низкая эффективность и интенсивность охлаждения токопровода одновиткового индуктора при малых значениях β обусловлена снижением относительного весового расхода холодного потока μ ВТ при увеличении площади проходного сечения диффузора ВТ (сопла эжектора). Наибольшее снижение температуры токопровода (рис. 6) получено при $d_{д0} = 0,5$, что больше эффективного значения $d_{д0} = 0,45$ для случая работы ВТ без эжектора [5]. За счет эффекта эжектирования увеличивается степень расширения газа л в вихревой трубе (отношение полного давления сжатого газа к давлению в холодном потоке). С ростом степени расширения растет эффект охлаждения [5]. Это, очевидно, приводит к увеличению наиболее эффективного значения $d_{\pi0}$

Относительное постоянство величин $\Delta T_{\rm xc}$ и Ω при изменение β в исследованном диапазоне от 1 до 2,25 очевидно обусловлено тем, что при увеличении геометрической характеристики *m* эжектора (вследствие уменьшении $D_{\rm c}$) растет коэффициент эжекции. Увеличивается подсос воздуха из ВТ. Увеличенный объем прокачиваемого охлаждающего воздуха компенсирует уменьшение температуры охлажденного воздуха на вы-

ходе ВТ, обусловленное ростом относительного диаметра диафрагмы $d_{д0}$ при увеличении β . Как показано в [5], при увеличении степени расширения более $\pi = 3 - 6$ темп роста эффекта охлаждения в ВТ уменьшается и при больших значениях π за счет этого не наблюдается значительного прироста эффекта охлаждения. Наибольшая скорость охлаждения при работе вихревой трубы с эжектором получена при $\beta > 1,5$ (рис. 7).

Эксперименты по сравнительной оценке эффективности системы охлаждения с вихревой трубой с эжектором и без эжектора (рис. 8) показали, что применение эжектора эффективно при β>1,6. Наиболее эффективное использование эжектора для утилизации энергии горячего потока наблюдается при л= 3...6 и µ=0,3...0,4 [5], а как показано там же при работе вихревой трубы без эжектора максимум эффекта охлаждения достигается при µ≈ 0,25. Очевидно, что при работе использованной вихревой трубы с эжектором при β = 1,6 – 2,75 выполняется условие π=3...6 и μ=0,3...0,4. Это обеспечивает высокую эффективность используемого охлаждающего устройства в этом диапазоне величины β. При β=1,25, очевидно реализуется µ≈0,25, т.к. достигается максимум эффекта охлаждения токопровода одновиткового индуктора той же вихревой трубой, но без эжектора.

выводы

Экспериментально полученные результаты позволяют сделать вывод, что канальное охлаждение токопровода одновиткового индуктора охлажденным воздухом от вихревой трубы обладает достаточно высокой эффективностью при высокой степени безопасности.

С целью повышения эффективности охлаждения токопровода одновиткового индуктора работу ВТ с эжектором необходимо вести при больших значениях отношения площадей проходного сечений диафрагмы ВТ и сопла эжектора ($\beta = 1, 6 - 2, 75$).

СПИСОК ЛИТЕРАТУРЫ

- Желтков, В. И. Методика проектирования температурных условий работы индукторов для обжима при магнитно-импульсной обработке металлов / В.И. Желтков, А.Е. Киреева, В.Д. Кухарь // Известия Тульского государственного университета. Технические науки. – 2009. – № 2-2. – С. 79-83.
- Барвинок, В.А. Исследование тепловых явлений в индукторных системах при магнитно-импульсной обработке / В.А. Барвинок, А.Н. Кирилин, В.П. Самохвалов, В.М. Вершигоров // Проблемы машиностроения и автоматизации. – 2008. – № S. – С. 95-99.
- Барвинок, В.А. Экспериментальные исследования тепловых полей в индукторных системах при магнитно-импульсной штамповке / В.А. Барвинок, Ю.Е. Паламарчук, А.Н. Кирилин [и др.] // Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королёва. 2008. № 1(14). С. 103-110.
- Глущенков, В.А. Основные направления совершенствования индукторов для магнитно-импульсной обработки. Повышение их прочности и ресурса / В.А. Глущенков, И.В. Зверев, В.И. Песоцкий // Известия Самарского научного центра Российской академии наук. – 2021. – Т. 23. – № 6(104). – С. 67-71. – DOI 10.37313/1990-5378-2021-23-6-67-71
- Меркулов, А.П. Вихревой эффект и его применение в технике /, А.П. Меркулов. – Москва: Машиностроение, 1969. – 183 с.
- Пиралишвили, Ш.А. Вихревой эффект. Эксперимент, теория, технические решения/ Ш. А. Пиралишвили, В. М. Поляев, М. Н. Сергеев / Под. ред. А. И. Леонтьева. М.: УНПЦ «Энергомаш», 2000. 412 с.
- Александров, В.Ю. Оптимальные эжекторы (теория и расчет) / В.Ю. Александров, К.К. Климовский. – Москва: Машиностроение, 2012. - 136 с.
- Самохвалов, В.Н. Распределение температуры на оси камеры расширения при различных схемах работы вихревой трубы / В.Н. Самохвалов // Письма в журнал технической физики, 2021. – Т. 47. – № 19. – С. 41–43. – DOI: 10.21883/ PJTF.2021.19.51513.18786.

AIR CHANNEL COOLING OF ONE-TURN INDUCTOR FOR ELECTROMAGNETIC METAL FORMING

© 2023 V.N. Samokhvalov, D.G. Chernikov, R.Yu. Yusupov

Samara National Research University, Samara, Russia

This paper evaluates the efficiency of cooling a coil, fitted with an internal channel, for a one-turn inductor for electromagnetic metal forming, using a low-temperature air from a vortex tube, with and without an ejector. The experiment data shows that at constant pressure on the vortex tube entrance the highest cooling efficiency and intensity are reached at values $\beta>1$, where β is an ejector diaphragm to nozzle section area relation. The results show that air channel cooling of a coil for a one-turn inductor using air from vortex tube has considerably high efficiency and high safety parameters.

Keywords. Electromagnetic metal forming, inductor, inductor coil, cooling, vortex tube, ejector.

DOI: 10.37313/1990-5378-2023-25-3-64-71

EDN: KWKMSA

REFERENCES

- Zheltkov, V. I. Metodika proektirovaniya temperaturnyh uslovij raboty induktorov dlya obzhima pri magnitno-impul'snoj obrabotke metallov / V.I. ZHeltkov, A.E. Kireeva, V.D. Kuhar' // Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. – 2009. – № 2-2. – S. 79-83.
- Barvinok, B.A. Issledovanie teplovyh yavlenij v induktornyh sistemah pri magnitno-impul'snoj obrabotke/B.A.Barvinok,A.N.Kirilin,V.P.Samohvalov, V.M. Vershigorov // Problemy mashinostroeniya i avtomatizacii. – 2008. – Nº S. – S. 95-99.
- Barvinok, B.A. Eksperimental'nye issledovaniya teplovyh polej v induktornyh sistemah pri magnitnoimpul'snoj shtampovke / V.A. Barvinok, YU.E. Palamarchuk, A.N. Kirilin [i dr.]//Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Korolyova. – 2008. – Nº 1(14). – S. 103-110.
- 4. Glushchenkov, V.A. Osnovnye napravleniya

sovershenstvovaniya induktorov dlya magnitnoimpul'snoj obrabotki. Povyshenie ih prochnosti i resursa / V.A. Glushchenkov, I.V. Zverev, V.I. Pesockij // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. – 2021. – T. 23. – Nº 6(104). – S. 67-71. – DOI 10.37313/1990-5378-2021-23-6-67-71

- Merkulov, A.P. Vihrevoj effekt i ego primenenie v tekhnike /, A.P. Merkulov. – M.: Mashinostroenie, 1969. – 183 s.
- Piralishvili, Sh.A. Vihrevoj effekt. Eksperiment, teoriya, tekhnicheskie resheniya/ SH. A. Piralishvili, V. M. Polyaev, M. N. Sergeev / Pod. red. A. I. Leont'eva. – M.: UNPC «Energomash», 2000. – 412 s.
- Aleksandrov, V.Yu. Optimal>nye ezhektory (teoriya i raschet) / V.Yu. Aleksandrov, K.K. Klimovskij. – Moskva: Mashinostroenie, 2012. – 136 s.
- Samohvalov, V.N. Raspredelenie temperatury na osi kamery rasshireniya pri razlichnyh skhemah raboty vihrevoj truby / V.N. Samohvalov // Pis'ma v zhurnal tekhnicheskoj fiziki. – 2021. – T. 47. – № 19. – S. 41– 43. – DOI: 10.21883/PJTF.2021.19.51513.18786.

Vladimir Samokhvalov, Doctor of Technical Sciences, Professor of Department of Aircraft Production and Quality Control in Mechanical Engineering. E-mail: samokhvalov.vn@ssau.ru

Dmitrii Chernikov, Candidate Degree in Engineering, Associate Professor of Department of Metal Forming, Head of Laboratory of Advanced Technological Processes of Plastic Deformation (SRL-41) of Samara University. E-mail: chernikov.dg@ssau.ru

Rinat Yusupov, Researcher of Laboratory of Advanced Technological Processes of Plastic Deformation (SRL-41) of Samara University. E-mail: vvz@ssau.ru