УДК 629.78 : 681.51

ЭКОНОМНОЕ ЦИФРОВОЕ ЭЛЕКТРОМАГНИТНОЕ УПРАВЛЕНИЕ МИНИСПУТНИКОМ ПРИ УСПОКОЕНИИ, ОРБИТАЛЬНОЙ ОРИЕНТАЦИИ И РАЗГОНЕ РОТОРОВ В КРАТНЫХ КЛАСТЕРАХ ГИРОДИНОВ

© 2025 Е.И. Сомов, С.Е. Сомов, С.А. Бутырин, Т.Е. Сомова

Самарский государственный технический университет, г. Самара, Россия

Статья поступила в редакцию 11.04.2025

Анализируются два важных аспекта экономного цифрового электромагнитного управления миниспутником в начальных режимах с разгоном роторов гиродинов: солнечная энергетическая поддержка при орбитальной ориентации спутника на солнечно-синхронной орбите и полётная цифровая оценка вектора индукции магнитного поля Земли по навигационным измерениям. Приводятся численные результаты по эффективности разработанных алгоритмов.

Ключевые слова: информационный миниспутник, экономное цифровое управление, разгон роторов гиродинов.

DOI: 10.37313/1990-5378-2025-27-2-146-155 EDN: IGYLIF

ВВЕДЕНИЕ

После отделения информационного миниспутника (МС) от разгонного блока и раскрытия панелей солнечных батарей (СБ) в связанной с корпусом (body) спутника системе координат (ССК) О xyz – базисе **B** с ортами \mathbf{b}_i , $i = 1, 2, 3 \equiv 1 \div 3$, этот МС начинает кувыркаться – совершать пространственное ротационное движение в инерциальной системе координат (ИСК) – базисе \mathbf{I}_{\oplus} с вектором угловой скорости $\boldsymbol{\omega}$ переменного направления. При завершении начальных режимов (НР) ориентации МС его угловое положение должно быть стабилизировано [1], например, в орбитальной системе координат (ОСК) $O x^{\circ} y^{\circ} z^{\circ}$ – базисе **O** с ортами $\mathbf{0}_i$, который вращается в базисе \mathbf{I}_{\oplus} с вектором угловой скорости $\boldsymbol{\omega}_0$ (рис. 1 в [18]), а оборудование системы управления движением (СУД) подготовлено к выполнению запланированных целей. Здесь традиционно выделяют режимы успокоения (торможения вращения) корпуса МС, поворотных маневров (ПМ) для приведения ориентации спутника к требуемой, а также подготовки бортового оборудования СУД к работе. Например, начальный режим российского спутника связи Sesat, запущенного в 2000 г., включал два одноосных ПМ, последовательно выполняемых с помощью реактивных двигателей (РД) с широтно-импульсной модуляцией их тяги по сигналам приборов ориентации на Солнце (ПОС) и на Землю (ПОЗ), а также гироскопических датчиков угловой скорости (ДУС) [2,3].

Экономичность СУД в НР достигается отказом от применения РД при использовании магнитного управления [4-7] в сочетании с гравитационной стабилизацией [8]. В отличие от кластеров двигателей-маховиков [9,10] использование в НР силовых гироскопических кластеров (СГК) на основе гиродинов (ГД) требует обеспечения постоянных значений кинетических моментов (КМ) их роторов. Кратные кластеры [11-16] с коллинеарными группами ГД выделяются такими достоинствами: граница *д***S** области **S** вариации вектора **H** кинетического момента кластера совпадает с выпуклой оболочкой этой области, все поверхности сингулярных состояний СГК внутри области **S** являются проходимыми и поэтому доступны явные законы их настройки, когда все характеристики перемещения каждого ГД определяются по аналитическим соотношениям. Кластеры кратных схем *3-SPE* (*3 Scissored Pair Ensemble*, набор 3 ножничных пар) и *2-SPE* на основе трёх либо двух пар ГД, рис. 1, нашли практическое применение в СУД многих информационных спутников.

Возможности бортовой системы электропитания MC в начале его миссии не позволяют выполнить одновременный разгон роторов всех ГД в составе указанных кластеров, такой разгон доступен лишь для пар ГД. Поэтому предусмотрен режим долговременной ориентации орта $\mathbf{n}^{_{p}}$ нормали к плоскости панелей СБ в направлении Солнца в двух вариантах стабилизации MC: в базисе $\mathbf{I}_{_{\oplus}}$ с началом в центре Земли либо в базисе \mathbf{O} с началом в центре масс спутника \mathbf{O}

Евгений Иванович Сомов, кандидат технических наук, доцент, начальник отдела СамГТУ. E-mail: e_somov@mail.ru Сергей Евгеньевич Сомов, научный сотрудник СамГТУ. E-mail: s_somov@mail.ru

Сергей Анфимович Бутырин, кандидат технических наук, начальник лаборатории СамГТУ. E-mail: butyrinsa@mail.ru Татьяна Евгеньевна Сомова, научный сотрудник СамГТУ. E-mail: te_somova@mail.ru

Рис. 1. Отсчёт углов ГД в СГК по схеме 3-SPE (а) и по схеме 2-SPE (b)

В [14] исследован метод разгона роторов ГД в составе кратных СГК, когда угловые положения ГД зафиксированы сразу в его «парковом» состоянии, которому соответствует значение вектора его КМ **H** = **0**, рис. 2. Здесь применялся пошаговый разгон роторов в циклах последовательности пар ГД, когда при завершении каждого цикла выполняется условие **H** = **0**. При этом проявляются как инерционные возмущающие моменты из-за разгона роторов пар ГД, так и существенные гироскопические связи пространственного углового движения КА, стабилизируемого РД.

Рис. 2. Парковые состояния СГК по схеме 3-SPE (a) и по схеме 2-SPE (b)

В [15,16] представлены результаты анализа динамических процессов разгона роторов шести ГД СГК по схеме *3-SPE* при ориентации орта нормали **n**^{*r*} к плоскости панелей СБ по орту **s** направления на Солнце при стабилизации МС на солнечно-синхронной орбите (ССО) в ИСК, см. рис. 1 в [18]. В концепции данного режима после успокоения МС предусмотрено три этапа [17]:

1) начальная ориентация МС в ИСК с необходимым расположением указанных ортов;

2) накопление измерительной информации на начальных витках ССО и ориентации МС в усредненное угловое расположение в ИСК, когда устанавливаются нелинейные колебания МС из-за противоборства гравитационного момента и управляющего момента магнитного привода (МП);

3) ситуационный разворот панелей СБ с обеспечением близости направлений отмеченных ортов. Главное достоинство этого варианта разгона роторов ГД при стабилизации МС в ИСК заключается в достойном среднегодовом значении основного фактора энергетического обеспечения спутника $Q_s = \cos \overline{\varphi}_s^*$ при угловом рассогласовании φ_s^* между ортами \mathbf{n}^r и \mathbf{s} . При значении $Q_s \ge 0.7$ обеспечивается возможность быстрого разгона роторов ГД. Очевиден недостаток этого варианта – сложность, поэтому возникает вопрос: а нельзя ли более простым способом накапливать электроэнергию от солнечного излучения, пусть даже без обеспечения быстрого разгона роторов ?

Бортовые магнитные средства являются источниками весьма мощных магнитных полей в окрестности ОСК миниспутника, которые могут создавать значительные возмущения для магнитометров (MM) и других магнитометрических датчиков. Известные способы уменьшения возмущающего влияния таких полей основаны на механически отдалённом размещении МП относительно MM, использовании оригинальных магнитных экранов и управляемой компенсации магнитных помех при включениях МП, а также на экзотическом разделении каждого временного интервала цифрового управления MC на два участка поочерёдной дискретной работы MM и MП. Полетные результаты свидетельствует о «средней» точности магнитометров при измерении вектора индукции **B** = B**b** магнитного поля Земли (МПЗ) как по модулю B (до 3%), так и по пространственному углу орта **b** (до 0,5 град). Это диктует необходимость полётного оценивания значений вектора индукции **B** МПЗ в ССК с применением цифровых информационных технологий.

В статье решаются две отмеченные выше задачи с применением и развитием результатов авторов [9-11] и [15-18] при одинаковых обозначениях координат и параметров.

на Солнце в орбитальной системе

координат

МОДЕЛИ, АЛГОРИТМЫ И ОБСУЖДЕНИЕ ЗАДАЧ

Для представления задач, решаемых в ОСК, применяются орт s направления на Солнце и орт e направления на Землю, противоположный орту 0, и направлению оси $O y^{\circ}$ ОСК, см. рис. 3 и рис. 1 в [18]. Предполагается, что в НР ориентации панели СБ развёрнуты по оси Оz ССК на угол $-\pi/2$, МС имеет массу 250 кг и элементы его тензора инерции $\mathbf{J} = \operatorname{diag}(J_x, J_y, J_z)$ в ССК связаны соотношением $J_y < J_z < J_x$. Численными методами исследовано движение MC на ССО [19] с высотой 570 км, наклонением 97.67 град и начальной долготой восходящего узла (ДВУ) 30 град. Такая орбита прецессирует по ДВУ со скоростью 0.9856 град/сут, изменение её наклонения носит колебательный характер при наличии малой вековой составляющей. Орт § перемещается в ОСК по образующей поверхности конуса, ось которого направлена по оси О z_a ОСК и угол полураствора $\phi_s^* \in [59, 67]$ град регулярно изменяется в зависимости от времени года. Среднегодовое значение фактора энергетического обеспечения $Q_s = \cos \overline{\phi}_s^* = 0.464$.

Многие требуемые математические модели и алгоритмы управления миниспутником на ССО подробно представлены в статье [18], поэтому здесь приводятся только необходимые сведения.

Геомагнитная система координат определяется в геодезической Гринвичской системе координат (ГСК)

с помощью вектора магнитного момента $\mathbf{M}_{\oplus} = \mathbf{M}_{\oplus} \mathbf{m}_{\oplus}$ с модулем \mathbf{M}_{\oplus} и ортом \mathbf{m}_{\oplus} , эта система используется при описании магнитного поля Земли. В простейшем случае МПЗ представляется потенциалом диполя $\mathbf{B} = \mathbf{B}\mathbf{b}$ с модулем $\mathbf{B} = \mu_{e}^{m} \mathbf{M}_{\oplus} a_{o}^{m} / r_{o}^{3}$, где μ_{e}^{m} – магнитная проницаемость вакуума и a_{o}^{m} – модуль вектора $\mathbf{a}_{o}^{m} = \mathbf{m}_{\oplus} - 3\langle \mathbf{m}_{\oplus}, \mathbf{r}^{o} \rangle \mathbf{r}^{o}$, который направлен по орту $\mathbf{b} = \mathbf{a}_{o}^{m} / a_{o}^{m}$.

Ориентация ССК **B** в ИСК \mathbf{I}_{\oplus} определяется кватернионом $\mathbf{\Lambda} = (\lambda_0, \lambda)$, где $\lambda = \{\lambda_i\}$, который представляется в форме $\mathbf{\Lambda} = \{C_{\Phi/2}, \mathbf{e}^e S_{\Phi/2}\}$ с ортом \mathbf{e}^e оси Эйлера и углом Φ собственного поворота, а также вектором модифицированных параметров Родрига (МПР) $\mathbf{\sigma} = \{\mathbf{\sigma}_i\} = \mathbf{e}^e \mathbf{g} \ (\Phi/4)$, который связан с кватернионом $\mathbf{\Lambda}$ явными прямыми и обратными соотношениями.

Кинематические соотношения для кватерниона Λ и вектора МПР σ имеют вид $\dot{\Lambda} = \Lambda \circ \omega/2$ и

$$\dot{\boldsymbol{\sigma}} = \frac{1}{4} (1 - \boldsymbol{\sigma}^2) \boldsymbol{\omega} + \frac{1}{2} \boldsymbol{\sigma} \times \boldsymbol{\omega} + \frac{1}{2} \langle \boldsymbol{\sigma}, \boldsymbol{\omega} \rangle \boldsymbol{\sigma}, \qquad (1)$$

динамика углового движения МС описывается векторным уравнением

$$\mathbf{J}\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times \mathbf{G} + \mathbf{M}^{\mathrm{g}} + \mathbf{M}^{\mathrm{m}} + \mathbf{M}^{\mathrm{gr}}.$$
(2)

Здесь $\mathbf{G} = \mathbf{J}\boldsymbol{\omega} + \mathbf{H}$ является вектором КМ электромеханической СУД, столбец $\mathbf{H} = \{\mathbf{H}_i\}$ представляет вектор КМ СГК, вектор $\mathbf{M}^{\mathrm{g}} = \{\mathbf{M}_i^{\mathrm{g}}\}$ управляющего момента СГК формируется в виде $\mathbf{M}^{\mathrm{g}} = -\mathbf{H}'$, где (·)' – символ локальной производной по времени; $\boldsymbol{\omega} = \{\boldsymbol{\omega}_i\}$ – вектор угловой скорости МС, представленный в ССК *Охуz*; $\mathbf{M}^{\mathrm{m}} = \{m_i^{\mathrm{m}}\}$ – вектор управляющего механического момента МП, который формируется по формуле $\mathbf{M}^{\mathrm{m}} = \{m_i^{\mathrm{m}}\} = \mathbf{L} \times \mathbf{B}$, где вектор электромагнитного момента (ЭММ) $\mathbf{L} = \{l_i\}$ с ограниченными компонентами $|l_i| \leq 1^{\mathrm{m}}$ и вектор индукции МПЗ **B** с ортом **b** определены в ССК; наконец, вектор \mathbf{M}^{gr} представляет возмущающий гравитационный момент.

Алгоритмы цифрового управления МП в режиме успокоения используют сочетание закона торможения, оптимального по быстродействию на начальном этапе, с автоматическим переключением на локально-оптимальный закон управления с минимальным принуждением [20 - 22]. При этом направление вектора механического момента МП **М** = **М**^m(**o**) определяется ортом **k** вектора КМ $\mathbf{K} = \mathbf{J}\boldsymbol{\omega}$ миниспутника. Синтезированный закон управления $\mathbf{M}(\boldsymbol{\omega})$ обеспечивает выполнение условия $\boldsymbol{\omega}(t) \in \mathbf{S}_{\omega} \equiv (\boldsymbol{\omega}(t) : | \boldsymbol{\omega}(t) | \leq \Delta_{\omega}^{\circ} \forall t \geq t_{1}^{*})$, где Δ_{ω}° определяет размер множества \mathbf{S}_{ω} . Будем считать, что в моменты времени $t_{r} = rT_{u}^{m}$, $r \in \mathbf{N}_{0} \equiv [0,1,2...)$ вектор индукции $\mathbf{B}_{r} \equiv \mathbf{B}(t_{r}) = \mathbf{B}_{r}\mathbf{b}_{r}$ вычисляется на основе бортовой модели МПЗ при использовании дискретных измерений положения и угловой скорости МС. При формировании команды $\mathbf{M}_{r} = -a \mathbf{K}_{r}$ для вектора механического момента МП на каждом полуинтервале времени $t \in [t_{r}, t_{r+1})$ с заданным периодом T_{u}^{m} сначала определяется вектор потребной вариации импульса (*pulse*) управляющего момента

$$\mathbf{M}_{r}^{p} \equiv \int_{t_{r}}^{t_{r+1}} \mathbf{M}(\tau) d\tau = -a \int_{t_{r}}^{t_{r+1}} \mathbf{K}(\tau) d\tau$$
$$= -\mathbf{K}_{r} (1 - \exp(-aT_{u}^{m})) \mathbf{k}_{r}.$$

Этот вектор представляется в виде $\mathbf{M}_r^p = \mathbf{b}_r \times (\mathbf{M}_r^p \times \mathbf{b}_r) + \mathbf{b}_r (\mathbf{M}_r^p, \mathbf{b}_r)$ и для энергетической экономичности МП назначается вектор $\mathbf{M}_r^p = \mathbf{M}_r^{pm} \equiv \mathbf{b}_r \times (\mathbf{M}_r^p \times \mathbf{b}_r)$ с условием $(\mathbf{M}_r^p, \mathbf{b}_r) = 0$.

Вектор потребной вариации импульса управляющего момента МП $\mathbf{M}_{r}^{pm} \equiv -\Delta \mathbf{I}_{r}^{m} \mathbf{k}_{r}$ с модулем $\Delta \mathbf{I}_{r}^{m} = \mathbf{K}_{r}(1 - \exp(-aT_{u}^{m}))$ и ортом \mathbf{k}_{r} далее используется для формирования цифрового управления ЭММ $\mathbf{L}_{r} = \{l_{ir}\}$ МП с периодом T_{u}^{m} . При этом определяется взаимная ориентация ортов \mathbf{b}_{r} и \mathbf{k}_{r} , если $|(\mathbf{b}_{r}, \mathbf{k}_{r})| > \cos(\pi/3)$, то на текущем периоде дискретности МП не включается, иначе формируется вектор ЭММ $\mathbf{L}_{r} = (\Delta \mathbf{I}_{r}^{m} / T_{u}^{m})(\mathbf{b}_{r} \times \mathbf{k}_{r}) / \mathbf{B}_{r}$ с ограниченными компонентами $|l_{ir}| \leq 1^{m}$. Кстати, аналогичный алгоритм цифрового управления МП применяется для автоматической

Кстати, аналогичный алгоритм цифрового управления МП применяется для автоматической разгрузки СГК от накопленного кинетического момента.

Вводятся ортогональная гироскопическая система координат (ГирСК) $Ox_c^g y_c^g z_c^g$ СГК, для простоты совпадающая с ССК Oxyz, отсчет углов ГД β_p при их перемещениях по осям их подвеса, см. рис. 1, и обозначения проекций ортов КМ каждого ГД на оси ГирСК

$$\begin{aligned} x_1 &= C_1 \equiv \cos\beta_1; \ x_2 = C_2 \equiv \cos\beta_2; \ y_1 = S_1 \equiv \sin\beta_1; \\ y_2 &= S_2 \equiv \sin\beta_2; \ x_3 = S_3 \equiv \sin\beta_3; \ x_4 = S_4 \equiv \sin\beta_4; \\ z_3 &= C_3 \equiv \cos\beta_3; \ z_4 = C_4 \equiv \cos\beta_4; \ y_5 = C_5 \equiv \cos\beta_5; \\ y_6 &= C_6 \equiv \cos\beta_6; \ z_5 = S_5 \equiv \sin\beta_5; \ z_6 = S_6 \equiv \sin\beta_6. \end{aligned}$$

Вектор *нормированного* кинетического момента СГК $\mathbf{h}(\boldsymbol{\beta}) = \mathbf{H}(\boldsymbol{\beta})/h_{g}$, где столбец $\boldsymbol{\beta} = \{\beta_{p}\}$, $p = 1 \div 6$, и матрица Якоби $\mathbf{A}_{h}(\boldsymbol{\beta}) = \partial \mathbf{h} / \partial \boldsymbol{\beta}$ представляются в виде

$$\mathbf{h} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} C_1 + C_2 + S_3 + S_4 \\ S_1 + S_2 + C_5 + C_6 \\ C_3 + C_4 + S_5 + S_6 \end{bmatrix};$$
$$\mathbf{A}_{\mathrm{h}}(\mathbf{\beta}) = \begin{bmatrix} -S_1 & -S_2 & C_3 & C_4 & 0 & 0 \\ C_1 & C_2 & 0 & 0 & -S_5 & -S_6 \\ 0 & 0 & -S_3 & -S_4 & C_5 & S_6 \end{bmatrix}.$$

Вектором цифрового управления СГК $\mathbf{u}_{k}^{g}(t) = {\mathbf{u}_{pk}^{g}(t)}$ с периодом T_{u} , $\mathbf{u}_{pk}^{g}(t) = \mathbf{u}_{pk}^{g} \forall t \in [t_{k}, t_{k+1})$, $t_{k+1} = t_{k} + T_{u}$, $k \in \mathbb{N}_{0}$, считается вектор $\mathbf{u}_{k}^{g} = \dot{\boldsymbol{\beta}}_{k} \equiv {\dot{\boldsymbol{\beta}}_{pk}}$ скоростей ГД по осям их подвеса с ограниченными по модулю компонентами $|\boldsymbol{\beta}_{p}(t)| \leq \beta^{m}$. При этом кусочно-непрерывный управляющий момент СГК формируется по соотношениям

$$\mathbf{M}_{k}^{g}(t) = -h_{g}\mathbf{A}_{h}(\boldsymbol{\beta}(t) \ \mathbf{u}_{k}^{g}(t); \ \boldsymbol{\beta}(t) = \mathbf{u}_{k}^{g}(t).$$
(3)

Сингулярные состояния этой схемы возникают при таких угловых положениях ГД, когда матрица Грама $\mathbf{G}(\boldsymbol{\beta}) \equiv \mathbf{A}_{h}(\boldsymbol{\beta})\mathbf{A}_{h}^{t}(\boldsymbol{\beta})$ теряет полный ранг, т.е. при $G = \det(\mathbf{G}(\boldsymbol{\beta}) = 0)$. На рисунках 4 и 5 представлены некоторые результаты анализа сингулярных множеств схем *3-SPE* и *2-SPE*.

Важной проблемой управления СГК избыточной структуры является выбор функции распределения вектора КМ СГК между ГД – закона настройки СГК. Наиболее рациональными являются явные законы настройки, когда все характеристики движения ГД получаются по аналитическим соотношениям. При обозначениях

Рис. 4. Множества сингулярных состояний и область вариации КМ схемы 3-SPE

Рис. 5. Схема 2-*SPE* (*a*), область вариации КМ (*b*) и множества сингулярных состояний (*c*)

$$\begin{aligned} x_{12} &= x_1 + x_2; \quad x_{34} = x_3 + x_4; \quad y_{12} = y_1 + y_2; \\ y_{56} &= y_5 + y_6; \quad z_{34} = z_3 + z_4; \quad z_{56} = z_5 + z_6; \\ \widetilde{x}_{12} &= \frac{x_{12}}{\sqrt{4 - y_{12}^2}}; \\ \widetilde{x}_{34} &= \frac{x_{34}}{\sqrt{4 - z_{34}^2}}; \\ \widetilde{y}_{12} &= \frac{y_{12}}{\sqrt{4 - x_{12}^2}}; \\ \widetilde{y}_{56} &= \frac{y_{56}}{\sqrt{4 - z_{56}^2}}; \\ \widetilde{z}_{34} &= \frac{z_{34}}{\sqrt{4 - x_{34}^2}}; \\ \widetilde{z}_{56} &= \frac{z_{56}}{\sqrt{4 - y_{56}^2}}; \end{aligned}$$

компоненты явного векторного закона настройки $\mathbf{f}_{\rho}(\mathbf{\beta}) = \{f_{\rho 1}, f_{\rho 2}, f_{\rho 3}\} \equiv \mathbf{0}$ СГК схемы *3-SPE* принимаются в виде

$$f_{\rho 1}(\mathbf{\beta}) \equiv \widetilde{x}_{12} - \widetilde{x}_{34} + \rho(\widetilde{x}_{12}\widetilde{x}_{34} - 1);$$

$$f_{\rho 2}(\mathbf{\beta}) \equiv \widetilde{y}_{56} - \widetilde{y}_{12} + \rho(\widetilde{y}_{56}\widetilde{y}_{12} - 1);$$

$$f_{\rho 3}(\mathbf{\beta}) \equiv \widetilde{z}_{34} - \widetilde{z}_{56} + \rho(\widetilde{z}_{34}\widetilde{z}_{56} - 1),$$
(4)

где постоянный параметр ρ удовлетворяет условию $0 < \rho < 1$. Для представления условий однозначной разрешимости уравнения $\mathbf{h}(\mathbf{\beta}) = \mathbf{h}$, где $\mathbf{h} = \{x, y, z\}$ является известным столбцом, относительно синусов и косинусов углов β_p всех шести гиродинов, вводятся обозначения

$$p_{12} = \sqrt{4 - (x_{12})^2}; q_{12} = \sqrt{4 - (y_{12})^2};$$

$$p_{34} = \sqrt{4 - (z_{34})^2}; q_{34} = \sqrt{4 - (x_{34})^2};$$

$$p_{56} = \sqrt{4 - (y_{56})^2}; q_{56} = \sqrt{4 - (z_{56})^2};$$

$$x_{12} = \frac{x + \Delta_x}{2}; x_{34} = \frac{x - \Delta_x}{2}; x_{56} = \frac{y + \Delta_y}{2};$$

$$y_{12} = \frac{y - \Delta_y}{2}; z_{34} = \frac{z + \Delta_z}{2}; z_{56} = \frac{z - \Delta_z}{2};$$

$$d_x = q_{12} + p_{34}; d_y = q_{56} + p_{12}; d_z = q_{34} + p_{56}$$

Условия разрешимости векторного уравнения $\mathbf{h}(\boldsymbol{\beta}(t) = \mathbf{h}(t)$ имеют вид

$$\Delta_{x} = d_{x} \{1 - [1 - 4\rho((q_{12} - p_{34})(x/2) + \rho(q_{12}p_{34} - (x/2)^{2}))/d_{x}^{2}]^{1/2}\}/\rho;$$

$$\Delta_{y} = d_{y} \{1 - [1 - 4\rho((q_{56} - p_{12})(y/2) + \rho(q_{56}p_{12} - (y/2)^{2}))/d_{y}^{2}]^{1/2}\}/\rho;$$

$$\Delta_{z} = d_{z} \{1 - [1 - 4\rho((q_{34} - p_{56})(z/2) + \rho(q_{34}p_{56} - (z/2)^{2}))/d_{z}^{2}]^{1/2}\}/\rho$$
(5)

и при введении столбца $\Delta = \{\Delta_x, \Delta_y, \Delta_z\}$ очевидным образом преобразуются к нелинейному векторному уравнению $\Delta = \Phi(\mathbf{h}, \Delta)$. Получить аналитическое решение этого уравнения для определения углов β_p^* ГД в парковом состоянии СГК затруднительно, но его численное решение достигается практически мгновенно по методу простой итерации – при рациональном выборе начального точки достаточно лишь 2-3 итераций для получения результата с приемлемой точностью.

Закон настройки схемы 2-SPE строго обоснован и представлен явном аналитическом виде.

Рис. 6. Схемы разгона роторов в парах гиродинов (а) и приведения СГК в парковое состояние (b)

Положение нечетных (p = 1,3,5) и четных (p = 2,4,6) ГД в трех парах $i = 1 \div 3$ удобно представить углами $\alpha_i = (\beta_{2i-1} + \beta_{2i})/2$ и $\delta_i = (\beta_{2i-1} - \beta_{2i})/2$, $i = 1 \div 3$, которые поясняют применяемое выше наименование «ножничной пары» – угол α_i определяет центральную линию a_i «ножниц», а углы $\pm \delta_i$ – положения векторов КМ \mathbf{h}_{2i-1} и \mathbf{h}_{2i} относительно линии a_i в i-ой паре ГД.

Парковое состояние СГК, которому соответствует значение вектора его КМ $\mathbf{H} = \Sigma \mathbf{h}_p = \mathbf{0}$ при $\mathbf{h}_p = |\mathbf{h}_p| = h_g$, приведено на рис. 2*a*. Здесь векторы КМ всех 3 пар ГД $\mathbf{h}_i = \mathbf{h}_{2i-1} + \mathbf{h}_{2i}$ с одинаковыми модулями и концами в точках **A**, **B** и **C** принадлежат плоскости **P**, которая содержит начало **O** ГирСК, причем векторы \mathbf{h}_i направлены по линиям a_i . Детальный топологический анализ сингулярных состояний схемы *3-SPE* и проходимости внутренних сингулярных поверхностей данной схемы показывает, что все эти поверхности проходимы. Наибольшую сложность в исследовании доставляет именно начало ГирСК – центр сгустка сингулярных поверхностей, см. рис. 4.

Явный векторный закон настройки СГК принимается в виде

$$\mathbf{A}_{\beta}(\boldsymbol{\beta})\dot{\boldsymbol{\beta}} = -\boldsymbol{\Phi}(\boldsymbol{\beta}) \equiv -\mathbf{sat}(\boldsymbol{\phi}_{\alpha},\boldsymbol{\mu}_{\alpha}\mathbf{f}_{\alpha}(\boldsymbol{\beta})), \tag{6}$$

где прямоугольная матрица Якоби $\mathbf{A}_{\beta}(\boldsymbol{\beta}) = \partial \mathbf{f}_{\rho}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}$ и векторная функция

$$\mathbf{sat}(\phi_{\rho},\mu_{\rho}\mathbf{f}_{\rho}(\boldsymbol{\beta})) = \{\mathbf{sat}(\phi_{\rho},\mu_{\rho}f_{\rho i}(\boldsymbol{\beta}))\}, \ i = 1 \div 3,$$

имеет параметры ограничения ϕ_{ρ} и усиления μ_{ρ} . Данный закон настройки обеспечивает отсутствие сингулярных состояний СГК по схеме *3-SPE* для всех внутренних точек области **S** вариации вектора его суммарного кинетического момента. Здесь рационален выбор параметра $\rho = 0.65$.

Для СГК по схеме *3-SPE* в плоскости изменения КМ каждой *i*-ой паре ГД введем линии b_i , ортогональные линиям a_i , рис. 6 *a*, и будем считать, что направления осей роторов нечетных (p = 1,3,5) и четных (p = 2,4,6) ГД в парах $i = 1 \div 3$ зафиксированы в корпусе КА с помощью арретиров по линиям b_i при значениях углов ГД $\beta_{2i-1} = \beta_{2i} - \pi$, так как согласно применяемой стратегии отсчета углов гиродины с нечетными номерами в парах всегда перемещаются впереди ГД с четными номерами, см. рис. 1, 2 и 6 *a*.

При последовательном разгоне роторов в каждой паре ГД с одинаковыми ускорениями в противоположных направлениях вплоть до номинального значения $h_{\rm g}$ их собственных КМ инерционные возмущающие моменты компенсируются. В результате КМ всех шести ГД принимают значения $h_{\rm g}$ без влияния их инерционных возмущающих моментов на угловое движение корпуса КА и при отключении арретиров гиродинов СГК будет готов для приведения в его парковое состояние.

При развороте двух ГД с противоположными векторами КМ в *i*-ой паре в разные стороны с одинаковыми скоростями по осям подвеса создаваемые ими гироскопические моменты складываются, а вектор КМ $\mathbf{h}_i(t)$ этой пары ГД изменяется вдоль центральной линии a_i , см. рис. 2 и 6 *b*. Поэтому приведение СГК в парковое состояние с условиями $\mathbf{H}(t) \equiv \mathbf{0}$ и $\mathbf{M}^g(t) = -\mathbf{H}'(t) \equiv \mathbf{0}$ рационально выполнять указанные развороты гиродинов во всех трех парах *одновременно* в следующей последовательности:

1) все шесть ГД разворачиваются в соответствующих направлениях с одинаковыми постоянными угловыми скоростями до значений их углов $\hat{\beta}_{2i-1} = \beta^*_{2i-1} - \chi$, $\hat{\beta}_{2i} = \beta^*_{2i} + \chi$ в парах $i = 1 \div 3$ с заданным постоянным углом $\chi = 1$ град;

2) при значении командного управляющего момента СГК **М**^g ≡ **0** включается закон его настройки (6), который автоматически приводит СГК точно в парковое состояние.

В статьях [15] и [23] представлены результаты авторов по исследованию динамических процессов разгона роторов шести гиродинов и приведения СГК в парковое состояние для малого информационного спутника на ССО с другими параметрами.

КОМПЬЮТЕРНАЯ ИМИТАЦИЯ

Имитация выполнена для МС с тензором инерции $\mathbf{J} = \text{diag}(130,98,114)$ кгм² на ССО при таких параметрах оборудования СУД: максимальное значение ЭММ магнитного привода $1^{\text{m}} = 20 \text{ Am}^2$ при периоде его цифрового управления $T_u^{\text{m}} = 16 \text{ c}$; собственный КМ каждого ГД $h_e = 10 \text{ Hmc}$.

Рисунок 7 представляет изменения угловой скорости МС при его успокоении, переходе в ОСК и орбитальной гравитационно-магнитной стабилизации, где указаны номера n витков солнечносинхронной орбиты. На рисунках 8 и 9 детально представлены изменения векторов механического и электромагнитного моментов МП при его цифровом управлении на 4-ом витке ССО.

Рисунки 10 и 11 демонстрируют угловые ошибки орбитальной стабилизации МС и изменение пространственного угла ϕ_y между ортами местной вертикали $\mathbf{0}_2$ и нормали \mathbf{n}^p к плоскости панелей СБ. Здесь нетрудно убедиться, что в стабильном режиме такие отклонения не превышают 0,2 град по модулю, что вполне достаточно для решения целевых задач СУД в рассматриваемой части НР ориентации МС.

Рис. 9. Вектор электромагнитного момента магнитного привода с цифровым управлением

Рис. 11. Угол ϕ_v между ортами $\mathbf{0}_2$ и \mathbf{n}^p

Рис. 8. Векторы механического и электромагнитного моментов магнитного привода

Рис. 10. Погрешности стабилизации в ОСК

ЗАКЛЮЧЕНИЕ

Выполнен анализ двух важных аспектов экономного цифрового электромагнитного управления миниспутником в начальных режимах с разгоном роторов шести гиродинов: солнечная энергетическая поддержка при гравитационномагнитной стабилизации спутника на солнечно-

синхронной орбите и полётная цифровая оценка вектора индукции МПЗ по его компьютерной модели и измерениям, выполняемых навигационными спутниками.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Раушенбах Б.В., Токарь Е.Н.* Управление ориентацией космических аппаратов. М., Наука, Физмат-лит, 1974. 600 с.
- 2. *Somov S.* Damping dynamics of a flexible satellite at pulse-width modulation of an engine control. Russian Aeronautics. 2005. Vol. 48, no. 4. P. 34-44.
- 3. *Сомов С.Е.* Анализ колебаний конструкции спутника при наведении на Солнце и Землю с широтно-импульсной модуляцией управления двигателями // Известия Самарского научного центра РАН. 2007. Том 9, №3. С. 847-858.
- 4. Коваленко А.П. Магнитные системы управления космическими летательными аппаратами. М., Машиностроение, 1975. 248 с.
- 5. *Боевкин В.И., Гуревич Ю.Г., Павлов Ю.Н., Толстоусов Г.Н.* Ориентация искусственных спутников в гравитационных и магнитных полях. М., Наука, Физматлит, 1976. 304 с.
- 6. Алпатов А.П., Драновский В.И., Салтыков Ю.Д., Хорошилов В.С. Динамика космических аппаратов с магнитными системами управления. М., Машиностроение, 1978. 200 с.
- 7. *Овчинников М.Ю., Ролдугин Д.С.* Современные алгоритмы активной магнитной ориентации спутника // Космические аппараты и технологии. 2019. Том 3, № 2 (28). С. 73-86.
- 8. *Бесекерский В.А., Иванов В.А., Самотокин Б.Б.* Орбитальное гирокомпасирование. СПб., Политехника, 1993. 256 с.
- 9. *Сомова Т.Е.* Экономичное цифровое управление ориентацией информационного спутника в начальных режимах // Известия Самарского научного центра РАН. 2017. Том 19, № 4. С. 122-129.
- 10. *Сомов С.Е., Сомова Т.Е.* Автономное цифровое управление мини-спутником землеобзора в режимах начальной ориентации // Известия Самарского научного центра РАН. 2020. Том 22. № 5. С. 84-93.

- Сомов Е.И., Бутырин С.А., Сомов С.Е., Сомова Т.Е. Управление кратными кластерами гиродинов в системах ориентации космических аппаратов // 15 Российская мультиконференция по проблемам управления. Материалы конференции «Управление в аэрокосмических системах». СПб., ГНЦ РФ «Концерн «ЦНИИ «Электроприбор». 2022, С. 103-106.
- 12. Токарь Е.Н., Легостаев В.П., Платонов В.Н., Седых Д.А. Кратные гиросиловые системы // Космические исследования. 1981. Том 19, № 6. С. 813–822.
- 13. Сомов Е.И. Анализ сингулярных состояний и синтез явных законов настройки гирокомплексов кратных схем // Гироскопия и навигация. 2013. № 1(80). С. 134–148.
- 14. Somov S., Butyrin S. Guidance and robust pulse-width control of an information satellite at initial, service and emergency modes. IFAC-OnLinePapers. 2011. Vol. 44, no. 1. P. 2072–2077.
- 15. Сомов С.Е. Разгон гиророторов и включение избыточного кластера гиродинов в контур управления ориентацией информационного спутника // Известия Самарского научного центра РАН. 2017. Том 19, № 4. С. 130-138.
- 16. Сомов Е.И., Бутырин С.А., Сомов С.Е. Цифровое управление кластером шести гиродинов при начальной ориентации космического аппарата // Известия Самарского научного центра РАН. 2019. Том 21, № 5. С. 116-129.
- 17. Сомов Е.И., Бутырин С.А. Энергосберегающее цифровое управление магнитным приводом в аварийном режиме ориентации спутника // Известия Самарского научного центра РАН. 2018. Том 20. № 1. С. 37-44.
- 18. *Сомов Е.И., Бутырин С.А., Сомова Т.Е.* Экономичное цифровое управление в аварийном режиме стабилизации спутника на солнечно-синхронной орбите // Известия Самарского научного центра РАН. 2018. Том 20. № 6. С. 196-201
- 19. Абалакин В.К., Аксенов Е.П., Гребенников Е.А., Демин В.Г., Рябов Ю.А. Справочное руководство по небесной механике и астродинамике. М.: Наука, Физматлит, 1976. 864 с.
- 20. Фурасов В.Д. Устойчивость движения, оценки и стабилизация. М., Наука, Физматлит, 1977. 248 с.
- 21. Черноусько Ф.Л., Акуленко Л.Д., Соколов Б.И. Управление колебаниями. М., Наука, Физматлит, 1980. 384 с.
- 22. Акуленко Л.Д. Асимптотические методы оптимального управления. М., Физматлит, Наука, 1987. 368 с.
- 23. *Somov S., Somov Ye., Butyrin S., Somova T.* A spin-up of the rotors and enable a control gyro cluster into the spacecraft attitude system. Mathematics in Engineering, Science and Aerospace. 2019. Vol. 10, no. 3. P. 451-462.

ECONOMIC DIGITAL ELECTROMAGNETIC CONTROL OF A MINISATELLITE WHEN CALMING, ORBITAL ORIENTATION AND ROTORS SPIN-UP IN A REDUNDANT CLUSTER OF GYRODINES

© 2025 Ye.I. Somov, S. Ye. Somov, S.A. Butyrin, T. Ye. Somova

Samara State Technical University, Samara, Russia

Two important aspects of economical electromagnetic control of a minisatellite in initial modes with a spin-up of gyrodines rotors are analyzed: solar energetic supporting when orbital orientation of the satellite in a sun-synchronous orbit and flight digital estimating an induction vector of the Earth's magnetic field based on navigation measurements. Numerical results on the efficiency of the developed algorithms are presented.

Key words: information minisatellite, economical digital control, acceleration of gyrodines rotors DOI: 10.37313/1990-5378-2025-27-2-146-155 EDN: IGYLIF

REFERENCES

- 1. Raushenbah B.V., Tokar' E.N. Upravlenie orientaciej kosmicheskih apparatov. M., Nauka, Fizmat-lit, 1974. 600 s.
- 2. *Somov S.* Damping dynamics of a flexible satellite at pulse-width modulation of an engine control. Russian Aeronautics. 2005. Vol. 48, no. 4. P. 34-44.
- 3. *Somov S.E.* Analiz kolebanij konstrukcii sputnika pri navedenii na Solnce i Zemlyu s shi-rotno-impul'snoj modulyaciej upravleniya dvigatelyami // Izvestiya Samarskogo nauchnogo centra RAN. 2007. Tom 9, №3. S. 847-858.
- 4. *Kovalenko A.P.* Magnitnye sistemy upravleniya kosmicheskimi letatel'nymi apparatami. M., Mashinostroenie, 1975. 248 s.
- 5. *Boevkin V.I., Gurevich Yu.G., Pavlov Yu.N., Tolstousov G.N.* Orientaciya iskusstvennyh sputnikov v gravitacionnyh i magnitnyh polyah. M., Nauka, Fizmatlit, 1976. 304 s.
- 6. *Alpatov A.P., Dranovskij V.I., Saltykov Yu.D., Horoshilov V.S.* Dinamika kosmicheskih apparatov s magnitnymi sistemami upravleniya. M., Mashinostroenie, 1978. 200 s.
- 7. *Ovchinnikov M.Yu., Roldugin D.S.* Sovremennye algoritmy aktivnoj magnitnoj orientacii sputnika // Kosmicheskie apparaty i tekhnologii. 2019. Tom 3, № 2 (28). S. 73-86.
- 8. Besekerskij V.A., Ivanov V.A., Samotokin B.B. Orbital'noe girokompasirovanie. SPb., Politekhnika, 1993. 256 s.
- 9. *Somova T.E.* Ekonomichnoe cifrovoe upravlenie orientaciej informacionnogo sputnika v nachal'nyh rezhimah // Izvestiya Samarskogo nauchnogo centra RAN. 2017. Tom 19, № 4. S. 122-129.
- 10. *Somov S.E., Somova T.E.* Avtonomnoe cifrovoe upravlenie mini-sputnikom zemleobzora v rezhimah nachal'noj orientacii // Izvestiya Samarskogo nauchnogo centra RAN. 2020. Tom 22. № 5. S. 84-93.

- 11. Somov E.I., Butyrin S.A., Somov S.E., Somova T.E. Upravlenie kratnymi klasterami girodinov v sistemah orientacii kosmicheskih apparatov // 15 Rossijskaya mul'tikonferenciya po problemam upravleniya. Materialy konferencii «Upravlenie v aerokosmicheskih sistemah». SPb., GNC RF «Koncern «CNII «Elektropribor». 2022, S. 103-106.
- 12. *Tokar' E.N., Legostaev V.P., Platonov V.N., Sedyh D.A.* Kratnye girosilovye sistemy // Kosmicheskie issledovaniya. 1981. Tom 19, № 6. S. 813–822.
- 13. *Somov E.I.* Analiz singulyarnyh sostoyanij i sintez yavnyh zakonov nastrojki girokompleksov kratnyh skhem // Giroskopiya i navigaciya. 2013. № 1(80). S. 134–148.
- 14. *Somov S., Butyrin S.* Guidance and robust pulse-width control of an information satellite at initial, service and emergency modes. IFAC-OnLinePapers. 2011. Vol. 44, no. 1. P. 2072–2077.
- 15. *Somov S.E.* Razgon girorotorov i vklyuchenie izbytochnogo klastera girodinov v kontur upravleniya orientaciej informacionnogo sputnika // Izvestiya Samarskogo nauchnogo centra RAN. 2017. Tom 19, № 4. S. 130-138.
- 16. *Somov E.I., Butyrin S.A., Somov S.E.* Cifrovoe upravlenie klasterom shesti girodinov pri nachal'noj orientacii kosmicheskogo apparata // Izvestiya Samarskogo nauchnogo centra RAN. 2019. Tom 21, № 5. S. 116-129.
- 17. *Somov E.I., Butyrin S.A.* Energosberegayushchee cifrovoe upravlenie magnitnym privodom v avarijnom rezhime orientacii sputnika // Izvestiya Samarskogo nauchnogo centra RAN. 2018. Tom 20. № 1. S. 37-44.
- 18. *Somov E.I., Butyrin S.A., Somova T.E.* Ekonomichnoe cifrovoe upravlenie v avarijnom rezhime stabilizacii sputnika na solnechno-sinhronnoj orbite // Izvestiya Samarskogo nauchnogo centra RAN. 2018. Tom 20. № 6. S. 196-201
- 19. Abalakin V.K., Aksenov E.P., Grebennikov E.A., Demin V.G., Ryabov Yu.A. Spravochnoe rukovodstvo po nebesnoj mekhanike i astrodinamike. M.: Nauka, Fizmatlit, 1976. 864 s.
- 20. Furasov V.D. Ustojchivost' dvizheniya, ocenki i stabilizaciya. M., Nauka, Fizmatlit, 1977. 248 s.
- 21. Chernous'ko F.L., Akulenko L.D., Sokolov B.I. Upravlenie kolebaniyami. M., Nauka, Fizmatlit, 1980. 384 s.
- 22. Akulenko L.D. Asimptoticheskie metody optimal'nogo upravleniya. M., Fizmatlit, Nauka, 1987. 368 s.
- 23. *Somov S., Somov Ye., Butyrin S., Somova T.* A spin-up of the rotors and enable a control gyro cluster into the spacecraft attitude system. Mathematics in Engineering, Science and Aerospace. 2019. Vol. 10, no. 3. P. 451-462.

Yevgeny Somov, Candidate of Technics, Associate Professor, Head of Department, Samara State Technical University. *E-mail:* e_somov@mail.ru

Sergey Somov, Researcher of Samara State Technical University. E-mail: s_somov@mail.ru

Sergey Butyrin, Candidate of Technics, Head of Laboratory, Samara State Technical University. E-mail: butyrinsa@mail.ru Tatyana Somova, Researcher of Samara State Technical University. E-mail: te_somova@mail.ru