НАУЧНЫЕ СООБЩЕНИЯ

Самарская Лука. 2008. – Т. 17, № 4(26). – С. 723.-734.

© 2008 Н.Г. Тарасова^{*}

ФИТОПЛАНКТОН РЕКИ БОЛЬШАЯ КОКШАГА: ТАКСОНОМИЧЕСКИЙ СОСТАВ, ЭКОЛОГО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА, СЕЗОННАЯ ДИНАМИКА

По данным наблюдений 1984 г. в фитопланктоне реки Большая Кокшага зарегистрировано 124 таксона водорослей рангом ниже рода. В основном это диатомовые и зеленые водоросли. В эколого-географическом отношении преобладали виды-космополиты, планктонные организмы, индифференты по отношению к солености воды, индифференты и алкалифилы по отношению к ее рН. Наибольшего количественного развития в Большой Кокшаге достигали диатомовые и зеленые водоросли, определявшие максимумы численности и биомассы фитопланктона.

Ключевые слова: фитопланктон, сапробность, виды-индикаторы, доминанты.

Tarasova N.G. PHYTOPLANKTON OR THE RIVER BOLSCHAJA KOKSHAGA: TAXONOMICAL STRUCTURE, ECOLOGO-GEOGRAPHIC CHARACTERISTICS, SEASONAL VARIATION. 124 species, varietes and forms of algae are registered in the river Bolshaja Kokshaga in result of study in1984. Diatoms and chlorophytes comprised the most part of species. Most of detected species are cosmopolitic, planctonic, indifferent in relation to pH, indifferent and alkalifyls in relation to salinity. Diatoms and chlorophytes are prevailed quantitatively and are responsible for phytoplankton biomass and abundance maxima.

Keywords: phytoplankton, saprobity, indicator species, dominant species.

Большая Кокшага, река в Кировской области и республике Марий Эл, левый приток Волги. Длина реки 288 км, скорость течения 4 км/ч, глубина от 0.3 м до 3.5 м в заводях, ширина от 30 до 60 м. Площадь бассейна 6330 км². Питание снеговое и дождевое. Замерзает в начале ноября, вскрывается в апреле. Сплавная.

Река берет начало на луговой равнине Кировской области, проходит через болота с тростниковыми зарослями, лиственные леса, сосновые боры. Русло реки песчаное, много плесов и перекатов.

Большая Кокшага является одной из самых экологически чистых рек в Европейской части России. В среднем течение реки расположен заповедник «Большая Кокшага», созданный в 1993 г.

^{*} Институт экологии Волжского бассейна РАН, г. Тольятти

В 1984 г. проводились наблюдения за состоянием фитопланктона реки Большая Кокшага на различных участках. С этой целью отбирали поверхностные пробы с июля по октябрь в месте впадения ее в водохранилище и в верховье.

Пробы отбирали и обрабатывали по стандартным гидробиологическим методикам, подробно описанным нами ранее (Тарасова, 2007). Всего было отобрано и обработано 6 проб.

Всего в составе фитопланктона р. Большая Кокшага было встречено 124 таксона водорослей, рангом ниже рода, относящихся к 8 отделам, 12 классам, 17 порядкам, 29 семействам, 59 родам (табл. 1). Наибольшим

видовым разнообразием отличался отдел зеленых водорослей, в составе которого сосредоточено 51 %. Соответственно далее следовали диатомовые (29 %), синезеленые (6 %), эвгленовые (5 %), криптофитовые (3 %), золотистые, желтозеленые и динофитовые водоросли (по 2 %). На долю двух наиболее разнообразных отделов водорослей (зеленые и диатомовые) приходится 79 % общего видового разнообразия альгофлоры планктона. Это выше, чем в водохранилищах Волги (от 64 в Куйбышевском до 75 % в Угличском) (Тарасова, 2005).

Таблица 1 Таксономическая структура альгофлоры планктона реки Большая Кокшага

	Число				Число таксонов		
Отдел	клас-	поряд-	семей-	родов	видовых	внутри-	Всего
	сов	КОВ	СТВ	1 ,,	, ,	видовых	
Cyanophyta	2	3	3	6	7	0	7
Chryzophyta	1	2	2	2	2	0	2
Bacillariophyta	2	4	8	13	32	4	36
Xanthophyta	1	1	1	1	2	0	2
Cryptophyta	1	1	1	3	4	0	4
Dinophyta	1	1	1	2	3	0	3
Euglenophyta	1	1	1	3	4	2	6
Chlorophyta	3	4	12	29	60	4	64
Итого	12	17	29	59	114	10	124

Перечень зарегистрированных видов, их таксономическая принадлежность и эколого-географические характеристики приведены ниже.

ОТДЕЛ CYANOPHYTA КЛАСС CHROOCOCCEAE Порядок Chroococcales

Семейство Merismopediaceae

Merismopedia punctata Meyen – П, к, И, Ин, о- α , 1.9. *Microcystis aeruginosa* Kütz. emend. Elenk. – П, к, И, Ал, β , 2.0.

КЛАСС HORMOGONIOPHYCEAE

Порядок Oscillatoriales

Семейство Oscillatoriaceae

Порядок Nostacales

Семейство Anabaenaceae

ОТДЕЛ CHRYSOPHYTA КЛАСС CHRYSOPHYCEAE Порядок Chromylinadales

Семейство Chrysococcaceae

Kephyrion rubri-claustri Conrad – Б, б, И, о, 1.3.

Порядок Ochromonadales

Семейство Dinobryonaceae

Dinobryon divergens $Imhof - \Pi$, κ , H, H, σ - α , 1.8.

ОТДЕЛ BACILLARIOPHYTA КЛАСС CENTRIPHYCEAE Порядок Thalassiosirales

Семейство Stephanodiscaceae

Порядок Melosirales

Семейство Melosiraceae

Melosira varians Ag. – Π , к, Γ л, Ал, о- α , 1.85.

Класс PENNATOPHYCEAE

Порядок Araphales

Семейство Fragilariaceae

Asterionelle formosa Hass. – Π , κ , μ , β -0, 1.6.

Порядок Raphales

Семейство Naviculaceae

Caloneis amphisbaena (Bory) Ehr. – Б, к, И, Ал, β - α .

C. silicula (Ehr.) Cl. – Б, к, И, Ал, о-α, 1.8.

Navicula capitata Ehr. – Л, к, И, Ал, β - α , 2.4.

N. cryptocephala Kütz. – Б, к, И, Ал, β - α , 2.5.

N. exigua (Greg.) Grun. – Пл - Б, к, И, Ал, о-β, 1.4.

N. halophila (Grun.) Cl. – Л, к, Гл.

N. menisculus Schum. – Б, к, Гл, Ал.

N. placentula (Ehr.) Grun. var. rostrata A. Mayer – Б, б, И, Ал.

N. platystoma Ehr. – Б, к, И.

N. pseudoanglica Lange-Bertalot – Б, к, И, Ал, β.

N. pupula Kütz. – Б, к, Γ л, о- α , 1.9.

N. radiosa Kütz. – Б, к, И, β, 2.0

N. rhynchocephala Kütz. – Л, к, И, Ал, α.

Семейство Achnanthaceae

Achnanthes exigua Grun. – Б, κ, Ал, β. *Cocconeis placentula* Ehr. – O, κ, Or, Ин, β-o, 1.6.

Семейство Cymbellaceae

Amphora delicatissima Krasske – Б, к, Мг.

A. ovalis (Kütz.) Kütz. – Б, к, Ог, Ал, β-о, 1.7.

A. veneta Kütz. – Б, к.

Семейство Epithemiaceae

Epithemia sorex Kütz. – Л, к, Гл, Ал, β -0, 1.6.

Семейство Nitzschiaceae

Nitzschia acicularis (Kütz.) W. Sm. – П, к, И, Ал, β - α , 2.4.

N. linearis (Ag.) W. Sm. – Б, к, И, Ал, о- β , 1.5.

N. palea (Kütz.) W. Sm. var. *palea* – Л, к, И, Ал, α-β, 2.7.

N. palea var. debilis (Kütz.) Grun. – Б, а, Гб, Ин, о.

N. paleacea Grun. – Б-П, к, И, Ал, α-β, 2.6.

N. sublinearis Hust. – Б, б, И, Ин, о- β .

Семейство Surirellaceae

Cymatopleura elliptica (Bréb.) W. Sm. – Л, к, И, Ал, о- α , 1.8. *C. solea* (Bréb.) W. Sm. – Л, к, Ал, β , 2.2.

Отдел XANTHOPHYTA

Класс HETEROCOCCOPHYCEAE
Порядок HETEROCOCCALES

Семейство Pleurochloridaceae

Goniochloris fallax Fott – Π , к, Ог, Ин, β , 2.1. G. mutica (A. Br.) Fott – Π , к, Ог, Ин, о- α , 1.9.

ОТДЕЛ СКҮРТОРНҮТА КЛАСС CRYPTOMONADOPHYCEAE Порядок Cryptomonadales

Семейство Cryptomonadaceae

Chroomonas acuta Uterm — Π , κ , \mathcal{U} , β , 2.3. Cryptomonas erosa Ehr. — Π , κ , $\Gamma\pi$, \mathcal{U} H, β , 2.3. C. marssonii Skuja — Π , κ , \mathcal{U} H, β -0, 1.7. Rhodomonas pusilla (Bachm.) Javorn. — Π , κ , $\Lambda\pi$, 0- β , 1.5.

ОТДЕЛ DINOPHYTA КЛАСС DINOPHYCEAE

Порядок Peridinales

Peridinopsis penardiiforme (Lind.) Bourrelly – Π , к, И, Ин. Peridinium cinctum (О. F. M.) Ehr. – Π , к, β -0, 1.6. P. umbonatum Stein – Б- Π , к, Ац, 0- β , 1.4.

ОТДЕЛ EUGLENOPHYTA КЛАСС EUGLENOPHYCEAE Порядок Euglenales

Семейство Euglenaceae

ОТДЕЛ CHLOROPHYTA КЛАСС CHLOROPHYCEAE Порядок Chlorococcales

Семейство Treubariaceae

Treubaria triappendiculata Bern. – Π , к, И.

Семейство Hydrodictyaceae

Pediastrum biradiatum Meyen – Π , κ , Π , Π , o- α , 1.8.

Семейство Botryococcaceae

Dictyosphaerium anomalum Korsch. – Π , K, U. D. pulcellum Wood – Π , κ , Or, Ин, β -0, 1.7. D. subsolitarium van Goor – Π , κ , U. Quadricoccus ellipticus Hortob – Π - ξ , κ , U.

Семейство Radiococcaceae

Eutetramorus planctonicus (Korsch.) Bourrelly – П, к, И.

Семейство Oocystaceae

Lagerheimia genevensis (Chod.) Chod. – Π , κ , Π , β , 2.2. Oocystis borgei Snow – Π , κ , Π , Π , Π , Π -0, 1.7. O. lacustris Chod. – Π , κ , Π -0, 1.6. O. submarina Lagerh. – Π , Π , Π

Семейство Chlorellaceae

Chlorella vulgaris Beij. – Π , κ , Ин, α , 3.1. Hyaloraphidium arcuatum Korsch. – Π , И. H. contortum Pasch. – Π , κ , И. Kirhneriella lunaris (Kirchn.) Moeb. – Π , κ , И, β , 2.2. K. obesa (W. West) Schmidle – Π , κ , И, β , 2.2. Monoraphidium arcuatum (Korsch.) Hind. – Π , κ , И, β , 2.1. M. circinale (Nyg.) Nyg. – Π , И, Ал. M. griffithii (Berk.) Kom.-Legn. – Π , κ , И, β , 2.3. *M. irregulare* (G. M.Sm.) Kom.-Legn. – П, к, И, Ин.

M. minutum (Näg.) Kom.- Legn. – Π , κ , \mathcal{H} , Ал, β - α , 2.5.

Raphidocelis dunubiana (Hind.) Marv. et al. – Π .

R. sigmoidea Hindàk $-\Pi.$

R. subcapitata (Korsch.) Nyg. – П-Б.

Selenastrum gracilis Reinsch - Π-Ο, κ, И, Ин, ο-α, 1.9.

Siderocelis ornata (Fott) Fott – Π , κ , Π , β , 2.2.

Tetraedron incus (Teil.) G. M. Sm. – Π , И, Ал, β .

T. minimum (A. Br.) Hansg. – Π , κ , \mathcal{H} , β , 2.1.

Семейство Coelastraceae

Actinastrum hantzschii Lagerh. – Π , κ , \mathcal{H} , β .

Coelastrum microporum Näg. in A. Br. – Π , к, И, Ин, β , 2.1.

Coelastrum sphaericum Näg. – П, к, И, Ин.

Семейство Scenedesmaceae

Crucigenia tetrapedia (Kirchn.) W. et G. S. West – П, к, И, Ин, β, 2.1.

Crucigeniella apiculata (Lemm.) Kom. – Π , κ , μ , β , 2.3.

Didymocystis inermis (Fott) Fott – Π, κ , И, ο- β , 1.5.

D. planctonica Korsch. - Пл - П, к, И, β, 2.1.

Komarekia appendiculata (Chod.) Fott – Π .

Scendesmus bicaudatus Deduss. – Π .

- S. caudo-aculeatus Chod. var. caudo-aculeatus Π , κ , μ , μ .
- S. caudo-aculeatus var. spinosus (Deduss.) Pankow Π .
- S. denticulatus Lagerh. var. denticulatus Π , к, И, Ин, β , 2.1.
- S. denticulatus Lagerh. var. linearis Hansg. Π , И, Ин, β .
- S. ellipticus Corda Π , κ , β .
- S. gutwinskii Chod. Π , к, И, о- β , 1.4.
- S. falcatus Chod. П, к, Ог, Ал, , β , 2.0.
- S. intermedius Chod. var. intermedius П, к, И, Ин.
- S. intermedius var. bicaudatus Hortob. Π , κ , Ин, β .
- $S. microspina Chod. \Pi, к, Ин.$
- S. protuberans Fritsch. П, к, И, Ин.
- S. quadricauda (Turp.) Brèb. П, к, Ог, Ин, β , 2.1.
- S. sempervirens Chod. Π , к, И, Ин.

Tetrastrum glabrum (Roll) Ahlstr. et Tiff. – Π , κ , Π , Π , o- α , 1.8.

T. staurogeniaeforme (Schröd.) Lemm. – Π , κ , μ , β , 2.2.

КЛАСС CHLAMYDOPHYCEAE

Порядок Chlamydomonadales

Семейство Chlamydomonadaceae

Chlamydomonas asymmetrica Korsch. – Π .

- *C. conferta* Korsch. Π .
- C. debaryana Gorosch. var. atactogama (Korsch.) Lerloff П, к, И.
- C. globosa Snow П, к, Ог, Ин, о- α , 1.9.
- *C. monadina* Stein Π , к, И. β - α , 2.4.
- *C. parietaria* Dill β, 2.1.
- C. simplex Pasch. β - ρ , 2.8.

Gloeomonas mucosa (Korsch.) Ettl – П, Гб, Ин.

Семейство Phacotaceae

Pteromonas torta Korsch. – П, к, И.

Порядок Volvocales

Семейство Volvocaceae

Eudorina elegans Ehr. – Π , κ , \mathcal{U} , β , 2.2. Pandorina morum (Müll.) Bory – Π , κ , \mathcal{U} , β , 2.1.

Класс ULOTRICHOPHYCEAE Порядок ULOTRICHALES

Семейство Ulotrichaceae

Koliella longiseta (Vischer) Hind. – Π-Ο, κ , μ , β , 2.1.

Обозначения: М е с т о о б и т а н и е: Π - планктонный, Π – литоральный, O – обитатель обрастаний, Θ – эпифит, Θ – бентосный, Θ – бентосно-планктонный, Π - Θ – планктонно-бентосный. Θ а с п р о с т р а н е н и е: Θ – космополит, а – альпийский, Θ – борельный. Θ а л о Θ н о с т ь: Θ – галофоб, Θ – олигогалоб, Θ – мезогалоб, Θ – галофил, Θ - индифферент.

Отношение крН: Ац – ацидофил+ацидобионт, Ин – индифферент,

Ал — алкалифил+алалибионт, С а п р о б н о с т ь: о — олигосапроб, о- β — олиго-бетамезосапроб, β -о — бета-олигосапроб, о- α —олиго-альфамезосапроб, β —бета-мезосапроб, β - α — бета-альфамезосапроб, α - β — альфа-бетамезосапроб, β - ρ — бета-полисапроб, α — альфа-мезосапроб.

Ввиду слабой изученности состава альгофлоры планктона водотока, выделяя в ее составе «ведущие» (Толмачев, 1986) порядки, семейства, роды мы относили к таковым те, в составе которых регистрировалось пять и более таксонов водорослей, рангом ниже рода.

К «ведущим» из 17 относятся 4 порядка, а именно: Chlorococcales, из отдела зеленых водорослей, включающий в себя 42 % от общего числа их видов, разновидностей и форм; за ним следует порядок Raphales, из отдела диатомовых, в который входят соответственно 22 %. Следующие за ними

по числу таксонов, рангом ниже рода, порядок Euglenales содержит 6, а порядок Chlamydomonadales, из отдела зеленых водорослей 5 % от общего числа видовых и внутривидовых таксонов.

К «ведущим» семействам относятся 6 из 29 зарегистрированных (Scenedesmaceae, Chlorellaceae, Chlamydomonadaceae из отдела зеленых; Naviculaceae и Nitzschiaceae из отдела диатомовых; Euglenaceae из отдела эвгленовых водорослей). В сумме в них сосредоточено 61 % от общего числа таксонов водорослей, рангом ниже рода. Семейство Scenedesmaceae включат в себя 17 % от общего числа видов, разновидностей и форм водорослей, встреченных в Большой Кокшаге, соответственно Chlorellaceae 14 %, Naviculaceae 12 %, Chlamydomonadaceae 7 %, Euglenaceae 6 %, Nitzschiaceae 5 %.

Таблица 2 Распределение числа видов, разновидностей и форм в альгофлоре планктона реки Большая Кокшага по эколого – географическим группам

Группа	Число таксонов	Процент	Группа	Число таксо- нов	Процент		
по местообитаниям			по отношению к рН				
Планктонный	77	66	Ацидофил+	1	2		
Бентосный	19	16	Ацидобионт				
Литоральный	15	12	Индифферент	34	56		
Обрастатель	1	1	Алкалифил+	25	42		
Эпифит	1	1	Алкалибионт				
Бентосно-	2	2	Всего	60	100		
планктонный			по отношению к солености воды				
Планктонно-	2	2	Галофоб	2	2		
бентосный			Олигогалоб	8	9		
Всего	117	117	Мезогалоб	3	3		
			Галофил	10	10		
по распространению			Индифферент	69	75		
Космополит	94	96	Всего	92	100		
Альпийский	1	1					
Бореальный	3	3					
Всего	98	100					

К «ведущим» родам относятся Scenedesmus, Chlamydomonas из отдела зеленых водорослей; Navicula и Nitzschia из отдела диатомовых. Они включают в себя в сумме 32 % видовых и внутривидовых таксона водорослей, зарегистрированных в реке. Роды Scenedesmus и Navicula содержат 11 и 10 % от общего таксономического разнообразия альгофлоры планктона; Chlamydomonas и Nitzschia соответственно 6 и 5 %.

Достаточно велико количество таксономических единиц, представленных одним видом (24 % порядков, 31 % семейств, 52 % родов).

Эколого-географический анализ показал, что альгофлора планктона р. Большая Кокшага представлена, в основном, планктонными организмами

(66 % от числа таксонов водорослей, для которых известно их местообитание); широко распространенными (виды-космополиты составляют 96 % от числа водорослей, для которых известно географическое распространение); индифферентными по отношению к солености вод и ее рН (соответственно 75 и 56 % от числа видов, для которых известно их отношение к этим показателям) (табл.2).

Таблица 3 Численность (млн кл/л), биомасса (мг/л) фитопланктона реки Илеть и состав доминирующего по этим показателям комплексов видов водорослей в 1984 г.

Bepx	реки	Устье реки			
Численность, доми-	Биомасса, домини-	Численность, доми-	Биомасса, домини-		
нирующие по чис-	рующие по биомас-	нирующие по чис-	рующие по биомас-		
ленности виды	се виды	ленности виды	се виды		
	Ию	ОЛЬ			
2.24	0,71	2	0,55		
Dictyosphaerium	Stephanodiscus	Dictyosphaerium	Stephanodiscus		
subsolitaria, Coela-	hantzschii	subsolitaria, Mono-	hantzschii		
strum sphaericum		raphydium irregulare			
	Авг	уст			
		1.4	1.12		
		Chlamydomonas glo-	Cymatopleura ellip-		
	-	bosa, Tetrastrum	tica, Caloneis am-		
		glabrum	phisbaena, Chlamy-		
			domonas globosa		
	Сент	ябрь			
0,74	0,46	1,11	0,62		
Aphanizomenon flos-	Stephanodiscus	Aphanizomenon flos-	Nitzschia linearis,		
aquae	hantzschii,	aquae, Crucigeniella	Stephanodiscus		
	Nitzschia linearis,	apiculata	hantzschii,		
	Chlamydomonas				
	simplex, C. monadina				
	Октя	. •	1		
		0,24	0,71		
		Dictyosphaerium	Peridinium umbona-		
	-	subsolitaria, Scene-	tum, Euglena acus		
		desmus gutwinskii	var. longissima, Na-		
			vicula radiosa, Ca-		
			loneis silicula		

Из 124 таксонов водорослей, рангом ниже рода, зарегистрированных нами в реке Большая Кокшага, 83 (67 % от общего видового состава альгофлоры планктона) являются индикаторами различной степени органического загрязнения водотока (видами-сапробионтами). Наибольшее их число (48 %) относилось к показателями β-мезосапробной зоны. На долю видов, являющихся показателями низкой степени органического загрязнения (от олиго- до олиго-α-мезосапробов), приходилось 36 % от числа видов-

индикаторов, а на долю видов, предпочитающих воды с высокой степенью органического вещества (от β - α до ρ -сапробов) всего 16 %.

Изменения численности, биомассы фитопланктона в течение биологического сезона, а так же состав доминирующего по этим показателям комплекса видов водорослей, к которому мы относили виды, численность и биомасса которых составляли 10 % и более от общей, представлены в табл. 3. В составе доминирующих комплексов, в основном, представители отделов зеленых и диатомовых водорослей. Синезеленые, вызывающие «цветение» воды, преобладали и в верховье реки и ее устье только в сентябре и лидировали только по численности.

Среднесезонная биомасса фитопланктона составила 0,7 мг/л, что позволяет отнести воду реки Большая Кокшага ко второму классу качества, разряду 26 «вполне чистая» (Оксиюк и др., 1993). Коэффициент сапробности по численности изменялся в течение сезона от 1,9 до 2,3; по биомассе — от 1,9 до 2,4. Среднее его значение по численности составило 2,0, а по биомассе 2,1. По этому показателю вода реки Большая Кокшага может быть отнесена к третьему классу качества, разряду 3а «достаточно чистая» или 3 б «слабо загрязненная», β-мезосапробной категории трофности, разряду «мезотрофно-эвтрофная».

В верховье реки было зарегистрировано 68 таксонов водорослей рангом ниже рода, в ее устье — 108. Возможно, это связано стем, что в верхнем участке реки было отобрано 2 пробы, а в месте ее впадения в водохранилище — 4. Коэффициент видового сходства Серенсона, рассчитанный для устья реки и ее верховья, достаточно высок — 59 %.

Таким образом, на основании изложенного материала можно сделать следующие выводы:

- 1. По результатам исследований 1984 г. альгофлора планктона реки Большая Кокшага представлена124 таксонами водорослей, рангом ниже рода, относящихся к 8 отделам, 12 классам, 17 порядкам, 29 семействам, 59 родам. Наибольшим видовым разнообразием отличались отделы зеленых и диатомовых водорослей.
- 2. В эколого-географическом отношении водоросли р. Большая Кок-шага представлены в основном, планктонными организмами, широко распространенными, индифферентными по отношению к солености вод и ее рН.
- 3. Количественное развитие фитопланктона в реке обусловлено активной вегетацией диатомовых и зеленых водорослей.
- 4. Воду реки Большая Кокшага можно отнести в зависимости от среднесезонной биомассы фитопланктона ко второму классу качества, а в зависимости от коэффициента сапробности, рассчитанного для фитопланктона, к третьему классу качества.

СПИСОК ЛИТЕРАТУРЫ

Оксиюк О.П., Жукинский В.Н., Багринский Л.П., Линник П.Н., Кузьменко М.И., Кленус В.Г. Комплексная экологическая классификация качества поверхност-

ных вод суши // Гидробиологический журнал, 1993. Т. 29, № 4. – С. 62 - 76.

Тарасова Н.Г. Состав, сезонная динамика и инвазийные виды фитопланктона Куйбышевского водохранилища. Дисс. ... канд. биол. наук, Тольятти, 2005. 146 с. - Тарасова Н.Г. Фитопланктон Верхнего пруда Ботанического сада: таксономический состав и эколого-географическая характеристика // Самарская Лука: Бюл. 2007. Т.16. № 1-2 (19-20). С. 156-166. Толмачев А.И. Методы сравнительной флористики и проблемы филогенеза. Новосибирск, 1986. 197 с.

Поступила в редакцию 12 сентября 2008 г.